| [1] | Goikolea, E., Palomares, V., Wang, S., de Larramendi, I.R., Guo, X., Wang, G., et al. (2020) Na-Ion Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 10, Article ID: 2002055. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Chayambuka, K., Mulder, G., Danilov, D.L. and Notten, P.H.L. (2020) From Li-Ion Batteries toward Li-Ion Chemistries: Challenges and Opportunities. Advanced Energy Materials, 10, Article ID: 2001310. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Xu, G., Amine, R., Abouimrane, A., Che, H., Dahbi, M., Ma, Z., et al. (2018) Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium‐Ion Batteries. Advanced Energy Materials, 8, Article ID: 1702403. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Pan, H., Hu, Y. and Chen, L. (2013) Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage. Energy & Environmental Science, 6, 2338-2360. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z. and Guo, Z. (2018) Recent Progress on Sodium Ion Batteries: Potential High-Performance Anodes. Energy & Environmental Science, 11, 2310-2340. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | 班荣泽, 赵麒, 刘璐, 等. 碳基复合材料用于钠离子电池负极研究进展[J]. 山东化工, 2024, 53(14): 100-102. | 
                     
                                
                                    
                                        | [7] | 高远鹏, 袁文波, 刘嘉曦. 不同暴露晶面TiO2基钠离子电池负极材料的合成及电化学性能[J]. 广州化工, 2024, 52(23): 55-59, 113. | 
                     
                                
                                    
                                        | [8] | Li, Y., Lu, Y., Adelhelm, P., Titirici, M. and Hu, Y. (2019) Intercalation Chemistry of Graphite: Alkali Metal Ions and Beyond. Chemical Society Reviews, 48, 4655-4687. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | 曾杰, 张文华, 王帅, 等. 钠离子电池软硬碳负极材料研究进展[J]. 南昌工程学院学报, 2024, 43(3): 75-81. | 
                     
                                
                                    
                                        | [10] | 赵琨瑀, 王英帅, 樊博建, 等. 钠离子电池生物质衍生硬碳负极材料的制备与研究进展[J]. 石油化工高等学校学报, 2025, 38(3): 32-43. | 
                     
                                
                                    
                                        | [11] | 邓涛, 张斌伟. 生物质衍生硬碳负极材料首圈库伦效率提升策略[J/OL]. 湘潭大学学报(自然科学版): 1-16. 2025-09-20. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Wang, Y., Wang, Y., Liu, J., Pan, L., Tian, W., Wu, M., et al. (2017) Preparation of Carbon Nanosheets from Petroleum Asphalt via Recyclable Molten-Salt Method for Superior Lithium and Sodium Storage. Carbon, 122, 344-351. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | 李智萌. 钛基负极材料的设计、制备及其储钠性能研究[D]: [硕士学位论文]. 济南: 济南大学, 2024. | 
                     
                                
                                    
                                        | [14] | 王沁云. 钛基钠离子电池负极材料的制备、电化学性能及理论计算研究[D]: [硕士学位论文]. 宁波: 宁波大学, 2021. | 
                     
                                
                                    
                                        | [15] | Zhang, Y., Ding, Z., Foster, C.W., Banks, C.E., Qiu, X. and Ji, X. (2017) Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. Advanced Functional Materials, 27, Article ID: 1700856. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Pothaya, S., Poochai, C., Tammanoon, N., Chuminjak, Y., Kongthong, T., Lomas, T., et al. (2023) Bamboo-Derived Hard Carbon/Carbon Nanotube Composites as Anode Material for Long-Life Sodium-Ion Batteries with High Charge/Discharge Capacities. Rare Metals, 43, 124-137. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Dou, X., Hasa, I., Saurel, D., Vaalma, C., Wu, L., Buchholz, D., et al. (2019) Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry. Materials Today, 23, 87-104. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | 所聪. 基于生物质基硬碳的钠离子电池电解液的性能优化[J]. 当代化工, 2025, 54(6): 1296-1303, 1309. | 
                     
                                
                                    
