机械循环辅助支持装置在复杂冠脉介入治疗中的应用进展
Progress in the Application of Mechanical Circulatory Support Devices in Complex Coronary Intervention Therapy
摘要: 复杂高危冠状动脉疾病(CHIP)的治疗面临巨大挑战,机械循环辅助支持装置(MCS)在复杂冠脉介入治疗(PCI)中扮演着至关重要的角色。本文系统阐述了CHIP的定义,介绍了其相关风险评分体系及MCS应用的理论依据,详细评述了常见MCS装置(IABP、Impella、TandemHeart、VA-ECMO)的工作原理、临床应用现状、并发症特点及选择考量。临床实践中需综合多因素权衡决策。尽管当前存在诸多问题,未来可通过设备优化创新、性能提升、深化临床研究、加强多学科协作等途径,进一步提高CHIP患者PCI治疗的安全性与有效性,改善患者预后及生活质量,推动心血管介入治疗的发展。
Abstract: The treatment of complex high-risk coronary artery disease (CHIP) poses significant challenges, and mechanical circulatory support (MCS) devices play a crucial role in complex percutaneous coronary intervention (PCI). This article systematically elaborates on the definition of CHIP, introduces its relevant risk scoring systems and the theoretical basis for MCS application, and provides a detailed review of the working principles, current clinical application status, complication characteristics, and selection considerations of common MCS devices (intra-aortic balloon pump [IABP], Impella, TandemHeart, and veno-arterial extracorporeal membrane oxygenation [VA-ECMO]). In clinical practice, multi-factor comprehensive weighing is required for decision-making. Despite numerous existing issues, future efforts—such as optimizing and innovating devices, improving performance, deepening clinical research, and enhancing multidisciplinary collaboration—can further improve the safety and efficacy of PCI in CHIP patients, enhance patient prognosis and quality of life, and promote the development of cardiovascular interventional therapy.
文章引用:袁龙宪, 韩虎魁. 机械循环辅助支持装置在复杂冠脉介入治疗中的应用进展[J]. 临床医学进展, 2025, 15(10): 2630-2638. https://doi.org/10.12677/acm.2025.15103053

1. 引言

复杂高危冠状动脉疾病(Complex High-risk Indicated Percutaneous Coronary Intervention, CHIP)病变复杂、病情危重、手术风险极高,临床治疗面临严峻挑战。传统的无保护左主干PCI、冠状动脉旁路移植术(CABG)及内科保守治疗均存在局限性。机械循环辅助支持装置(Mechanical Circulatory Support, MCS)作为一种重要的循环支持手段,在CHIP治疗中展现出潜在获益。特别是在PCI术前预防性应用或术中抢救性应用时,MCS通过提供有效的循环支持,改善心肌灌注,降低手术并发症风险,从而显著提高手术成功率,改善CHIP患者预后。

2. 复杂高危冠状动脉疾病的定义

2.1. 定义标准

CHIP主要指冠状动脉存在复杂病变且合并多种高危临床因素的患者群体。根据最新专家共识,其“复杂性”体现在解剖结构复杂,如多支血管病变(累及左前降支、左回旋支、右冠状动脉)、无保护左主干病变、慢性完全闭塞病变(CTO)等;“高危性”则指合并血流动力学不稳定、心源性休克、严重左心功能不全(左心室射血分数LVEF < 35%)或术前评估高风险(如PAAINESD评分 ≥ 15),常同时伴有高龄、衰弱及多种基础疾病等危重因素[1]。CHIP概念的提出源于临床实践中对特定高危患者群体治疗难度的深入认识。

解剖学复杂:指冠状动脉病变本身复杂,如严重钙化、广泛血栓、极度迂曲、长病变、CTO、分叉病变、静脉桥血管病变等。此类病变PCI成功率低、并发症风险高,但相关介入技术已取得进展[2]

临床高危性:定义不断演进,涵盖复杂冠脉病变(多支/左主干、解剖复杂)、血流动力学不稳定(心源性休克、严重左心室功能降低)及临床合并症(高龄、衰弱、糖尿病、外周血管疾病、急性冠脉综合征、既往心脏手术史)等多重特征[2]

