糖尿病性视网膜病变生物标志物多模式影像的研究进展
Research Progress on Biomarkers and Multimodal Imaging in Diabetic Retinopathy
摘要: 糖尿病性视网膜病变(Diabetic Retinopathy, DR)是糖尿病患者常见并发症,糖尿病性黄斑水肿(Diabetic Macular Edema, DME)是导致DR患者视力下降的主要原因。多模式影像结合多种可视化的影像技术,通过结合光学相干断层扫描(OCT)、荧光素眼底血管造影(FFA)、多焦视网膜电图(mfERG)等多种先进影像技术综合评估DR及DME的视网膜的分层结构、微血管变化以及功能改变以检测早期视网膜改变,还能通过对生物标志物的观察,更准确地评估疾病的进展和治疗反应。本文就多模式影像技术在DR及DME诊疗中应用进展及生物标志物间的协同作用展开阐述,为临床监测和制定个体化治疗方案提供了重要的参考依据。
Abstract: Diabetic retinopathy (DR) is a common microvascular complication in diabetic patients, and diabetic macular edema (DME) is the principal cause of significant visual impairment in these patients. Multimodal imaging combines advanced imaging techniques such as optical coherence tomography (OCT), fundus fluorescein angiography (FFA), and multifocal electroretinography (mfERG) to provide a comprehensive assessment of structural, hemodynamic, and functional changes in the retina of DR and DME patients. This integrated imaging approach not only detects early retinal alterations but also allows for a more precise evaluation of disease progression and therapeutic response by observing biomarkers. This paper reviews the advancements in the application of multimodal imaging technologies in the diagnosis and treatment of DR and DME and explores the synergistic effects of various biomarkers, providing valuable references for clinical monitoring and the development of individualized treatment strategies.
文章引用:徐艺菡, 刘丹宁. 糖尿病性视网膜病变生物标志物多模式影像的研究进展[J]. 临床医学进展, 2025, 15(11): 1-11. https://doi.org/10.12677/acm.2025.15113057

1. 引言

糖尿病性视网膜病变(Diabetic Retinopathy, DR)是工作年龄人群视力损伤的重要原因[1]。随着糖尿病患者数量增加,以及人口老龄化加剧,DR和视力威胁性DR (VTDR)的数量将随之增加,根据2018年~2020年中国糖尿病慢性并发症研究的调查结果,我国18~74岁糖尿病患者人群中约1950万人患有DR,患病率为16.3%,约1/5患者处于视力威胁性DR (VTDR)阶段。糖尿病性黄斑水肿(Diabetic Macular Edema, DME)是DR最常见并发症之一,可发生在DR的任意一期[2]。DME的发病机制复杂,目前较为认可的理论是高血糖会激活多种信号通路,包括多元醇通路、PKC通路及产生糖基化终末产物(AGEs) et al.,产生了以血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)和促炎细胞因子为代表的大量物质,引起细胞缺氧、炎症及氧化应激一系列改变,使血管内皮细胞及周细胞丢失,血管基底膜变薄,破坏紧密连接,进而发生组织缺血、血管渗漏和血–视网膜屏障(Blood Retinal Barrier, BRB)的破坏,导致视网膜血管中的液体、蛋白质和脂质泄漏,并伴随Müller细胞肿胀,最终导致视网膜增厚、视力下降[3]。随着影像学技术发展,眼科多模式影像被提出,同时或在短期采集不同的影像模式的图像用于分析对特定的结构特征,这些图像相互补充、以及AI对图像的处理,帮助临床医生从不同角度理解疾病的病因及病情进展,有助于对疾病的诊疗过程的管理[4] [5]

本综述将总结多模式影像相关技术以及DR及DME的诊断、预后及预测相关的生物学标志物为评估DME的严重程度、调整治疗方案并判断疾病预后提供参考。

2. 多模式影像

2.1. 眼底照相

眼底照相是最早开始进行的检查手段,单视野的眼底照相可作为DR筛查的手段,散瞳后早期治疗DR研究组(ETDRS)标准7视野眼底照相是DR诊断、分期的金标准通过半定量读片量化7个视野内微动脉瘤(MAs)、视网膜出血、视网膜内微血管异常(IRMA)、静脉“串珠样”改变et al.特征,明确DR的严重程度及分期[2] [6]。广角眼底照相(WFP)及超广角眼底照相(UWFP)拍摄范围越来越广,能观察到周边视网膜的病变。ETDRS标准7视野图像覆盖包括黄斑视盘的30%视网膜,广角眼底照相(WFP)可显示60˚~100˚眼底图像,覆盖包括以黄斑中心凹为中心、涡静脉壶腹部之后视网膜,超广角眼底照相(UWFP)可显示110˚~220˚眼底图像还覆盖4个象限中涡静脉壶腹部前方视网膜[4] [7]。多项研究表明UWFP与ETDR标准7视野照相在评估DR病变程度可达到中等至较高的一致性[8]。2015年Silva等人根据DR病灶在UWFP上的分布情况,提出中央病灶为主型(Predominantly Central Lesion, PCL),和周边病灶为主型(Predominantly Peripheral Lesion, PPL)的分型,PPL眼可能与DR进展有关,周边视网膜病灶可能早于后极部病灶出现,一项结合视网膜电图(ERG)的研究也表明DR患者视网膜周边病灶与视网膜视神经功能恶化相关[9] [10]。WFP及UWFP拍摄范围越来越广,成像越来越清晰,能观察、评估周边视网膜的病变,UWFP可以免散瞳单次成像,可缩短检查时间,使检查更加便捷,能更好应用于临床。

