| [1] | 蔡金云, 傅萍. 硬皮病相关皮肤损害治疗的研究进展[J]. 疑难病杂志, 2021, 20(6): 645-648. | 
                     
                                
                                    
                                        | [2] | 赵建新, 田元祥.《内经》络脉、络病理论初探[J]. 陕西中医, 2005(1): 79-80. | 
                     
                                
                                    
                                        | [3] | Jablonski, R.P., Kim, S., Cheresh, P., Williams, D.B., Morales‐Nebreda, L., Cheng, Y., et al. (2017) SIRT3 Deficiency Promotes Lung Fibrosis by Augmenting Alveolar Epithelial Cell Mitochondrial DNA Damage and Apoptosis. The FASEB Journal, 31, 2520-2532. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Bueno, M., Papazoglou, A., Valenzi, E., Rojas, M., Lafyatis, R. and Mora, A.L. (2020) Mitochondria, Aging, and Cellular Senescence: Implications for Scleroderma. Current Rheumatology Reports, 22, Article No. 37. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Gazdhar, A., Lebrecht, D., Roth, M., Tamm, M., Venhoff, N., Foocharoen, C., et al. (2014) Time-Dependent and Somatically Acquired Mitochondrial DNA Mutagenesis and Respiratory Chain Dysfunction in a Scleroderma Model of Lung Fibrosis. Scientific Reports, 4, Article No. 5336. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Jeong, H.Y., Park, J., Choi, J.W., Lee, K.H., Yang, S.C., Kang, H.Y., et al. (2024) Grim-19-Mediated Induction of Mitochondrial STAT3 Alleviates Systemic Sclerosis by Inhibiting Fibrosis and Th2/Th17 Cells. Experimental & Molecular Medicine, 56, 2739-2746. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Waseem, M., Imtiaz, A., Alexander, A., Graham, L. and Contreras-Galindo, R. (2025) Crosstalk between Oxidative Stress, Mitochondrial Dysfunction, Chromosome Instability, and the Activation of the cGAS-STING/IFN Pathway in Systemic Sclerosis. Ageing Research Reviews, 110, Article 102812. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Gao, J., Wei, T., Huang, C., Sun, M. and Shen, W. (2020) Sirtuin 3 Governs Autophagy‐Dependent Glycolysis during Angiotensin II-Induced Endothelial‐to‐Mesenchymal Transition. The FASEB Journal, 34, 16645-16661. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Akamata, K., Wei, J., Bhattacharyya, M., Cheresh, P., Bonner, M.Y., Arbiser, J.L., et al. (2016) SIRT3 Is Attenuated in Systemic Sclerosis Skin and Lungs, and Its Pharmacologic Activation Mitigates Organ Fibrosis. Oncotarget, 7, 69321-69336. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Cantanhede, I.G., Liu, H., Liu, H., Balbuena Rodriguez, V., Shiwen, X., Ong, V.H., et al. (2022) Exploring Metabolism in Scleroderma Reveals Opportunities for Pharmacological Intervention for Therapy in Fibrosis. Frontiers in Immunology, 13, Article ID: 1004949. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Zhou, X., Trinh‐Minh, T., Tran‐Manh, C., Gießl, A., Bergmann, C., Györfi, A., et al. (2022) Impaired Mitochondrial Transcription Factor a Expression Promotes Mitochondrial Damage to Drive Fibroblast Activation and Fibrosis in Systemic Sclerosis. Arthritis & Rheumatology, 74, 871-881. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | 程聿昕, 黄晓华, 魏丢, 等. 基于“壮火食气”理论探讨线粒体功能障碍对免疫性血小板减少症相关乏力的作用机制[J]. 北京中医药大学学报, 2025, 48(5): 703-710. | 
                     
                                
                                    
                                        | [13] | 肖敏. “三部六法”内外并治痈疮经验[J]. 中医杂志, 2025, 66(12): 1207-1211. | 
                     
                                
                                    
                                        | [14] | 陆鹏, 胡幼平. 从“开玄充络”谈热证用灸法[J]. 针灸临床杂志, 2012, 28(9): 7-9. | 
                     
                                
                                    
                                        | [15] | 岑璐, 韩宇博, 姚春丽, 等. 基于“脾为之卫”理论探讨线粒体与代谢综合征的关系及微观辨治[J]. 中国医药导报, 2025, 22(5): 145-148. | 
                     
                                
                                    
                                        | [16] | 董方立, 颜君庭, 白义杰, 等. 人脾转移因子对多种皮肤疾病的疗效观察[J]. 贵州医药, 1981(1): 35-37. | 
                     
                                
                                    
                                        | [17] | 李溶, 高伟. 基于“脾-线粒体-炎症”理论探析健脾助运法治疗慢性疲劳综合征[J]. 中医药导报, 2025, 31(6): 205-208+212. | 
                     
                                
                                    
                                        | [18] | 马驰远, 贺晨菲, 王新志, 等. 基于“肠道菌群-线粒体-脂质代谢”失衡探讨“从脾论治”神经退行性疾病[J]. 世界科学技术-中医药现代化, 2025, 27(3): 762-769. | 
                     
                                
                                    
                                        | [19] | 胡彬, 李茂华, 龚晗, 等. 抑制线粒体代谢酶OGDC影响红系发育[J]. 生理学报, 2025, 77(3): 395-407. | 
                     
                                
                                    
                                        | [20] | Zhang, Y., Zhang, J. and Duan, L. (2022) The Role of Microbiota-Mitochondria Crosstalk in Pathogenesis and Therapy of Intestinal Diseases. Pharmacological Research, 186, Article 106530. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Saygin, D., Highland, K.B. and Tonelli, A.R. (2019) Microvascular Involvement in Systemic Sclerosis and Systemic Lupus Erythematosus. Microcirculation, 26, e12440. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Perera, L.M.B., Sekiguchi, A., Uchiyama, A., Uehara, A., Fujiwara, C., Yamazaki, S., et al. (2019) The Regulation of Skin Fibrosis in Systemic Sclerosis by Extracellular ATP via P2Y2 Purinergic Receptor. Journal of Investigative Dermatology, 139, 890-899. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Behera, R., Sharma, V., Grewal, A.K., Kumar, A., Arora, B., Najda, A., et al. (2023) Mechanistic Correlation between Mitochondrial Permeability Transition Pores and Mitochondrial ATP Dependent Potassium Channels in Ischemia Reperfusion. Biomedicine & Pharmacotherapy, 162, Article 114599. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | van Caam, A., Vonk, M., van den Hoogen, F., van Lent, P. and van der Kraan, P. (2018) Unraveling SSc Pathophysiology; the Myofibroblast. Frontiers in Immunology, 9, Article ID: 2452. [Google Scholar] [CrossRef] [PubMed] |