2.2. 风险评估体系

SYNTAX评分、SYNTAX II评分及EuroSCORE等常用风险评分体系在评估CHIP-PCI风险中发挥重要作用。其中,SYNTAX评分聚焦冠状动脉病变的解剖复杂程度,通过量化病变数量、血管位置、分叉角度等12项解剖特征实现风险分层,为血运重建策略选择提供核心依据;SYNTAXII评分在此基础上整合年龄、肌酐清除率等临床变量,初步实现解剖与临床因素的融合评估。然而,这些传统评分体系存在显著局限性:其难以量化患者整体生理储备功能(如多器官功能交互影响)及病变血管的血流动力学意义,且面对CHIP人群特有的高危特征(如机械循环支持需求、慢性完全闭塞病变)覆盖不足,导致在复杂病例中预测准确性下降[3] [4]

为弥补上述缺陷,近年来针对CHIP-PCI的专项风险评估工具不断涌现,其核心优势体现在对高危特征的精准捕捉与多维度整合:

(1) UK-BCISCHIP评分:该评分基于英国心血管介入学会(BCIS)数据库313,054例患者十年随访数据研发,是首个明确CHIP人群界定标准的工具。评估涵盖7项患者基线因素(高龄、女性、卒中史等)与6项手术操作因素(长病变、左主干病变等),按比值比赋予1~3分权重。临床验证表明,评分 ≥ 5分者院内MACCE发生率达3.2%,是无CHIP因素者5倍以上,被定为界定阈值。相比SYNTAX评分,其纳入更多全身合并症,专为择期PCI患者优化,更适配术前决策。

(2) BMC2评分:作为基于机器学习算法的新型评分系统,BMC2评分在华盛顿大学医学中心4287例CHIP患者中表现出优异预测性能。它整合电子健康记录多维度数据,预测住院死亡率(AUC = 0.93)和MACCE (AUC = 0.87)的能力优于NCDR Cath PCI评分(死亡率AUC = 0.89)及UK-BCISCHIP评分(死亡率AUC = 0.81)。其优势在于利用机器学习挖掘变量复杂关系,且对特殊病例亚组风险区分度高,在高危人群中也能精准评估。但存在输入变量多、可能高估低风险患者风险的不足。

3. 机械循环支持的血流动力学理论基础及应用现状

3.1. 理论基础

CHIP患者基础冠脉病变导致心肌能量供需失衡,PCI操作本身可进一步增加心肌缺血风险,易诱发术中血流动力学紊乱。MCS装置通过提供循环辅助,可增强冠状动脉血流灌注,减少心肌损伤,改善心脏泵血功能,降低心脏前后负荷,保障重要脏器血供,从而为PCI的顺利完成创造条件,并支持术后心肺功能恢复[5] [6]

3.2. 应用现状

3.2.1. 应用趋势与证据局限

近年来,MCS在CHIP介入治疗中的应用呈上升趋势,但高质量临床证据仍显不足。部分研究因样本量小、设计缺陷及患者高度异质性等问题,导致结果存在不确定性。不同地区及医疗机构在设备资源、使用偏好和经验水平上的差异,也使得MCS的临床应用参差不齐[7] [8]

3.2.2. 指南推荐与临床实践

现行指南对MCS在CHIP-PCI中的应用提供了一定指导[1],但实际应用受多种因素影响,如医生经验与判断、医院设备条件、患者个体特征及病情严重程度等,这些因素共同决定了MCS的选择与应用时机。因此,如何在遵循指南基础上实现个体化精准治疗,仍是临床实践中的关键挑战[9]

4. 常见的机械循环支持装置

4.1. 主动脉内球囊反搏(IABP)

IABP是一种经股动脉置入主动脉的机械辅助装置,通过球囊周期性充放气改善心脏功能[10]。舒张期球囊充气可升高主动脉舒张压,增加冠脉灌注;收缩期前球囊放气则降低主动脉内压力,减轻心脏后负荷[11]。IABP操作相对简便,临床应用历史悠久,能适度增加冠脉血流,改善心肌缺血,减轻后负荷。但其血流动力学支持能力有限,心输出量提升幅度小(约0.5~1.0 L/min),依赖稳定心律,在严重左心衰竭或心脏骤停时效果不佳。常见并发症包括血管损伤、出血、血小板减少、感染,严重者可发生主动脉夹层或肢体缺血。其启用时机(术前或术中)需依据患者血流动力学状况决定,目前仍存争议[10] [11]。IABP-SHOCK II试验显示,在急性心肌梗死(AMI)合并心源性休克患者中,常规使用IABP未能显著降低死亡率[11],使其临床应用价值受到质疑,但在特定情况如合并严重二尖瓣反流的心源性休克患者中可能仍有价值[10]