                                        | [19] | Saurel, D., Orayech, B., Xiao, B., Carriazo, D., Li, X. and Rojo, T. (2018) From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization. Advanced Energy Materials, 8, Article ID: 1703268. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Bommier, C., Surta, T.W., Dolgos, M. and Ji, X. (2015) New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. Nano Letters, 15, 5888-5892. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Sun, N., Qiu, J. and Xu, B. (2022) Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. Advanced Energy Materials, 12, Article ID: 2200715. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Sun, N., Guan, Z., Liu, Y., Cao, Y., Zhu, Q., Liu, H., et al. (2019) Extended “Adsorption-Insertion” Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. Advanced Energy Materials, 9, Article ID: 1901351. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Zhang, L., Wang, W., Lu, S. and Xiang, Y. (2021) Carbon Anode Materials: A Detailed Comparison between Na‐Ion and K‐ion Batteries. Advanced Energy Materials, 11, Article ID: 2003640. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Zhang, B., Ghimbeu, C.M., Laberty, C., Vix‐Guterl, C. and Tarascon, J. (2015) Correlation between Microstructure and Na Storage Behavior in Hard Carbon. Advanced Energy Materials, 6, Article ID: 1501588. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Li, Y., Xu, S., Wu, X., Yu, J., Wang, Y., Hu, Y., et al. (2015) Amorphous Monodispersed Hard Carbon Micro-Spherules Derived from Biomass as a High Performance Negative Electrode Material for Sodium-Ion Batteries. Journal of Materials Chemistry A, 3, 71-77. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Yu, Z., Lyu, Y., Wang, Y., Xu, S., Cheng, H., Mu, X., et al. (2020) Hard Carbon Micro-Nano Tubes Derived from Kapok Fiber as Anode Materials for Sodium-Ion Batteries and the Sodium-Ion Storage Mechanism. Chemical Communications, 56, 778-781. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Gao, L., Ma, J., Li, S., Liu, D., Xu, D., Cai, J., et al. (2019) 2D Ultrathin Carbon Nanosheets with Rich N/O Content Constructed by Stripping Bulk Chitin for High-Performance Sodium Ion Batteries. Nanoscale, 11, 12626-12636. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Wang, P., Zhu, K., Ye, K., Gong, Z., Liu, R., Cheng, K., et al. (2020) Three-Dimensional Biomass Derived Hard Carbon with Reconstructed Surface as a Free-Standing Anode for Sodium-Ion Batteries. Journal of Colloid and Interface Science, 561, 203-210. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Zhang, Y., Li, X., Dong, P., Wu, G., Xiao, J., Zeng, X., et al. (2018) Honeycomb-Like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 10, 42796-42803. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Ren, X., Xu, S., Liu, S., Chen, L., Zhang, D. and Qiu, L. (2019) Lath-Shaped Biomass Derived Hard Carbon as Anode Materials with Super Rate Capability for Sodium-Ion Batteries. Journal of Electroanalytical Chemistry, 841, 63-72. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [31] | 洪康, 张冲, 马宏莉, 等. 生物质硬炭基钠离子电池负极材料研究进展[J]. 化工进展: 1-10. 2025-09-20. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | 刘畅, 王彦淇, 周佰洵, 等. 钠离子电池硬碳负极材料的研究进展: 从材料设计到电化学性能优化[J]. 石油化工高等学校学报, 2025, 38(3): 1-9. | 
                     
                                
                                    
                                        | [33] | 田中原, 吴洪钦, 王梓荃, 等. 木质素基钠离子电池负极材料研究进展[J]. 中国造纸, 2025, 44(4): 1-15. | 
                     
                                
                                    
                                        | [34] | 比约恩∙尼克维斯特, 李威. 钠离子电池能否取代锂离子电池? [J]. 世界科学, 2025(4): 1. | 
                     
                                
                                    
                                        | [35] | 吴朝晖, 黄军同, 陈亚兵, 等. 静电纺丝制备三明治结构的C@MoS2/C@C用于高性能钠离子电池[J]. 铜业工程, 2025(1): 47-55. | 
                     
                                
                                    
                                        | [36] | Xiao, Z.X., Xia, C.C., Li, Z.F., et al. (2018) Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. Advanced Materials, 30, Article ID: 1804168. | 
                     
                                
                                    
                                        | [37] | Alvin, S., Chandra, C. and Kim, J. (2020) Extended Plateau Capacity of Phosphorus-Doped Hard Carbon Used as an Anode in Na-and K-Ion Batteries. Chemical Engineering Journal, 391, Article ID: 123576. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Wang, K., Sun, F., Wang, H., Wu, D., Chao, Y., Gao, J., et al. (2022) Altering Thermal Transformation Pathway to Create Closed Pores in Coal‐Derived Hard Carbon and Boosting of Na+ Plateau Storage for High‐Performance Sodium‐Ion Battery and Sodium‐Ion Capacitor. Advanced Functional Materials, 32, Article ID: 2203725. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Li, Y., Lu, Y., Meng, Q., Jensen, A.C.S., Zhang, Q., Zhang, Q., et al. (2019) Regulating Pore Structure of Hierarchical Porous Waste Cork‐Derived Hard Carbon Anode for Enhanced Na Storage Performance. Advanced Energy Materials, 9, Article ID: 1902852. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | 沈雨可, 李欢, 马紫峰, 等. 钠离子电池硬碳负极材料的孔结构表征方法综述[J]. 石油化工高等学校学报, 2025, 38(3): 10-19. | 
                     
                                
                                    
                                        | [41] | 于鑫, 郭华军, 王志兴, 等. 调控竹制硬碳微观结构助力钠离子电池高效储钠(英文) [J]. 中南大学学报(英文版), 2024, 31(12): 4497-4509. | 
                     
                                
                                    
                                        | [42] | 余雁, 贺杰, 于改改, 等. 钠离子电池硬碳负极闭孔结构与平台容量的研究进展[J]. 电池工业, 2024, 28(6): 352-357. | 
                     
                                
                                    
                                        | [43] | 张京涛, 吉闫, 左宇程, 等. 柚子皮基钠离子电池硬碳孔结构的调控及其储钠性能研究[J]. 现代化工, 2024, 44(9): 114-118. | 
                     
                                
                                    
                                        | [44] | 王阳峰, 侯佳傲, 朱紫宸, 等. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. | 
                     
                                
                                    
                                        | [45] | Zhou, S., Tang, Z., Pan, Z., Huang, Y., Zhao, L., Zhang, X., et al. (2022) Regulating Closed Pore Structure Enables Significantly Improved Sodium Storage for Hard Carbon Pyrolyzing at Relatively Low Temperature. SusMat, 2, 357-367. [Google Scholar] [CrossRef] |