2.2. 眼底血管造影

眼底荧光素钠造影(FFA)是一项动态观察视网膜血管的检查,能观察视网膜血管性疾病及视网膜内、外屏障功能变化引起的渗漏性改变,能灵敏地识别异常视网膜血管,可以显示微血管瘤、无灌注区以及新生血管的渗漏,是DR诊断及分期的金标准。在黄斑区,FFA可评估中心凹无血管区(FAZ)的形态,以评估中心凹结构和功能,黄斑花瓣状的高荧光渗漏,可提示DME [6]。广角FA (UWF FA)无需拼图,能使后极部和周边部网膜一次成像,能够发现更多的周边病灶,一些研究表明周边的视网膜缺血和DME发生相关,基线时UWF FA检测周边部病灶能够预测DR进展[11],UMFFA对周边视网膜无灌注区的显示,可有助于实现靶向视网膜光凝术(Targeted Retinal Photocoagulation, TRP),与全视网膜光凝(Panretinal Photocoagulation, PRP)相比,TRP在治疗后短期(4~12周)黄斑中心凹厚度的降低与PRP治疗后无明显差异,因此TRP可能在未来替代PRP,以减少治疗中为患者带来的疼痛感,减少视网膜损伤并保留健康视网膜[12]。FFA的应用存在一定局限性,其为二维成像,无法分割不同层次的视网膜毛细血管,无法分层显示视网膜血管的变化,且FFA为有创的检查,需要静脉注射荧光素钠,存在着一些不良反应以及使用禁忌[13]。虽然FFA在DR的诊断中是必要的,因其存在一定的局限性,在评估DR病情、诊断DME时,结合使用其他非侵入式的检查,集成多模式影像能更好地判断病情。

2.3. OCT和OCTA

光相干断层扫描(Optical Coherence Tomography, OCT)和是一种无创、快速诊断DME的常用检查,通过冠状面成像,能评估视网膜各层的结构,有助于了解DME的形态,定位视网膜增厚的区域,OCT提示了多种与DME严重程度、治疗反应和预后相关的特征性的改变,可能作为DME的影像学生物标志物[2]。从最早的时域OCT发展到现在的扫频OCT (Swept-Source Optical Coherence Tomography, SS-OCT),OCT扫描速度、深度、单线扫描长度不断增加能够将后极部视网膜及中周部视网膜一次成像,成像的分辨率也几乎接近细胞水平,有助于通过非侵入性技术了解视网膜的病理变化过程[13]

光学相干断层扫描血管造影(Optical Coherence Tomography Angiography, OCTA)无创、安全、快速地三维分层显示视网膜及脉络膜血流,能清晰显示并量化视网膜各层毛细血管、黄斑中心无血管区、视网膜动脉周围无灌注区et al.视网膜血管特征。OCTA显示视网膜血管空间分布的特征,量化视网膜微血管的参数,有助于将功能与形态学数据联系[14] [15]。现阶段OCTA可通过拼图技术实现眼内200°范围内的血流拼图,其对DR视网膜血管异常的评估的灵敏度、特异度不低于FFA,且其无创性减少了造影剂带来的不良反应,更适用于随访观察[16]。OCTA尚未能完全取代FFA,因为存在一定的伪影误差,无法直接观察血管渗漏,在检测微动脉瘤的灵敏度、特异度方面不及FFA,目前OCTA和FFA作为互补的检查,共同的评估DR的病情变化,但是随着技术的发展,OCTA联合AI的技术,用于推断血管的渗漏描绘荧光素血管造影(AI-FA),以及更多的研究旨在用OCTA代替FFA来指导DR的诊断及治疗[15]

2.4. 功能检查

视网膜电图(Electroretinogram, ERG) [17]是一种评估视网膜功能的无创检查,也可以评估包括光感受器、双极细胞、无长突细胞和视网膜神经节细胞在内的多种视网膜细胞类型的功能活动。在临床研究中全视野ERG (ffERG)、多焦点ERG (mfERG)和图形ERG (pERG)技术评估糖尿病患者神经功能障碍,ffERG通过光刺激和超极化反应记录光感受器及其突触后神经元功能变化,图形ERG (pERG)通过相位反转的图形刺激(如格栅或棋盘图案)观察视网膜细胞的电生理响应,主要反映神经节细胞、及内层神经元活动,有研究表明DR严重程度与糖尿病病程和pERG振幅之间存在相关性,确定PDR中的N95振幅和P50潜伏期和振幅改变显著,pERG可作为DR进展和发展的标志[18]。mfERG主要反应视网膜黄斑区视锥细胞功能,有研究表明,mfERG在DR病变显著的位置时间延长[19]。EUROCONDOR临床试验表明部分糖尿病患者显示mfERG的振幅降低或时间延迟,显示出视网膜神经病变[20]。不同分类的ERG在评估DR的视网膜神经功能异常的作用但并未得到广泛应用,ERG的检查对患者配合度、环境要求高可能限制的ERG的应用,目前开发了手持式的ERG设备可能可以克服这些限制,让ERG成为视网膜神经功能更有用、应用更广泛的工具。