4.2. Impella

Impella是一系列基于轴流泵技术的经皮或外科植入式临时心室辅助装置,可提供不同程度的循环支持[12]。其微型轴流泵置于心室或主动脉内,将血液从左心室(左心辅助)或右心室(右心辅助)抽出并直接泵入主动脉或肺动脉,实现心室卸载和循环支持。这种主动驱动方式能在心功能受损时维持体循环,减轻心脏负担,增加冠脉及重要脏器灌注[12] [13]。Impella (如2.5,CP,5.0等型号)可提供较高血流支持(2.5~5.5 L/min),显著改善心输出量,缓解心肌缺血所致心衰,尤其适用于严重左心功能不全患者[14]。其心室卸载能力通过降低左室舒张末压减少心肌氧耗,促进心肌恢复。

Impella植入需较大血管鞘管(通常12~14 F或更大),增加了血管并发症(出血、血管损伤、血栓形成)风险,对外周血管条件差者可能不适用[13] [14]。其操作与管理相对复杂,需经验丰富的专业团队[13] [14]。常见并发症包括出血、血管损伤、血栓栓塞及感染(尤其在长期使用或有感染风险因素时) [12]-[14]

最佳启用时机尚未完全明确,但普遍认为在患者出现明显血流动力学不稳定或术前评估PCI风险极高时,应尽早启用Impella以提供稳定支持,保障手术安全[12]-[14]

多项研究评估了Impella在CHIP-PCI及心源性休克中的应用。Impella欧洲注册研究显示,144例高危PCI患者30天死亡率为5.5%,卒中、需输血/手术的出血及血管并发症发生率分别为0.7%、6.2%和4.0% [15]。ISAR-SHOCK试验表明Impella的血流动力学支持优于IABP,但两组死亡率无差异[16];IMPRESS试验也未发现Impella CP与IABP在AMI合并心源性休克患者30天及6个月死亡率上存在显著差异[17]。然而,观察性研究提示在特定人群(如术前左室功能极差或PCI复杂程度高)早期应用Impella可能改善预后,仍需大规模RCT证实[18] [19]

4.3. TandemHeart

TandemHeart作为经皮置入的体外循环辅助装置,主要用于临时性左心或右心支持,通过房间隔穿刺引流心房血液,经离心泵驱动后回输外周动脉,可提供4~5 L/min的血流支持,有效减轻心脏负荷、改善血流动力学,适用于严重左心衰竭或心源性休克患者[20] [21]。但该装置存在明显局限性,植入操作复杂(尤其房间隔穿刺)、技术要求高,易引发心脏穿孔、心包填塞等风险,且设备体积大、管路多,限制患者活动,增加护理难度与感染风险,还可能出现出血、血栓栓塞及溶血等并发症[21] [22]。目前,其临床应用较为局限,仅在严重左/右心衰竭药物无效且预计短期可恢复,同时经个体化评估临床状况、血流动力学指标及手术风险后,才会考虑启用[21] [22]。早期小样本RCT显示其在改善心源性休克患者血流动力学方面优于IABP,但30天死亡率无差异,后续观察性研究虽提示其在CHIP-PCI或心源性休克中具有一定效果,但因操作复杂及并发症风险较高,应用受限,需进一步优化策略与技术[23]-[25],当前在临床中处于“小众”应用地位。

4.4. 静脉–动脉体外膜肺氧合(VA-ECMO)

4.4.1. 基本原理与临床应用

VA-ECMO是一种体外生命支持技术,通过离心泵将静脉血(通常从右心房/大静脉)引出,经膜肺氧合并排出二氧化碳后,再将氧合血泵入动脉系统(如主动脉),同时提供呼吸和循环支持[26] [27]。其核心组件包括离心泵、膜肺和动静脉插管及管路。VA-ECMO可提供强大的循环和呼吸支持,显著提高心输出量、维持血压、改善全身灌注及氧合,为心肺功能恢复争取时间,尤其适用于严重心肺衰竭患者[26] [27]

