|
[1]
|
Zeymer, U. (2019) Diagnosis and Initial Management of Acute Myocardial Infarction. MMW Fortschritte der Medizin, 161, 34-36.
|
|
[2]
|
马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023, 26(32): 3975-3994.
|
|
[3]
|
He, J., Liu, D., Zhao, L., Zhou, D., Rong, J., Zhang, L., et al. (2022) Myocardial Ischemia/Reperfusion Injury: Mechanisms of Injury and Implications for Management (Review). Experimental and Therapeutic Medicine, 23, Article No. 430. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fernie, A.R., Carrari, F. and Sweetlove, L.J. (2004) Respiratory Metabolism: Glycolysis, the TCA Cycle and Mitochondrial Electron Transport. Current Opinion in Plant Biology, 7, 254-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, M., Linn, B.S., Zhang, Y. and Ren, J. (2019) Mitophagy and Mitochondrial Integrity in Cardiac Ischemia-Reperfusion Injury. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1865, 2293-2302. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, J. and Zhou, H. (2020) Mitochondrial Quality Control Mechanisms as Molecular Targets in Cardiac Ischemia-Reperfusion Injury. Acta Pharmaceutica Sinica B, 10, 1866-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ding, Q., Qi, Y. and Tsang, S. (2021) Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes. Cells, 10, Article 2463. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, P.A., Hou, X. and Hao, S. (2017) Mitochondrial Biogenesis in Neurodegeneration. Journal of Neuroscience Research, 95, 2025-2029. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Popov, L. (2020) Mitochondrial Biogenesis: An Update. Journal of Cellular and Molecular Medicine, 24, 4892-4899. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., et al. (2003) Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome C Release and Apoptosis. Journal of Biological Chemistry, 278, 7743-7746. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., et al. (2006) OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell, 126, 177-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kim, J.E., Choi, H.C., Song, H.K., et al. (2019) Blockade of AMPA Receptor Regulates Mitochondrial Dynamics by Modulating ERK1/2 and PP1/PP2A-Mediated DRP1-S616 Phosphorylations in the Normal Rat Hippocampus. Frontiers in Cellular Neuroscience, 13, Article 179.
|
|
[13]
|
Gomes, L.C. and Scorrano, L. (2013) Mitochondrial Morphology in Mitophagy and Macroautophagy. Biochimica et biophysica acta, 1833, 205-212.
|
|
[14]
|
Qian, L., Zhu, Y., Deng, C., Liang, Z., Chen, J., Chen, Y., et al. (2024) Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 (PGC-1) Family in Physiological and Pathophysiological Process and Diseases. Signal Transduction and Targeted Therapy, 9, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sui, Y., Xiu, J., Wei, J., Pan, P., Sun, B. and Liu, L. (2021) Shen Qi Li Xin Formula Improves Chronic Heart Failure through Balancing Mitochondrial Fission and Fusion via Upregulation of PGC-1α. The Journal of Physiological Sciences, 71, 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Du, J., Li, H., Song, J., Wang, T., Dong, Y., Zhan, A., et al. (2022) AMPK Activation Alleviates Myocardial Ischemia-Reperfusion Injury by Regulating Drp1-Mediated Mitochondrial Dynamics. Frontiers in Pharmacology, 13, Article 862204. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Popov, S.V., Mukhomedzyanov, A.V., Voronkov, N.S., Derkachev, I.A., Boshchenko, A.A., Fu, F., et al. (2022) Regulation of Autophagy of the Heart in Ischemia and Reperfusion. Apoptosis, 28, 55-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhou, H., Zhang, Y., Hu, S., et al. (2017) Melatonin Protects Cardiac Microvasculature against Ischemia/Reperfusion Injury via Suppression of Mitochondrial Fission-VDAC1-HK2-mPTP-Mitophagy Axis. Journal of Pineal Research, 63, e12413. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Song, M., Gong, G., Burelle, Y., Gustafsson, Å.B., Kitsis, R.N., Matkovich, S.J., et al. (2015) Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 117, 346-351. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., et al. (2015) The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature, 524, 309-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xin, T. and Lu, C. (2020) Irisin Activates Opa1-Induced Mitophagy to Protect Cardiomyocytes against Apoptosis Following Myocardial Infarction. Aging, 12, 4474-4488. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Onishi, M., Yamano, K., Sato, M., Matsuda, N. and Okamoto, K. (2021) Molecular Mechanisms and Physiological Functions of Mitophagy. The EMBO Journal, 40, e104705. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J., et al. (2009) Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Molecular and Cellular Biology, 29, 2570-2581. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jimenez, R.E., Kubli, D.A. and Gustafsson, Å.B. (2014) Autophagy and Mitophagy in the Myocardium: Therapeutic Potential and Concerns. British Journal of Pharmacology, 171, 1907-1916. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
黄景珠, 成秋宸, 李福建, 等. BNIP3介导线粒体自噬研究进展[J]. 海南医学院学报, 2024, 30(1): 60-66.