视网膜微视野检查(Retinal Microperimetry, MPR)是用于测量视网膜光敏感度(RS)和注视稳定性(GFS)一种无创性技术,能够分析视网膜特定位置的视网膜功能[21]。在DR早期阶段,未出现眼底照相、OCT等能检测到的结构异常的DR早期阶段,MPR提示视网膜敏感度下降[22]。DR病变并非呈现空间均匀分布,微视检查能建立视网膜功能异常和结构异常的对应关系,在微脉冲治疗DME的研究中,通过微视野检查评估黄斑中心凹的视网膜光敏度,研究发现5%占空比的亚阈值激光治疗可有效降低视网膜厚度并提升视网膜光敏感度[23] [24]

3. 生物标志物

生物标志物定义为能客观测量和评估、能反应生理病理过程或治疗干预药理学反应的指标,在早期诊断、预测疾病进展和评估治疗效果方面具有重要价值[25] [26]

3.1. 结构相关影像标志物

3.1.1 DME的结构与形态

视网膜中心凹厚度(Central Subfield Thickness, CST)是通过OCT测量中心凹直径1 mm内视网膜平均厚度的定量指标。DME定义为黄斑中心凹周围一个视盘直径范围内存在视网膜增厚或黄斑区存在激光斑点,有临床意义的DME (CSDME)被定义为距中心凹500 μm以内的视网膜增厚或出现硬性渗出。OCT的定量测定让DME诊断更加客观,既往研究多将CST值 ≥ 250 μm作为黄斑水肿的提示指标,目前CST的正常值并未统一,不同的OCT设备及不同扫描模式会产生差异[27]-[29],国内一项研究通过比较健康人群、DR患者以及糖尿病未伴视网膜病变患者分别用SD-OCT、SS-OCT扫描黄斑中心凹厚度比较两种设备结果差异发现,SD-OCT测量值较SS-OCT更大,并建议将SS-OCT测量黄斑水肿的阈值定为男性275 μm,女性为260 μm [28]。而采用Heidelberg Spectralis OCT测得:男性平均CST为278 ± 23 μm,女性为262 ± 22 μm,并建议将男性 ≥ 320 μm或女性 ≥ 305 μm作为DME的诊断阈值[27]。临床试验中[30] [31] CST作为DME其中一项诊断标准,CST的变化也作为抗VEGF治疗效果的评估指标,但CST的变化与视力变化关联并不显著,表明存在其他对视功能影响的因素[32]。因此需要纳入多种生物标志物对DME进行分期分型。

视网膜内层结构紊乱(Disorganization of Retinal Inner Layers, DRIL)是指黄斑中心凹1 mm范围内内层结构(神经节细胞–内丛状层复合体、内核层和外丛状层)分层界限消失[33]。Sunet et al.首次提出[34] DRIL可作为DME视力损伤程度的预测因素,在累及黄斑中心的DME患者中,基线时更严重的DRIL程度与更差的基线视力显著相关,且4个月时的DRIL变化可预测8个月时的视力变化,DME水肿消退,DRIL仍与视力损伤相关。DRIL改善与视力提升相关,持续存在的DRIL则预示视力恶化风险增加。有研究表明DRIL的形成与CST增厚、外层视网膜结构的破坏、玻璃体黄斑交界面异常有关,与视网膜神经神经纤维层厚度呈显著负相关[35] [36] DRIL对视网膜功能的预测可能其代表黄斑区视网膜神经血管单元的损害相关,该区域包含了光感受器至神经节细胞信号传递的关键元件,其损伤可能导致不可逆的视觉信号传导障碍[35]。DRIL的存在是DR视功能不良预后的指标。

DME形态可能与不同的发病机制有关,Otani et al. [37]描述了DME的3种形态模式,并分为3种亚型:海绵状弥漫性视网膜增厚(Sponge-Like Diffuse Retinal Thickening, DRT)、黄斑囊样水肿(Cystoid Macular Edema, CME)和浆液性视网膜脱离(Serous Retinal Detachment, SRD)。既往研究表明,DRT由糖尿病视网膜微血管功能障碍导致毛细血管渗漏,液体在视网膜内弥漫积聚形成。长期水肿促进Müller和邻近神经细胞的液化坏死,形成了CME中囊状腔隙。SRD的形成是由于外层BRB功能障碍,导致视网膜下积液[38]。发病机制的不同也导致的不同OCT形态的DME对抗VEGF治疗反应的差异。随着OCT的广泛应用,也提出了基于形态及其他生物标志的新的DME分类。