4.4.2. 左心室减压(LV Venting)策略

VA-ECMO的非搏动性平流灌注可能增加左心室后负荷,导致左室扩张,影响心功能,需密切监测并采取左室减压措施。左心室减压是VA-ECMO管理中的关键环节,直接关系到ECMO疗效与患者死亡率,以下为不同减压方法的详细介绍[26] [27]

1) 经皮左心室穿刺减压术:影像引导下经皮穿刺左心室,置管引流血液,降低左心室舒张末压,改善心肌供血。适用于左心室扩张、压力高且其他方法无效的危急患者,但有创,并发症风险高,需严格把握适应证[26] [27]

2) 经房间隔穿刺左心房引流术:房间隔穿刺建立通道,引流左心房血液至右心房,经VA-ECMO氧合回输,间接减轻左心室负荷。适合左心房压力高、左心室功能受损轻的患者,安全性高,但对房间隔异常者不适用,减压效果较直接穿刺慢[26] [27]

3) 主动脉内球囊反搏(IABP)联合VA-ECMO减压:IABP舒张期充气增冠脉灌注,收缩期放气降左心室后负荷,与VA-ECMO联合协同减压。适用于左心室后负荷重伴心肌缺血患者,操作简单、并发症少,但对严重左心室扩张效果有限[26] [27]

4) 经皮心室辅助装置(pVAD)联合VA-ECMO减压:pVAD直接辅助心室,与VA-ECMO联合,pVAD减压、VA-ECMO支持循环,提升疗效。适用于左心室功能严重受损且其他方法无效者,减压效果好但操作复杂、并发症风险高[26] [27]

4.4.3. 常见并发症

VA-ECMO操作复杂,需专业团队管理,对设备和技术要求高。并发症风险高,包括出血(穿刺部位、消化道、颅内)、感染(插管部位、管路、肺部、泌尿系等,可致脓毒症)、肢体缺血(尤其远端)、氧合器功能障碍、管路血栓形成及溶血[26] [27]

4.4.4. 适应症

适用于AMI合并心源性休克、心脏骤停等紧急情况,或当严重血流动力学不稳定预计常规治疗难以维持时,应尽早启用。具体决策需综合病情严重程度、潜在可逆因素及预计恢复时间[26] [27]。观察性研究显示VA-ECMO可提高严重心源性休克患者的短期生存率,但长期预后存争议[28] [29]。目前多项RCT (如ANCHOR、ECLS-SHOCK)正在进行,旨在评估VA-ECMO在AMI合并心源性休克患者中的疗效和安全性,将为临床提供更可靠证据[30] [31]

5. 机械循环支持装置的选择

CHIP患者选择MCS时需综合考量临床特征、血流动力学状态、冠脉病变情况及预计手术风险等因素。美国心脏协会(AHA) 2022年关于心源性休克临时MCS (tMCS)的实用建议指出[32]

1) MCS设备选择应结合休克病因和血流动力学表型;

2) 强调有创血流动力学监测指导设备选择及升级/降级决策;

3) 提出ICU管理策略(目标血压、代谢指标、多器官功能评估);

4) 建议早期多学科团队协作;

5) 需考虑长期治疗方案(如心脏移植或永久LVAD)。

一般而言,病情相对较轻、血流动力学稳定者可考虑IABP;病情危重、左心功能严重受损或PCI风险极高者,Impella、TandemHeart或VA-ECMO更为适宜[32] [33]。医院条件、团队经验及患者/家属意愿也应纳入决策。对于CHIP患者或术前即存在严重血流动力学不稳定者,可考虑预防性植入IABP或VA-ECMO。VA-ECMO适用于需要强大心肺支持者,而IABP更适用于心功能轻度受损患者的短期支持。