|
|
[26]
|
Wu, W., Tian, W., Hu, Z., et al. (2014) ULK1 Translocates to Mitochondria and Phosphorylates FUNDC1 to Regulate Mitophagy. EMBO Reports, 15, 566-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kanki, T. (2010) Nix: A Receptor Protein for Mitophagy in Mammals. Autophagy, 6, 433-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, Y., Liu, D., Hu, H., Zhang, P., Xie, R. and Cui, W. (2019) HIF-1α/BNIP3 Signaling Pathway-Induced-Autophagy Plays Protective Role during Myocardial Ischemia-Reperfusion Injury. Biomedicine & Pharmacotherapy, 120, Article 109464. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Semenza, G.L. (2011) Hypoxia-Inducible Factor 1: Regulator of Mitochondrial Metabolism and Mediator of Ischemic Preconditioning. Biochimica et Biophysica Acta—Molecular Cell Research, 1813, 1263-1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Islam, S.M.T., Won, J., Khan, M., Mannie, M.D. and Singh, I. (2021) Hypoxia-Inducible Factor-1 Drives Divergent Immunomodulatory Functions in the Pathogenesis of Autoimmune Diseases. Immunology, 164, 31-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
国家药典委员会. 中华人民共和国药典(2020年版) [M]. 北京: 中国医药科技出版社, 2020.
|
|
[32]
|
孙思邈, 焦振廉. 备急千金要方[M]. 北京: 中国医药科技出版社, 2011.
|
|
[33]
|
吴谦. 医宗金鉴[M]. 北京: 中国中医药出版社, 1995.
|
|
[34]
|
张仲景. 金匮要略[M]. 北京: 中国医药科技出版社, 2016.
|
|
[35]
|
李睿, 刘诗怡, 纪树亮, 等. 心肌缺血再灌注损伤中医辨证论治研究进展[J]. 中国中医基础医学杂志, 2024, 30(1): 145-151.
|
|
[36]
|
刘啊敏, 牟幼灵, 徐紫薇, 等. 黄芪甲苷通过调节线粒体稳态减轻大鼠心肌细胞缺氧复氧损伤[J]. 药学学报, 2020, 55(10): 2398-2404.
|
|
[37]
|
Chen, L., Chen, X., Wang, Q., Yang, S., Zhou, H., Ding, L., et al. (2020) Astragaloside IV Derivative (LS-102) Alleviated Myocardial Ischemia Reperfusion Injury by Inhibiting Drp1ser616 Phosphorylation-Mediated Mitochondrial Fission. Frontiers in Pharmacology, 11, Article 1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
李旭阳, 张东伟, 赵宏月. 黄芪甲苷对缺血再灌注诱导的大鼠心肌细胞及线粒体自噬的调节作用机制研究[J]. 中医药学报, 2020, 48(9): 27-32.
|
|
[39]
|
齐苗苗. 黄芪甲苷通过PINK1/Parkin介导线粒体自噬改善心肌细胞氧化应激损伤的研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2021.
|
|
[40]
|
张东伟, 赵宏月, 李全生, 等. 黄芪甲苷及人参皂苷Rg1对高脂大鼠心肌缺血再灌注损伤后心肌线粒体自噬的影响[J]. 中华中医药学刊, 2020, 38(3): 60-64.
|
|
[41]
|
叶慧芳, 张杰, 刘华, 等. 黄芪甲苷PEG-PE纳米胶束的制备、细胞内分布及抗心肌细胞凋亡的研究[J]. 中国药学杂志, 2021, 56(10): 815-821.
|
|
[42]
|
范宗静, 谢连娣, 崔杰, 等. 黄芪多糖后处理通过抑制线粒体损伤介导的凋亡保护心肌缺血再灌注损伤[J]. 辽宁中医杂志, 2018, 45(7): 1357-1360.
|
|
[43]
|
王忠庆, 蔡帆, 诸波, 等. 黄芪多糖对大鼠缺氧/复氧诱导的心肌细胞自噬及凋亡抑制作用的机制探讨[J]. 中国循环杂志, 2022, 37(2): 185-192.
|
|
[44]
|
Zhang, J., Gu, J.Y., Chen, Z.S., et al. (2015) Astragalus Polysaccharide Suppresses Palmitate-Induced Apoptosis in Human Cardiac Myocytes: The Role of Nrf1 and Antioxidant Response. International Journal of Clinical and Experimental Pathology, 8, 2515-2524.