Arf et al. [39]将DME分为3型,1型为弥漫黄斑水肿(DTR),2型为囊样黄斑水肿(CME),3型为黄斑囊样变性(Cystoid Macular Degeneration CMD),每个类型并进行亚分类,a:是否存在浆液性视网膜脱离(Serous Macular Detachment, SMD);b:是否存在黄斑交界面异常(Vitreomacular Interface Abnormalities, VMIA);c:是否存在硬性渗出(Hard Exudates, HE)。研究者将CME和CMD根据囊腔大小进行区分,将囊腔直径大于600 μm,归类为CMD,认为CMD是与慢性黄斑水肿有关,且视功能更差。与其他研究相反,该分类将SMD排除在DME的类型中,认为SMD是疾病伴随的表现,多见于DME的早期阶段。

同样根据OCT中特征,欧洲眼科高级研究学院(European School of Advanced Studies in Ophthalmology, ESASO)提出了“TCED-HFV”分级协议,定量及定性研究CST、视网膜内囊肿、视网膜内层结构紊乱(Disorganization of the Inner Retinal Layers, DRIL)、椭圆体带(Ellipsoid Zone, EZ)或外界膜(External Limiting Membrane, ELM)完整性、高反射点(Hyperreflective Foci, HF)以及VMIA,并将DME分为4期早期DME (1期)、进展期DME (2期)、重度DME (3期)和萎缩性黄斑病变(4期) [40]。该分类将视网膜视为神经血管单元整合了多种生物标志物,在一项回顾性研究中发现,1期、2期在治疗后有显著的视功能改善,表明病理结构的损伤存在可逆性,而3期4期表明已发生不可逆的解剖学损伤[41]

Parodi et al. [42]提出了一种基于血视网膜屏障破坏和黄斑牵拉基本病理机制的新型DME分类系统。该分类将DME划分为四类:血管源性(表现为视网膜增厚合并可见血管异常如微动脉瘤或扩张毛细血管)、非血管源性、牵引性(视网膜增厚伴OCT提示黄斑前膜)及混合型。研究显示,血管源性DME占比约65%,其中近半数患者中心凹厚度(CST)小于400微米。在RESTORE试验的事后分析中,当CST < 400微米时,黄斑激光光凝术与每月玻璃体腔注射雷珠单抗对DME的疗效相当。该分类系统对指导血管源性DME的个体化治疗具有重要临床价值[43]

3.1.2. 血管异常标志物

微动脉瘤(Microaneurysms, MAs)是由于慢性高血糖导致的周细胞的丢失和内皮细胞的增殖形成的,是DR在临床上最早期的病灶[44] [45]。MAs的组织病理学特征可表现为囊状、梭状以及局灶性凸出,管腔内结构可有不同类型,有红细胞、炎症细胞或脂质[45] [46]。OCTA显示起源于毛细血管的囊状或梭形局部扩张,其形态与显微镜下观察到的MA相似,OCTA还可以分层显示深部血管,多模式影像的研究进一步探究MAs在DR及DME的发生中的作用。Min Gao et al. [47]的研究,通过OCT横断面识别高反射的圆形或椭圆形管壁,发现MAs可以存在于多个视网膜层次,最可能位于内核层(INL)和外丛状层(OPL),这与组织病理学研究发现大多数MAs起源于INL且位于深层毛细血管丛的数量多于位于浅层毛细血管丛的是一致的[48] [49]。FFA被认为是MAs监测的金标准,但通过比较OCT、OCTA及FFA中MAs的图像,根据多模式影像中显像情况提示不同的灌注状态、管腔内容物及管壁形态,仅单一的影像学模式不能捕获所有的MAs病变[47]。OCTA可检测MAs的血流信号,根据血流信号将MAs分为灌注型、部分灌注型、非灌注型,研究定量分析了灌注型MAs相较于部分灌注型和非灌注型MAs有更大的周围视网膜内液体体积,表明特定影像学特征的MAs可能预测DME的发展[47] [50]。Fukuda et al. [51]先使用FA检测所有的MAs,然后使用OCTA连续多次检测FA中识别的MAs,在583个FA检测到的MAs中,370个(63.5%)可以在OCTA中根据形态进行分类,将其分为4种类型:局灶隆起型(46, 12.4%)、囊状/带蒂型(143, 38.6%)、梭状型(29, 7.8%)和混合型(152, 41.1%),再评估OCTA中MAs形态与FA晚期MA渗漏的情况,发现局灶隆起型、囊状/带蒂型、梭状型和混合型MA在FA中渗漏率分别为41.3%、66.4%、82.8%和66.4%,梭状型MAs在FA渗漏明显,表明OCTA中MAs的形态与FA渗漏和DR阶段相关。Yoshihiro Takamura et al. [52]的研究,通过合并FA及OCT视网膜厚度图并定位MAs和毛细血管脱落区(CODs),发现MAs在视网膜增厚区域边缘分布密度更高,大约80%的MAs分布在CDO区域附近。同样Abdel-Kader et al. [53]通过OCTA分层显示不同毛细血管层的黄斑缺血(Diabetic Macular Ischemia, DMI)域与FA显示MAs相结合的研究,MAs更多聚集在缺血区附近是一致的。这提示视网膜毛细血管闭塞引起的缺血缺氧参与了MAs的形成过程。MAs在DR及DME的病程中是动态变化的,MAs活动代表了疾病的活动,可作为DR及DME疾病进展的预测指标,在一项为期5年前瞻性研究表明,通过首次眼底照相及首次检查后6月的眼底照相中MAs的形成和消失计算MAs的周转率,发现MAs的周转率(MAT)及形成率与PDR及VTDR的发展有关,较低的MAT的NPDR患眼,在2年内发生DME的可能性较低,MAs形成率大于2与DME进展相关[54]-[56]。MAT也与治疗反应有关,注射抗VEGF药物雷珠单抗改善DME黄斑区厚度,增加MAT,MAs消失数量多于形成数量,治疗后MAs总数也减少[57]。在DME眼注射法瑞西单抗的研究中,也显示了相似的结果[58]。因此MAT可以作为治疗反应及疾病活动的生物学标志物。抗VEGF治疗能有效降低视网膜厚度,但是仍残留有部分局灶性视网膜增厚,有研究根据首次抗VEGF治疗1月后是否存在残余局灶视网膜水肿将DME患者分为残余水肿(RO)患者和非残余水肿(NRO)患者,发现RO患者需要更频繁的抗VEGF治疗,且残余视网膜水肿区域MAs的密度更高,这提示更高密度MAs视网膜增厚区可能与抗VEGF应答欠佳有关[59]