6. 机械循环支持设备的未来发展

6.1. 设备优化与创新

未来MCS设备的创新将突破“物理小型化”的单一层面,而进入“生物融合 + 智能交互”的深度发展阶段。在材料技术层面,可降解镁合金与仿生弹性聚合物的复合应用或成为核心突破点——以经皮植入式心室辅助装置(VAD)为例,其泵体将采用“梯度降解涂层 + 柔性记忆支架”设计:植入初期,涂层提供抗血栓保护与结构支撑;术后3~6个月,随患者心功能恢复,涂层逐步降解为人体可代谢的镁离子与二氧化碳,支架则根据心肌运动节律自适应调整弹性,彻底消除长期异物植入引发的慢性炎症与血管狭窄风险[34] [35]。可降解镁合金的生物安全性已通过临床验证,其梯度降解特性可通过涂层技术精准调控,避免降解过快导致的力学性能骤降问题。

6.2. 循环支持性能提升

着力优化MCS性能。提高血流动力学支持效果,开发新型泵技术或改进工作机制,以实现更高效的心脏辅助,在增加心输出量的同时更好地模拟生理血流模式,减少不良影响。降低血液破坏(溶血、血小板减少)也至关重要,可通过改进血泵设计及表面涂层技术减少血液摩擦与剪切力,这对需长期MCS支持者尤为重要[36] [37]

6.3. 临床研究的深化

亟需开展更多设计严谨的大规模、多中心随机对照试验(RCT),以填补证据空白,明确不同MCS在各种复杂场景下的最佳应用时机、策略及长期效果。例如我国复旦大学附属中山医院主持的PERSIST-III ECMO研究,旨在评估新型经皮跨瓣膜心室辅助系统(SynFlow 3.0)对比VA-ECMO用于高危PCI辅助治疗的安全性和有效性。应针对不同冠脉病变类型(如CTO、严重钙化)、心功能损害程度及合并症患者群体深入研究MCS的适用性及疗效差异。同时关注MCS对患者生活质量、长期心血管事件及生存率的影响。此外,探索不同MCS联合应用的协同效应及优势,为个体化治疗提供更多选择[36] [37]

6.4. 多学科协作的强化

强调多学科团队(心血管内/外科、麻醉科、重症医学科、护理等)在CHIP患者MCS应用全程的紧密协作。建立标准化临床路径和协作机制,确保围术期及全程精细化管理的落实。团队应共同参与患者评估、决策制定、设备植入与管理、并发症监测处理及术后康复,提升治疗协调性与有效性。加强团队培训与交流,提升整体对MCS的认知和操作水平,促进知识共享与技术互补,共同推动CHIP患者治疗水平的提升[38] [39]

7. 结论

CHIP患者的治疗充满挑战,MCS的应用为其预后改善提供了重要支撑。清晰界定CHIP有助于精准识别适用MCS的患者。SYNTAX等评分体系虽有价值,仍需完善以更精准评估风险。现有MCS装置各具特点:IABP操作简便但支持力度有限;Impella提供较高血流支持但存在血管并发症风险;TandemHeart卸载能力强但操作复杂;VA-ECMO支持强大却伴随多种严重并发症。临床实践中,应依据患者具体病情、血流动力学状态、病变复杂性、医院条件和团队经验,权衡利弊,选择最适宜的MCS方式。

尽管当前面临临床证据有限、最佳启动时机不明确等问题,随着技术进步和研究深入,未来有望在设备改进、临床研究完善及多学科协作强化等方面取得突破,从而进一步提升CHIP-PCI的治疗效果,降低死亡率,改善患者长期生活质量,为这一高危群体带来更多生存希望。同时,临床应用中需持续关注并积极处理各类并发症,确保MCS治疗的安全性与有效性,推动心血管介入治疗领域不断进步。