|
|
[45]
|
Wang, S.H., Tsai, K.L., Chou, W.C., et al. (2022) Quercetin Mitigates Cisplatin-Induced Oxidative Damage and Apoptosis in Cardiomyocytes through Nrf2/HO-1 Signaling Pathway. The American Journal of Chinese Medicine, 50, 1281-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chang, X., Zhang, T., Meng, Q., et al. (2021) Quercetin Improves Cardiomyocyte Vulnerability to Hypoxia by Regulating SIRT1/TMBIM6-Related Mitophagy and Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity, 2021, Article 5529913.
|
|
[47]
|
Liu, C.J., Yao, L., Hu, Y.M., et al. (2021) Effect of Quercetin-Loaded Mesoporous Silica Nanoparticles on Myocardial Ischemia-Reperfusion Injury in Rats and Its Mechanism. International Journal of Nanomedicine, 16, 741-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
王哲. 中西医治疗PCI术后患者的真实世界研究及黄芪丹参改善MIRI的机制探索[D]: [博士学位论文]. 北京: 北京中医药大学, 2022.
|
|
[49]
|
Zhang, J.G., Gao, D.S. and Wei, G.H. (2002) Clinical Study on Effect of Astragalus Injection on Left Ventricular Remodeling and Left Ventricular Function in Patients with Acute Myocardial Infarction. Journal of Traditional Chinese Medicine, 22, 346-348.
|
|
[50]
|
Han, J., Li, Q., Pan, C., Sun, K. and Fan, J. (2019) Effects and Mechanisms of Qishenyiqi Pills and Major Ingredients on Myocardial Microcirculatory Disturbance, Cardiac Injury and Fibrosis Induced by Ischemia-Reperfusion. Pharmacological Research, 147, Article 104386. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Chen, J.X., Xue, X., Li, Z.F., et al. (2016) Qishen Yiqi Drop Pill Improves Cardiac Function after Myocardial Ischemia. Scientific Reports, 6, Article No. 24383.
|
|
[52]
|
张国鑫. 补阳还五汤通过SIRT1/FoxO1信号减轻心肌缺血/再灌注损伤的机制研究[D]: [硕士学位论文]. 沈阳: 辽宁中医药大学, 2023.
|
|
[53]
|
颉志英, 张志明, 雍文兴, 等. 补阳还五汤含药血清对缺氧/复氧心肌细胞自噬相关蛋白LC3Ⅱ、Beclin1表达的影响[J]. 时珍国医国药, 2020, 31(7): 1569-1572.
|
|
[54]
|
杨飞霞, 王玉, 夏鹏飞, 等. 当归补血汤化学成分、药理作用、临床应用的研究进展及质量标志物的预测分析[J]. 中国中药杂志, 2021, 46(11): 2677-2685.
|
|
[55]
|
Kwan, K.K.L., Huang, Y., Leung, K.W., Dong, T.T.X. and Tsim, K.W.K. (2019) Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Modulates Mitochondrial Bioenergetics in Cultured Cardiomyoblasts. Frontiers in Pharmacology, 10, Article 614. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
周春刚, 李卿, 汤加, 等. 当归补血汤水提液预处理对缺氧/复氧H9c2心肌细胞线粒体损伤保护机制研究[J]. 中成药, 2016, 38(3): 658-661.
|
|
[57]
|
Zhang, W., Chen, R., Xu, K., Guo, H., Li, C. and Sun, X. (2023) Protective Effect of Xinmai’an Tablets via Mediation of the AMPK/SIRT1/PGC-1α Signaling Pathway on Myocardial Ischemia-Reperfusion Injury in Rats. Phytomedicine, 120, Article 155034. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
张东伟, 赵宏月, 杨关林, 等. 益脉颗粒对高脂大鼠心肌缺血再灌注损伤后线粒体动力学的影响[J]. 辽宁中医杂志, 2021, 48(4): 187-191.
|
|
[59]
|
李全生. 基于Nrf2/HO-1通路探讨益脉颗粒对高脂合并MIRI大鼠心肌损伤的影响及机制[D]: [博士学位论文]. 沈阳: 辽宁中医药大学, 2020.
|
|
[60]
|
Zheng, M., Bai, Y., Sun, X., Fu, R., Liu, L., Liu, M., et al. (2022) Resveratrol Reestablishes Mitochondrial Quality Control in Myocardial Ischemia/Reperfusion Injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α Pathway. Molecules, 27, Article 5545. [Google Scholar] [CrossRef] [PubMed]
|