视网膜缺血无灌注区(Nonperfusion Areas, NPAs)是DR进行发展的标志,OCTA可无创分层显示深层、中层、浅层视网膜血管丛(DCP、ICP、SCP)不同阶段DR毛细血管损伤程度,以及量化分析NPAs的分布情况。应用广角SS-OCTA对NPAs的定量研究表明,随着DR的进展,NPAs增加,浅层毛细血管丛血管密度、血管骨架密度降低,广角SS-OCTA对NAPs的检测相较于FA更为灵敏[60] [61]。与非DME眼相比,DME患眼的NPAs范围相比更广,分层分析显示中SCP的NPAs范围更广[62]。视网膜缺血促进VEGF的释放是DR进展到增殖期的重要因素,研究发现在早期PDR眼中NPAs面积随距黄斑中心凹距离增大而范围扩大,缺血程度也逐渐增大,存在视盘新生血管的PDR眼缺血程度更重,但缺血程度的分布与新生血管的分布并不一致,视网膜新生血管多分布后极部,更倾向生长在与NPAs相邻的灌注较好的区域[63]

中心凹无血管区(Foveal Avascular Zone, FAZ)是黄斑中心血管缺失的区域,仅有色素上皮细胞和视锥细胞,是视觉最敏感的区域,其功能与视力存在正相关。OCTA能对不同视网膜血管丛FAZ的面积、周长、形状进行量化分析。在一项对健康眼研究发现FAZ通常呈现圆形或椭圆形,形状改变提示血管的病变,圆度指数(Circularity Index, CI)在正常个体中是相对稳定的参数,代表FAZ形状的规律,随着DR加重,FAZ边界变得更加不规则,圆度指数降低,可能是由于FAZ边缘毛细血管脱落[64] [65]。FAZ-CI在中重度的DR存在变化,但在早期DR或无病变眼中是稳定的[66]。FAZ扩大可作为DMI程度的指标,FAZ面积与DR的严重程度总体成正比,相较于早期DME眼,晚期DME眼的FAZ面积扩大[67]。FAZ面积在年龄、性别相匹配的糖尿病和非糖尿病患者间存在较大变异[64],单独应用FAZ面积对DR进行诊断存在限制,但FAZ面积变化作为纵向随访指标可能有助于跟踪DR的进展。

视网膜循环的氧输送率(Oxygen Delivered by the Retinal Circulation, DO2)和视网膜组织代谢的氧消耗率(Oxygen Extracted by the Retinal Tissue for Metabolism, MO2)是一种多模式影像设备基于激光散斑对比成像技术所得出视网膜氧代谢及血流动力学变化的参数,研究表明非糖尿病患者相比在PDR中减少,NPDR患者DO2增加,MO2降低[68]-[70]。缺氧在DR的进展中起着重要作用,视网膜氧代谢以及血流动力学改变可能先于视网膜形态结构。DR结构的异常可以提示病情发展,相关生物标志物通过影像学检查获得,也有其他研究发现通过有创检查得到生化指标异常例如空腹血糖、糖化血红蛋白、血小板参数也有助于识别DR的高风险人群,并进行早期干预。而DO2以及MO2作为无创的检查指标,视网膜氧指标的变化有助于对于理解不同阶段DR的病理改变及视网膜细胞功能,需要更多的纵向研究进一步确定DO2及MO2对监测DR发展及治疗的作用。

4. 小结

多模式影像技术不断发展有利于对DR的形态、结构、功能改变的理解,通过无创的方式提高视网膜的解剖及功能理解,对发现DR早期病理生理改变提供新方案。在临床应用中,多模式影像技术也促进了对DME及DR更精准的诊断及病情的评估,影像学生物标志的应用对疾病的监测提供有用的临床证据,但仍需要更多纵向的研究对其进行验证,为DR个性化的诊断及治疗奠定基础。

