| [1] | Teo, Z.L., Tham, Y., Yu, M., Cheng, C., Wong, T.Y. and Sabanayagam, C. (2020) Do We Have Enough Ophthalmologists to Manage Vision-Threatening Diabetic Retinopathy? A Global Perspective. Eye, 34, 1255-1261. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年) [J]. 中华眼底病杂志, 2023, 39(2): 99-124. | 
                     
                                
                                    
                                        | [3] | Noma, H., Yasuda, K. and Shimura, M. (2021) Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. International Journal of Molecular Sciences, 22, Article 3427. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | 宋宗明, 郭晓红. 眼底多模式影像的进展及其现阶段存在的问题[J]. 中华眼底病杂志, 2022, 38(2): 93-97. | 
                     
                                
                                    
                                        | [5] | Novais, E.A., Baumal, C.R., Sarraf, D., Freund, K.B. and Duker, J.S. (2016) Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 201-205. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Murakami, T., Ishihara, K., Terada, N., Nishikawa, K., Kawai, K. and Tsujikawa, A. (2023) Pathological Neurovascular Unit Mapping onto Multimodal Imaging in Diabetic Macular Edema. Medicina, 59, Article 896. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Choudhry, N., Duker, J.S., Freund, K.B., Kiss, S., Querques, G., Rosen, R., et al. (2019) Classification and Guidelines for Widefield Imaging: Recommendations from the International Widefield Imaging Study Group. Ophthalmology Retina, 3, 843-849. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Kernt, M., Hadi, I., Pinter, F., Seidensticker, F., Hirneiss, C., Haritoglou, C., et al. (2012) Assessment of Diabetic Retinopathy Using Nonmydriatic Ultra-Widefield Scanning Laser Ophthalmoscopy (Optomap) Compared with ETDRS 7-Field Stereo Photography. Diabetes Care, 35, 2459-2463. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Silva, P.S., Marcus, D.M., Liu, D., Aiello, L.P., Antoszyk, A., Elman, M., et al. (2022) Association of Ultra-Widefield Fluorescein Angiography-Identified Retinal Nonperfusion and the Risk of Diabetic Retinopathy Worsening over Time. JAMA Ophthalmology, 140, 936-945. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Zhuang, X., Chen, R., Liang, A., Yao, J., Wang, Z., Chen, Y., et al. (2022) Multimodal Imaging Analysis for the Impact of Retinal Peripheral Lesions on Central Neurovascular Structure and Retinal Function in Type 2 Diabetes with Diabetic Retinopathy. British Journal of Ophthalmology, 107, 1496-1501. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Patel, R.D., Messner, L.V., Teitelbaum, B., Michel, K.A. and Hariprasad, S.M. (2013) Characterization of Ischemic Index Using Ultra-Widefield Fluorescein Angiography in Patients with Focal and Diffuse Recalcitrant Diabetic Macular Edema. American Journal of Ophthalmology, 155, 1038-1044.e2. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Lin, Z., Deng, A., Hou, N., Gao, L. and Zhi, X. (2023) Advances in Targeted Retinal Photocoagulation in the Treatment of Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1108394. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Midena, E. and Bini, S. (2016) Multimodal Retinal Imaging of Diabetic Macular Edema: Toward New Paradigms of Pathophysiology. Graefe’s Archive for Clinical and Experimental Ophthalmology, 254, 1661-1668. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Tang, F.Y., Chan, E.O., Sun, Z., Wong, R., Lok, J., Szeto, S., et al. (2020) Clinically Relevant Factors Associated with Quantitative Optical Coherence Tomography Angiography Metrics in Deep Capillary Plexus in Patients with Diabetes. Eye and Vision, 7, Article No. 7. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Wijesingha, N., Tsai, W., Keskin, A.M., Holmes, C., Kazantzis, D., Chandak, S., et al. (2024) Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics, 14, Article 326. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Arya, M., Sorour, O., Chaudhri, J., Alibhai, Y., Waheed, N.K., Duker, J.S., et al. (2019) Distinguishing Intraretinal Microvascular Abnormalities from Retinal Neovascularization Using Optical Coherence Tomography Angiography. Retina, 40, 1686-1695. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | McAnany, J.J., Persidina, O.S. and Park, J.C. (2022) Clinical Electroretinography in Diabetic Retinopathy: A Review. Survey of Ophthalmology, 67, 712-722. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Koçer, A.M. and Şekeroğlu, M.A. (2021) Evaluation of the Neuronal and Microvascular Components of the Macula in Patients with Diabetic Retinopathy. Documenta Ophthalmologica, 143, 193-205. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Zhang, Z., Deng, C. and Paulus, Y.M. (2024) Advances in Structural and Functional Retinal Imaging and Biomarkers for Early Detection of Diabetic Retinopathy. Biomedicines, 12, Article 1405. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Santos, A.R., Ribeiro, L., Bandello, F., Lattanzio, R., Egan, C., Frydkjaer-Olsen, U., et al. (2017) Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy: Cross-Sectional Analyses of Baseline Data of the EUROCONDOR Project. Diabetes, 66, 2503-2510. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Mateu‐Salat, M., Stanton‐Yonge, N., Santaló, F.S., Vela, J.I., Cascajosa, J.D., Pérez, E.S., et al. (2024) Retinal Microperimetry as a Novel Tool for Early Detection of Subclinical Cognitive Dysfunction and Brain Damage in Type 1 Diabetes: A Pilot Study. Endocrinology, Diabetes & Metabolism, 8, e70018. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Sacconi, R., Casaluci, M., Borrelli, E., Mulinacci, G., Lamanna, F., Gelormini, F., et al. (2019) Multimodal Imaging Assessment of Vascular and Neurodegenerative Retinal Alterations in Type 1 Diabetic Patients without Fundoscopic Signs of Diabetic Retinopathy. Journal of Clinical Medicine, 8, Article 1409. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Baba, T. (2021) Detecting Diabetic Retinal Neuropathy Using Fundus Perimetry. International Journal of Molecular Sciences, 22, Article 10726. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Chhablani, J., Alshareef, R., Kim, D.T., Narayanan, R., Goud, A. and Mathai, A. (2018) Comparison of Different Settings for Yellow Subthreshold Laser Treatment in Diabetic Macular Edema. BMC Ophthalmology, 18, Article No. 168. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Biomarkers Definitions Working Group (2001) Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clinical Pharmacology and Therapeutics, 69, 89-95. | 
                     
                                
                                    
                                        | [26] | Sinclair, S.H. and Schwartz, S.S. (2019) Diabetic Retinopathy—An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Frontiers in Endocrinology, 10, Article 843. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Chalam, K.V., Bressler, S.B., Edwards, A.R., Berger, B.B., Bressler, N.M., Glassman, A.R., et al. (2012) Retinal Thickness in People with Diabetes and Minimal or No Diabetic Retinopathy: Heidelberg Spectralis Optical Coherence Tomography. Investigative Opthalmology & Visual Science, 53, 8154-8161. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Xiong, K., Gong, X., Li, W., Yuting, L., Meng, J., Wang, L., et al. (2021) Comparison of Macular Thickness Measurements Using Swept-Source and Spectral-Domain Optical Coherence Tomography in Healthy and Diabetic Subjects. Current Eye Research, 46, 1567-1573. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Arruabarrena, C., Rodríguez-Miguel, A., de Aragón-Gómez, F., Escámez, P., Rosado, I. and Teus, M.A. (2023) Normative Data for Macular Thickness and Volume for Optical Coherence Tomography in a Diabetic Population without Maculopathies. Journal of Clinical Medicine, 12, Article 5232. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Hostovsky, A., Moroz, I. and Katz, G. (2024) Aflibercept Monotherapy or Bevacizumab First for Diabetic Macular Edema. Indian Journal of Ophthalmology, 72, S260-S264. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Wells, J.A., Glassman, A.R., Jampol, L.M., Aiello, L.P., Antoszyk, A.N., Baker, C.W., et al. (2016) Association of Baseline Visual Acuity and Retinal Thickness with 1-Year Efficacy of Aflibercept, Bevacizumab, and Ranibizumab for Diabetic Macular Edema. JAMA Ophthalmology, 134, 127-134. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Bressler, N.M., Odia, I., Maguire, M., Glassman, A.R., Jampol, L.M., MacCumber, M.W., et al. (2019) Association between Change in Visual Acuity and Change in Central Subfield Thickness during Treatment of Diabetic Macular Edema in Participants Randomized to Aflibercept, Bevacizumab, or Ranibizumab: A Post Hoc Analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmology, 137, 977-985. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Szeto, S.K., Lai, T.Y., Vujosevic, S., Sun, J.K., Sadda, S.R., Tan, G., et al. (2024) Optical Coherence Tomography in the Management of Diabetic Macular Oedema. Progress in Retinal and Eye Research, 98, Article ID: 101220. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Sun, J.K., Lin, M.M., Lammer, J., Prager, S., Sarangi, R., Silva, P.S., et al. (2014) Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Center-Involved Diabetic Macular Edema. JAMA Ophthalmology, 132, 1309-1316. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Das, R., Spence, G., Hogg, R.E., Stevenson, M. and Chakravarthy, U. (2018) Disorganization of Inner Retina and Outer Retinal Morphology in Diabetic Macular Edema. JAMA Ophthalmology, 136, 202-208. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Nadri, G., Saxena, S., Stefanickova, J., Ziak, P., Benacka, J., Gilhotra, J.S., et al. (2019) Disorganization of Retinal Inner Layers Correlates with Ellipsoid Zone Disruption and Retinal Nerve Fiber Layer Thinning in Diabetic Retinopathy. Journal of Diabetes and its Complications, 33, 550-553. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Otani, T., Kishi, S. and Maruyama, Y. (1999) Patterns of Diabetic Macular Edema with Optical Coherence Tomography. American Journal of Ophthalmology, 127, 688-693. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Wu, Q., Zhang, B., Hu, Y., Liu, B., Cao, D., Yang, D., et al. (2021) Detection of Morphologic Patterns of Diabetic Macular Edema Using a Deep Learning Approach Based on Optical Coherence Tomography Images. Retina, 41, 1110-1117. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Arf, S., Sayman Muslubas, I., Hocaoglu, M., Ersoz, M.G., Ozdemir, H. and Karacorlu, M. (2020) Spectral Domain Optical Coherence Tomography Classification of Diabetic Macular Edema: A New Proposal to Clinical Practice. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1165-1172. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Panozzo, G., Cicinelli, M.V., Augustin, A.J., Battaglia Parodi, M., Cunha-Vaz, J., Guarnaccia, G., et al. (2019) An Optical Coherence Tomography-Based Grading of Diabetic Maculopathy Proposed by an International Expert Panel: The European School for Advanced Studies in Ophthalmology Classification. European Journal of Ophthalmology, 30, 8-18. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Panozzo, G., Cicinelli, M.V., Dalla Mura, G., Giannarelli, D., Vadalà, M., Bonfiglio, V., et al. (2024) Enhancing Diabetic Macular Edema Treatment Outcomes: Exploring the ESASO Classification and Structural OCT Biomarkers. Ophthalmology and Therapy, 13, 1383-1398. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Parodi Battaglia, M., Iacono, P., Cascavilla, M., Zucchiatti, I. and Bandello, F. (2018) A Pathogenetic Classification of Diabetic Macular Edema. Ophthalmic Research, 60, 23-28. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Hui, V.W.K., Szeto, S.K.H., Tang, F., Yang, D., Chen, H., Lai, T.Y.Y., et al. (2022) Optical Coherence Tomography Classification Systems for Diabetic Macular Edema and Their Associations with Visual Outcome and Treatment Responses—An Updated Review. Asia-Pacific Journal of Ophthalmology, 11, 247-257. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Ometto, G., Assheton, P., Calivá, F., Chudzik, P., Al-diri, B., Hunter, A., et al. (2017) Spatial Distribution of Early Red Lesions Is a Risk Factor for Development of Vision-Threatening Diabetic Retinopathy. Diabetologia, 60, 2361-2367. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Zhang, T., Xie, S., Sun, X., Duan, H., Li, Y. and Han, M. (2024) Optical Coherence Tomography Angiography for Microaneurysms in Anti-Vascular Endothelial Growth Factor Treated Diabetic Macular Edema. BMC Ophthalmology, 24, Article No. 400. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Stitt, A.W., Gardiner, T.A. and Archer, D.B. (1995) Histological and Ultrastructural Investigation of Retinal Microaneurysm Development in Diabetic Patients. British Journal of Ophthalmology, 79, 362-367. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Gao, M., Hormel, T.T., Guo, Y., Tsuboi, K., Flaxel, C.J., Huang, D., et al. (2024) Perfused and Nonperfused Microaneurysms Identified and Characterized by Structural and Angiographic Oct. Ophthalmology Retina, 8, 108-115. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Moore, J., Bagley, S., Ireland, G., Mcleod, D. and Boulton, M.E. (1999) Three Dimensional Analysis of Microaneurysms in the Human Diabetic Retina. Journal of Anatomy, 194, 89-100. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Borrelli, E., Sacconi, R., Brambati, M., Bandello, F. and Querques, G. (2019) In Vivo Rotational Three-Dimensional OCTA Analysis of Microaneurysms in the Human Diabetic Retina. Scientific Reports, 9, Article No. 16789. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Soliman, W., Sander, B., Hasler, P.W. and Larsen, M. (2008) Correlation between Intraretinal Changes in Diabetic Macular Oedema Seen in Fluorescein Angiography and Optical Coherence Tomography. Acta Ophthalmologica, 86, 34-39. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Fukuda, Y., Nakao, S., Kaizu, Y., Arima, M., Shimokawa, S., Wada, I., et al. (2022) Morphology and Fluorescein Leakage in Diabetic Retinal Microaneurysms: A Study Using Multiple En Face OCT Angiography Image Averaging. Graefe’s Archive for Clinical and Experimental Ophthalmology, 260, 3517-3523. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Takamura, Y., Yamada, Y., Noda, K., Morioka, M., Hashimoto, Y., Gozawa, M., et al. (2020) Characteristic Distribution of Microaneurysms and Capillary Dropouts in Diabetic Macular Edema. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1625-1630. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Abdel-Kader, A.A., Ramsey, D.J., Yussuf, W.A., Mohalhal, A.A., Eldaly, M.A. and Elnahry, A.G. (2023) Diabetic Microaneurysms Detected by Fluorescein Angiography Spatially Correlate with Regions of Macular Ischemia Delineated by Optical Coherence Tomography Angiography. Indian Journal of Ophthalmology, 71, 3085-3090. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Santos, A.R., Mendes, L., Madeira, M.H., Marques, I.P., Tavares, D., Figueira, J., et al. (2021) Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy Is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study. Journal of Clinical Medicine, 10, Article 2142. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [55] | Marques, I.P., Madeira, M.H., Messias, A.L., Martinho, A.C.-., Santos, T., Sousa, D.C., et al. (2020) Different Retinopathy Phenotypes in Type 2 Diabetes Predict Retinopathy Progression. Acta Diabetologica, 58, 197-205. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [56] | Haritoglou, C., Kernt, M., Neubauer, A., Gerss, J., Oliveira, C.M., Kampik, A., et al. (2014) Microaneurysm Formation Rate as a Predictive Marker for Progression to Clinically Significant Macular Edema in Nonproliferative Diabetic Retinopathy. Retina, 34, 157-164. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [57] | Leicht, S.F., Kernt, M., Neubauer, A., Wolf, A., Oliveira, C.M., Ulbig, M., et al. (2014) Microaneurysm Turnover in Diabetic Retinopathy Assessed by Automated Retmarkerdr Image Analysis-Potential Role as Biomarker of Response to Ranibizumab Treatment. Ophthalmologica, 231, 198-203. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [58] | Takamura, Y., Yamada, Y., Morioka, M., Gozawa, M., Matsumura, T. and Inatani, M. (2023) Turnover of Microaneurysms after Intravitreal Injections of Faricimab for Diabetic Macular Edema. Investigative Opthalmology & Visual Science, 64, Article 31. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [59] | Yamada, Y., Takamura, Y., Morioka, M., Gozawa, M., Matsumura, T. and Inatani, M. (2020) Microaneurysm Density in Residual Oedema after Anti‐Vascular Endothelial Growth Factor Therapy for Diabetic Macular Oedema. Acta Ophthalmologica, 99, e876-e883. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [60] | Garg, I., Uwakwe, C., Le, R., Lu, E.S., Cui, Y., Wai, K.M., et al. (2022) Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmology Science, 2, Article ID: 100144. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Kim, K., In You, J., Park, J.R., Kim, E.S., Oh, W. and Yu, S. (2021) Quantification of Retinal Microvascular Parameters by Severity of Diabetic Retinopathy Using Wide-Field Swept-Source Optical Coherence Tomography Angiography. Graefe’s Archive for Clinical and Experimental Ophthalmology, 259, 2103-2111. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Mirshahi, R., Riazi-Esfahani, H., Khalili Pour, E., Fadakar, K., Yarmohamadi, P., Alemzadeh, S.A., et al. (2021) Differentiating Features of OCT Angiography in Diabetic Macular Edema. Scientific Reports, 11, Article No. 23398. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Fan, W., Nittala, M.G., Velaga, S.B., Hirano, T., Wykoff, C.C., Ip, M., et al. (2019) Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic Retinopathy (RECOVERY Study): Report 1. American Journal of Ophthalmology, 206, 154-160. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [64] | Eldaly, Z., Soliman, W., Sharaf, M. and Reyad, A.N. (2020) Morphological Characteristics of Normal Foveal Avascular Zone by Optical Coherence Tomography Angiography. Journal of Ophthalmology, 2020, Article ID: 8281459. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [65] | Krawitz, B.D., Mo, S., Geyman, L.S., Agemy, S.A., Scripsema, N.K., Garcia, P.M., et al. (2017) Acircularity Index and Axis Ratio of the Foveal Avascular Zone in Diabetic Eyes and Healthy Controls Measured by Optical Coherence Tomography Angiography. Vision Research, 139, 177-186. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [66] | Waheed, N.K., Rosen, R.B., Jia, Y., Munk, M.R., Huang, D., Fawzi, A., et al. (2023) Optical Coherence Tomography Angiography in Diabetic Retinopathy. Progress in Retinal and Eye Research, 97, Article ID: 101206. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Han, R., Gong, R., Liu, W. and Xu, G. (2022) Optical Coherence Tomography Angiography Metrics in Different Stages of Diabetic Macular Edema. Eye and Vision, 9, Article No. 14. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [68] | Zhou, C., Zhou, Z., Feng, X., Zou, D., Zhou, Y., Zhang, B., et al. (2024) The Retinal Oxygen Metabolism and Hemodynamics as a Substitute for Biochemical Tests to Predict Nonproliferative Diabetic Retinopathy. Journal of Biophotonics, 17, e202300567. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [69] | Rahimi, M., Hossain, F., Leahy, S., Blair, N.P., Jiang, X. and Shahidi, M. (2024) Inner Retinal Oxygen Delivery and Metabolism in Progressive Stages of Diabetic Retinopathy. Scientific Reports, 14, Article No. 4414. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [70] | Abu El‐Asrar, A.M., Alsarhani, W.K., AlBloushi, A.F., Alzubaidi, A., Gikandi, P. and Stefánsson, E. (2025) Effect of Panretinal Photocoagulation on Retinal Oxygen Metabolism and Ocular Blood Flow in Diabetic Retinopathy. Acta Ophthalmologica, 103, 380-387. [Google Scholar] [CrossRef] [PubMed] |