NOTES

*通讯作者。

参考文献

[1] Han, Y. (2023) Chinese Expert Consensus on Clinical Application of Percutaneous Mechanical Circulatory Support Devices in Interventional Therapy for Patients with Complex Cardiovascular Disease. European Heart Journal, 44, 1586-1588.
[2] Bass, T.A. (2015) High-Risk Percutaneous Coronary Interventions in Modern Day Clinical Practice: Current Concepts and Challenges. Circulation: Cardiovascular Interventions, 8, e003405. [Google Scholar] [CrossRef] [PubMed]
[3] Protty, M., Sharp, A.S.P., Gallagher, S., Farooq, V., Spratt, J.C., Ludman, P., et al. (2022) Defining Percutaneous Coronary Intervention Complexity and Risk: An Analysis of the United Kingdom BCIS Database 2006-2016. JACC: Cardiovascular Interventions, 15, 39-49. [Google Scholar] [CrossRef] [PubMed]
[4] Khandelwal, G., Spirito, A., Tanner, R., Koshy, A.N., Sartori, S., Salehi, N., et al. (2023) Validation of UK-BCIS CHIP Score to Predict 1-Year Outcomes in a Contemporary United States Population. JACC: Cardiovascular Interventions, 16, 1011-1020. [Google Scholar] [CrossRef] [PubMed]
[5] Atkinson, T.M., Ohman, E.M., O’Neill, W.W., Rab, T. and Cigarroa, J.E. (2016) A Practical Approach to Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention: An Interventional Perspective. JACC: Cardiovascular Interventions, 9, 871-883. [Google Scholar] [CrossRef] [PubMed]
[6] Rihal, C.S., Naidu, S.S., Givertz, M.M., Szeto, W.Y., Burke, J.A., Kapur, N.K., et al. (2015) 2015 SCAI/ACC/HFSA/ STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana De Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne De Cardiologie D’intervention). Journal of the American College of Cardiology, 65, e7-e26. [Google Scholar] [CrossRef] [PubMed]
[7] Amin, A.P., Spertus, J.A., Curtis, J.P., Desai, N., Masoudi, F.A., Bach, R.G., et al. (2020) The Evolving Landscape of Impella Use in the United States among Patients Undergoing Percutaneous Coronary Intervention with Mechanical Circulatory Support. Circulation, 141, 273-284. [Google Scholar] [CrossRef] [PubMed]
[8] Neumann, F., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A.P., Benedetto, U., et al. (2018) 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal, 40, 87-165. [Google Scholar] [CrossRef] [PubMed]
[9] Lawton, J.S., Tamis-Holland, J.E., Bangalore, S., et al. (2022) 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e4-e17.
[10] Parissis, H., Graham, V., Lampridis, S., Lau, M., Hooks, G. and Mhandu, P.C. (2016) IABP: History-Evolution-Pathophysiology-Indications: What We Need to Know. Journal of Cardiothoracic Surgery, 11, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
[11] Thiele, H., Zeymer, U., Neumann, F., Ferenc, M., Olbrich, H., Hausleiter, J., et al. (2012) Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. New England Journal of Medicine, 367, 1287-1296. [Google Scholar] [CrossRef] [PubMed]
[12] O’Neill, W.W., Kleiman, N.S., Moses, J., Henriques, J.P.S., Dixon, S., Massaro, J., et al. (2012) A Prospective, Randomized Clinical Trial of Hemodynamic Support with Impella 2.5 versus Intra-Aortic Balloon Pump in Patients Undergoing High-Risk Percutaneous Coronary Intervention: The PROTECT II Study. Circulation, 126, 1717-1727. [Google Scholar] [CrossRef] [PubMed]
[13] Zein, R., Patel, C., Mercado-Alamo, A., Schreiber, T. and Kaki, A. (2022) A Review of the Impella Devices. Interventional Cardiology: Reviews, Research, Resources, 17, e05. [Google Scholar] [CrossRef] [PubMed]
[14] Remmelink, M., Sjauw, K.D., Henriques, J.P.S., de Winter, R.J., Koch, K.T., van der Schaaf, R.J., et al. (2007) Effects of Left Ventricular Unloading by Impella Recover LP2.5 on Coronary Hemodynamics. Catheterization and Cardiovascular Interventions, 70, 532-537. [Google Scholar] [CrossRef] [PubMed]