NOTES

*通讯作者。

参考文献

[1] Teo, Z.L., Tham, Y., Yu, M., Cheng, C., Wong, T.Y. and Sabanayagam, C. (2020) Do We Have Enough Ophthalmologists to Manage Vision-Threatening Diabetic Retinopathy? A Global Perspective. Eye, 34, 1255-1261. [Google Scholar] [CrossRef] [PubMed]
[2] 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年) [J]. 中华眼底病杂志, 2023, 39(2): 99-124.
[3] Noma, H., Yasuda, K. and Shimura, M. (2021) Involvement of Cytokines in the Pathogenesis of Diabetic Macular Edema. International Journal of Molecular Sciences, 22, Article 3427. [Google Scholar] [CrossRef] [PubMed]
[4] 宋宗明, 郭晓红. 眼底多模式影像的进展及其现阶段存在的问题[J]. 中华眼底病杂志, 2022, 38(2): 93-97.
[5] Novais, E.A., Baumal, C.R., Sarraf, D., Freund, K.B. and Duker, J.S. (2016) Multimodal Imaging in Retinal Disease: A Consensus Definition. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 201-205. [Google Scholar] [CrossRef] [PubMed]
[6] Murakami, T., Ishihara, K., Terada, N., Nishikawa, K., Kawai, K. and Tsujikawa, A. (2023) Pathological Neurovascular Unit Mapping onto Multimodal Imaging in Diabetic Macular Edema. Medicina, 59, Article 896. [Google Scholar] [CrossRef] [PubMed]
[7] Choudhry, N., Duker, J.S., Freund, K.B., Kiss, S., Querques, G., Rosen, R., et al. (2019) Classification and Guidelines for Widefield Imaging: Recommendations from the International Widefield Imaging Study Group. Ophthalmology Retina, 3, 843-849. [Google Scholar] [CrossRef] [PubMed]
[8] Kernt, M., Hadi, I., Pinter, F., Seidensticker, F., Hirneiss, C., Haritoglou, C., et al. (2012) Assessment of Diabetic Retinopathy Using Nonmydriatic Ultra-Widefield Scanning Laser Ophthalmoscopy (Optomap) Compared with ETDRS 7-Field Stereo Photography. Diabetes Care, 35, 2459-2463. [Google Scholar] [CrossRef] [PubMed]
[9] Silva, P.S., Marcus, D.M., Liu, D., Aiello, L.P., Antoszyk, A., Elman, M., et al. (2022) Association of Ultra-Widefield Fluorescein Angiography-Identified Retinal Nonperfusion and the Risk of Diabetic Retinopathy Worsening over Time. JAMA Ophthalmology, 140, 936-945. [Google Scholar] [CrossRef] [PubMed]
[10] Zhuang, X., Chen, R., Liang, A., Yao, J., Wang, Z., Chen, Y., et al. (2022) Multimodal Imaging Analysis for the Impact of Retinal Peripheral Lesions on Central Neurovascular Structure and Retinal Function in Type 2 Diabetes with Diabetic Retinopathy. British Journal of Ophthalmology, 107, 1496-1501. [Google Scholar] [CrossRef] [PubMed]
[11] Patel, R.D., Messner, L.V., Teitelbaum, B., Michel, K.A. and Hariprasad, S.M. (2013) Characterization of Ischemic Index Using Ultra-Widefield Fluorescein Angiography in Patients with Focal and Diffuse Recalcitrant Diabetic Macular Edema. American Journal of Ophthalmology, 155, 1038-1044.e2. [Google Scholar] [CrossRef] [PubMed]
[12] Lin, Z., Deng, A., Hou, N., Gao, L. and Zhi, X. (2023) Advances in Targeted Retinal Photocoagulation in the Treatment of Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1108394. [Google Scholar] [CrossRef] [PubMed]
[13] Midena, E. and Bini, S. (2016) Multimodal Retinal Imaging of Diabetic Macular Edema: Toward New Paradigms of Pathophysiology. Graefes Archive for Clinical and Experimental Ophthalmology, 254, 1661-1668. [Google Scholar] [CrossRef] [PubMed]
[14] Tang, F.Y., Chan, E.O., Sun, Z., Wong, R., Lok, J., Szeto, S., et al. (2020) Clinically Relevant Factors Associated with Quantitative Optical Coherence Tomography Angiography Metrics in Deep Capillary Plexus in Patients with Diabetes. Eye and Vision, 7, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
[15] Wijesingha, N., Tsai, W., Keskin, A.M., Holmes, C., Kazantzis, D., Chandak, S., et al. (2024) Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics, 14, Article 326. [Google Scholar] [CrossRef] [PubMed]
[16] Arya, M., Sorour, O., Chaudhri, J., Alibhai, Y., Waheed, N.K., Duker, J.S., et al. (2019) Distinguishing Intraretinal Microvascular Abnormalities from Retinal Neovascularization Using Optical Coherence Tomography Angiography. Retina, 40, 1686-1695. [Google Scholar] [CrossRef] [PubMed]
[17] McAnany, J.J., Persidina, O.S. and Park, J.C. (2022) Clinical Electroretinography in Diabetic Retinopathy: A Review. Survey of Ophthalmology, 67, 712-722. [Google Scholar] [CrossRef] [PubMed]
[18] Koçer, A.M. and Şekeroğlu, M.A. (2021) Evaluation of the Neuronal and Microvascular Components of the Macula in Patients with Diabetic Retinopathy. Documenta Ophthalmologica, 143, 193-205. [Google Scholar] [CrossRef] [PubMed]
[19] Zhang, Z., Deng, C. and Paulus, Y.M. (2024) Advances in Structural and Functional Retinal Imaging and Biomarkers for Early Detection of Diabetic Retinopathy. Biomedicines, 12, Article 1405. [Google Scholar] [CrossRef] [PubMed]
[20] Santos, A.R., Ribeiro, L., Bandello, F., Lattanzio, R., Egan, C., Frydkjaer-Olsen, U., et al. (2017) Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy: Cross-Sectional Analyses of Baseline Data of the EUROCONDOR Project. Diabetes, 66, 2503-2510. [Google Scholar] [CrossRef] [PubMed]
[21] Mateu‐Salat, M., Stanton‐Yonge, N., Santaló, F.S., Vela, J.I., Cascajosa, J.D., Pérez, E.S., et al. (2024) Retinal Microperimetry as a Novel Tool for Early Detection of Subclinical Cognitive Dysfunction and Brain Damage in Type 1 Diabetes: A Pilot Study. Endocrinology, Diabetes & Metabolism, 8, e70018. [Google Scholar] [CrossRef] [PubMed]
[22] Sacconi, R., Casaluci, M., Borrelli, E., Mulinacci, G., Lamanna, F., Gelormini, F., et al. (2019) Multimodal Imaging Assessment of Vascular and Neurodegenerative Retinal Alterations in Type 1 Diabetic Patients without Fundoscopic Signs of Diabetic Retinopathy. Journal of Clinical Medicine, 8, Article 1409. [Google Scholar] [CrossRef] [PubMed]
[23] Baba, T. (2021) Detecting Diabetic Retinal Neuropathy Using Fundus Perimetry. International Journal of Molecular Sciences, 22, Article 10726. [Google Scholar] [CrossRef] [PubMed]
[24] Chhablani, J., Alshareef, R., Kim, D.T., Narayanan, R., Goud, A. and Mathai, A. (2018) Comparison of Different Settings for Yellow Subthreshold Laser Treatment in Diabetic Macular Edema. BMC Ophthalmology, 18, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
[25] Biomarkers Definitions Working Group (2001) Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clinical Pharmacology and Therapeutics, 69, 89-95.
[26] Sinclair, S.H. and Schwartz, S.S. (2019) Diabetic Retinopathy—An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Frontiers in Endocrinology, 10, Article 843. [Google Scholar] [CrossRef] [PubMed]
[27] Chalam, K.V., Bressler, S.B., Edwards, A.R., Berger, B.B., Bressler, N.M., Glassman, A.R., et al. (2012) Retinal Thickness in People with Diabetes and Minimal or No Diabetic Retinopathy: Heidelberg Spectralis Optical Coherence Tomography. Investigative Opthalmology & Visual Science, 53, 8154-8161. [Google Scholar] [CrossRef] [PubMed]
[28] Xiong, K., Gong, X., Li, W., Yuting, L., Meng, J., Wang, L., et al. (2021) Comparison of Macular Thickness Measurements Using Swept-Source and Spectral-Domain Optical Coherence Tomography in Healthy and Diabetic Subjects. Current Eye Research, 46, 1567-1573. [Google Scholar] [CrossRef] [PubMed]
[29] Arruabarrena, C., Rodríguez-Miguel, A., de Aragón-Gómez, F., Escámez, P., Rosado, I. and Teus, M.A. (2023) Normative Data for Macular Thickness and Volume for Optical Coherence Tomography in a Diabetic Population without Maculopathies. Journal of Clinical Medicine, 12, Article 5232. [Google Scholar] [CrossRef] [PubMed]
[30] Hostovsky, A., Moroz, I. and Katz, G. (2024) Aflibercept Monotherapy or Bevacizumab First for Diabetic Macular Edema. Indian Journal of Ophthalmology, 72, S260-S264. [Google Scholar] [CrossRef] [PubMed]
[31] Wells, J.A., Glassman, A.R., Jampol, L.M., Aiello, L.P., Antoszyk, A.N., Baker, C.W., et al. (2016) Association of Baseline Visual Acuity and Retinal Thickness with 1-Year Efficacy of Aflibercept, Bevacizumab, and Ranibizumab for Diabetic Macular Edema. JAMA Ophthalmology, 134, 127-134. [Google Scholar] [CrossRef] [PubMed]
[32] Bressler, N.M., Odia, I., Maguire, M., Glassman, A.R., Jampol, L.M., MacCumber, M.W., et al. (2019) Association between Change in Visual Acuity and Change in Central Subfield Thickness during Treatment of Diabetic Macular Edema in Participants Randomized to Aflibercept, Bevacizumab, or Ranibizumab: A Post Hoc Analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmology, 137, 977-985. [Google Scholar] [CrossRef] [PubMed]