[15] O’Neill, W.W., Grines, C., Schreiber, T., Moses, J., Maini, B., Dixon, S.R., et al. (2018) Analysis of Outcomes for 15,259 US Patients with Acute Myocardial Infarction Cardiogenic Shock (AMICS) Supported with the Impella Device. American Heart Journal, 202, 33-38. [Google Scholar] [CrossRef] [PubMed]
[16] Seyfarth, M., Sibbing, D., Bauer, I., Fröhlich, G., Bott-Flügel, L., Byrne, R., et al. (2008) A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction. Journal of the American College of Cardiology, 52, 1584-1588. [Google Scholar] [CrossRef] [PubMed]
[17] Ouweneel, D.M., Schotborgh, J.V., Limpens, J., Sjauw, K.D., Engström, A.E., Lagrand, W.K., et al. (2016) Extracorporeal Life Support during Cardiac Arrest and Cardiogenic Shock: A Systematic Review and Meta-Analysis. Intensive Care Medicine, 42, 1922-1934. [Google Scholar] [CrossRef] [PubMed]
[18] Becher, T., Eder, F., Baumann, S., Loßnitzer, D., Pollmann, B., Behnes, M., et al. (2018) Unprotected versus Protected High-Risk Percutaneous Coronary Intervention with the Impella 2.5 in Patients with Multivessel Disease and Severely Reduced Left Ventricular Function. Medicine (Baltimore), 97, e12665. [Google Scholar] [CrossRef] [PubMed]
[19] Shamekhi, J., Pütz, A., Zimmer, S., Tiyerili, V., Mellert, F., Welz, A., et al. (2019) Impact of Hemodynamic Support on Outcome in Patients Undergoing High-Risk Percutaneous Coronary Intervention. The American Journal of Cardiology, 124, 20-30. [Google Scholar] [CrossRef] [PubMed]
[20] Alli, O.O., Singh, I.M., Holmes, D.R., Pulido, J.N., Park, S.J. and Rihal, C.S. (2012) Percutaneous Left Ventricular Assist Device with Tandemheart for High‐Risk Percutaneous Coronary Intervention: The Mayo Clinic Experience. Catheterization and Cardiovascular Interventions, 80, 728-734. [Google Scholar] [CrossRef] [PubMed]
[21] Briasoulis, A., Telila, T., Palla, M., Mercado, N., Kondur, A., Grines, C., et al. (2016) Meta-Analysis of Usefulness of Percutaneous Left Ventricular Assist Devices for High-Risk Percutaneous Coronary Interventions. The American Journal of Cardiology, 118, 369-375. [Google Scholar] [CrossRef] [PubMed]
[22] Kar, B., Adkins, L., Civitello, A., et al. (2006) Clinical Experience with the TandemHeart Percutaneous Ventricular Assist Device. The Texas Heart Institute Journal, 33, 111-115.
[23] Thiele, H., Sick, P., Boudriot, E., Diederich, K., Hambrecht, R., Niebauer, J., et al. (2005) Randomized Comparison of Intra-Aortic Balloon Support with a Percutaneous Left Ventricular Assist Device in Patients with Revascularized Acute Myocardial Infarction Complicated by Cardiogenic Shock. European Heart Journal, 26, 1276-1283. [Google Scholar] [CrossRef] [PubMed]
[24] Kovacic, J.C., Nguyen, H.T., Karajgikar, R., Sharma, S.K. and Kini, A.S. (2013) The Impella Recover 2.5 and Tandemheart Ventricular Assist Devices Are Safe and Associated with Equivalent Clinical Outcomes in Patients Undergoing High‐Risk Percutaneous Coronary Intervention. Catheterization and Cardiovascular Interventions, 82, E28-E37. [Google Scholar] [CrossRef] [PubMed]
[25] Nascimbene, A., Loyalka, P., Gregoric, I.D. and Kar, B. (2015) Percutaneous Coronary Intervention with the Tandemheart™ Percutaneous Left Ventricular Assist Device Support: Six Years of Experience and Outcomes. Catheterization and Cardiovascular Interventions, 87, 1101-1110. [Google Scholar] [CrossRef] [PubMed]
[26] Abrams, D., Combes, A. and Brodie, D. (2014) Extracorporeal Membrane Oxygenation in Cardiopulmonary Disease in Adults. Journal of the American College of Cardiology, 63, 2769-2778. [Google Scholar] [CrossRef] [PubMed]
[27] Samol, A., Wiemer, M. and Kaese, S. (2022) Comparison of a Pulsatile and a Continuous Flow Left Ventricular Assist Device in High-Risk PCI. International Journal of Cardiology, 360, 7-12. [Google Scholar] [CrossRef] [PubMed]
[28] Huang, Y., Xu, Z., Zhao, L., Cao, Y., Chen, Y., Qiu, Y., et al. (2022) Long-Term Outcomes of High-Risk Percutaneous Coronary Interventions under Extracorporeal Membrane Oxygenation Support: An Observational Study. World Journal of Clinical Cases, 10, 5266-5274. [Google Scholar] [CrossRef] [PubMed]
[29] Yannopoulos, D., Bartos, J., Raveendran, G., Walser, E., Connett, J., Murray, T.A., et al. (2020) Advanced Reperfusion Strategies for Patients with Out-of-Hospital Cardiac Arrest and Refractory Ventricular Fibrillation (ARREST): A Phase 2, Single Centre, Open-Label, Randomised Controlled Trial. The Lancet, 396, 1807-1816. [Google Scholar] [CrossRef] [PubMed]
[30] Belohlavek, J., Smalcova, J., Rob, D., Franek, O., Smid, O., Pokorna, M., et al. (2022) Effect of Intra-Arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA, 327, 737-747. [Google Scholar] [CrossRef] [PubMed]
[31] Suverein, M.M., Delnoij, T.S.R., Lorusso, R., Brandon Bravo Bruinsma, G.J., Otterspoor, L., Elzo Kraemer, C.V., et al. (2023) Early Extracorporeal CPR for Refractory Out-of-Hospital Cardiac Arrest. New England Journal of Medicine, 388, 299-309. [Google Scholar] [CrossRef] [PubMed]
[32] Groeneveld, N.T.A., Swier, C.E.L., Montero-Cabezas, J., Elzo Kraemer, C.V., Klok, F.A. and van den Brink, F.S. (2023) Mechanical Support Strategies for High-Risk Procedures in the Invasive Cardiac Catheterization Laboratory: A State-of-the-Art Review. Journal of Clinical Medicine, 12, Article No. 7755. [Google Scholar] [CrossRef] [PubMed]
[33] van den Buijs, D.M.F., Wilgenhof, A., Knaapen, P., Zivelonghi, C., Meijers, T., Vermeersch, P., et al. (2022) Prophylactic Impella CP versus VA-ECMO in Patients Undergoing Complex High-Risk Indicated PCI. Journal of Interventional Cardiology, 2022, Article ID: 8167011. [Google Scholar] [CrossRef] [PubMed]
[34] 中中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 经皮机械循环辅助在复杂心血管疾病介入治疗应用中国专家共识[J]. 中华心血管病杂志, 2022, 50(10): 959-972.
[35] Xie, K., Wang, L., Guo, Y., Zhao, S., Yang, Y., Dong, D., et al. (2021) Effectiveness and Safety of Biodegradable Mg-Nd-Zn-Zr Alloy Screws for the Treatment of Medial Malleolar Fractures. Journal of Orthopaedic Translation, 27, 96-100. [Google Scholar] [CrossRef] [PubMed]
[36] Dhruva, S.S., Ross, J.S., Mortazavi, B.J., Hurley, N.C., Krumholz, H.M., Curtis, J.P., et al. (2020) Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-Aortic Balloon Pump with In-Hospital Mortality and Major Bleeding among Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA, 323, 734-745. [Google Scholar] [CrossRef] [PubMed]
[37] Ali, J.M. and Abu-Omar, Y. (2020) Complications Associated with Mechanical Circulatory Support. Annals of Translational Medicine, 8, 835. [Google Scholar] [CrossRef] [PubMed]
[38] Muramatsu, T., Inohara, T., Kohsaka, S., Yamaji, K., Ishii, H., Shinke, T., et al. (2022) Mechanical Circulatory Support Devices for Elective Percutaneous Coronary Interventions: Novel Insights from the Japanese Nationwide J-PCI Registry. European Heart Journal Open, 2, oeac001. [Google Scholar] [CrossRef] [PubMed]
[39] O’Neill, B.P., Grines, C., Moses, J.W., Ohman, E.M., Lansky, A., Popma, J., et al. (2021) Outcomes of Bailout Percutaneous Ventricular Assist Device versus Prophylactic Strategy in Patients Undergoing Nonemergent Percutaneous Coronary Intervention. Catheterization and Cardiovascular Interventions, 98, E501-E512. [Google Scholar] [CrossRef] [PubMed]