[33] Szeto, S.K., Lai, T.Y., Vujosevic, S., Sun, J.K., Sadda, S.R., Tan, G., et al. (2024) Optical Coherence Tomography in the Management of Diabetic Macular Oedema. Progress in Retinal and Eye Research, 98, Article ID: 101220. [Google Scholar] [CrossRef] [PubMed]
[34] Sun, J.K., Lin, M.M., Lammer, J., Prager, S., Sarangi, R., Silva, P.S., et al. (2014) Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Center-Involved Diabetic Macular Edema. JAMA Ophthalmology, 132, 1309-1316. [Google Scholar] [CrossRef] [PubMed]
[35] Das, R., Spence, G., Hogg, R.E., Stevenson, M. and Chakravarthy, U. (2018) Disorganization of Inner Retina and Outer Retinal Morphology in Diabetic Macular Edema. JAMA Ophthalmology, 136, 202-208. [Google Scholar] [CrossRef] [PubMed]
[36] Nadri, G., Saxena, S., Stefanickova, J., Ziak, P., Benacka, J., Gilhotra, J.S., et al. (2019) Disorganization of Retinal Inner Layers Correlates with Ellipsoid Zone Disruption and Retinal Nerve Fiber Layer Thinning in Diabetic Retinopathy. Journal of Diabetes and its Complications, 33, 550-553. [Google Scholar] [CrossRef] [PubMed]
[37] Otani, T., Kishi, S. and Maruyama, Y. (1999) Patterns of Diabetic Macular Edema with Optical Coherence Tomography. American Journal of Ophthalmology, 127, 688-693. [Google Scholar] [CrossRef] [PubMed]
[38] Wu, Q., Zhang, B., Hu, Y., Liu, B., Cao, D., Yang, D., et al. (2021) Detection of Morphologic Patterns of Diabetic Macular Edema Using a Deep Learning Approach Based on Optical Coherence Tomography Images. Retina, 41, 1110-1117. [Google Scholar] [CrossRef] [PubMed]
[39] Arf, S., Sayman Muslubas, I., Hocaoglu, M., Ersoz, M.G., Ozdemir, H. and Karacorlu, M. (2020) Spectral Domain Optical Coherence Tomography Classification of Diabetic Macular Edema: A New Proposal to Clinical Practice. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 1165-1172. [Google Scholar] [CrossRef] [PubMed]
[40] Panozzo, G., Cicinelli, M.V., Augustin, A.J., Battaglia Parodi, M., Cunha-Vaz, J., Guarnaccia, G., et al. (2019) An Optical Coherence Tomography-Based Grading of Diabetic Maculopathy Proposed by an International Expert Panel: The European School for Advanced Studies in Ophthalmology Classification. European Journal of Ophthalmology, 30, 8-18. [Google Scholar] [CrossRef] [PubMed]
[41] Panozzo, G., Cicinelli, M.V., Dalla Mura, G., Giannarelli, D., Vadalà, M., Bonfiglio, V., et al. (2024) Enhancing Diabetic Macular Edema Treatment Outcomes: Exploring the ESASO Classification and Structural OCT Biomarkers. Ophthalmology and Therapy, 13, 1383-1398. [Google Scholar] [CrossRef] [PubMed]
[42] Parodi Battaglia, M., Iacono, P., Cascavilla, M., Zucchiatti, I. and Bandello, F. (2018) A Pathogenetic Classification of Diabetic Macular Edema. Ophthalmic Research, 60, 23-28. [Google Scholar] [CrossRef] [PubMed]
[43] Hui, V.W.K., Szeto, S.K.H., Tang, F., Yang, D., Chen, H., Lai, T.Y.Y., et al. (2022) Optical Coherence Tomography Classification Systems for Diabetic Macular Edema and Their Associations with Visual Outcome and Treatment Responses—An Updated Review. Asia-Pacific Journal of Ophthalmology, 11, 247-257. [Google Scholar] [CrossRef] [PubMed]
[44] Ometto, G., Assheton, P., Calivá, F., Chudzik, P., Al-diri, B., Hunter, A., et al. (2017) Spatial Distribution of Early Red Lesions Is a Risk Factor for Development of Vision-Threatening Diabetic Retinopathy. Diabetologia, 60, 2361-2367. [Google Scholar] [CrossRef] [PubMed]
[45] Zhang, T., Xie, S., Sun, X., Duan, H., Li, Y. and Han, M. (2024) Optical Coherence Tomography Angiography for Microaneurysms in Anti-Vascular Endothelial Growth Factor Treated Diabetic Macular Edema. BMC Ophthalmology, 24, Article No. 400. [Google Scholar] [CrossRef] [PubMed]
[46] Stitt, A.W., Gardiner, T.A. and Archer, D.B. (1995) Histological and Ultrastructural Investigation of Retinal Microaneurysm Development in Diabetic Patients. British Journal of Ophthalmology, 79, 362-367. [Google Scholar] [CrossRef] [PubMed]
[47] Gao, M., Hormel, T.T., Guo, Y., Tsuboi, K., Flaxel, C.J., Huang, D., et al. (2024) Perfused and Nonperfused Microaneurysms Identified and Characterized by Structural and Angiographic Oct. Ophthalmology Retina, 8, 108-115. [Google Scholar] [CrossRef] [PubMed]
[48] Moore, J., Bagley, S., Ireland, G., Mcleod, D. and Boulton, M.E. (1999) Three Dimensional Analysis of Microaneurysms in the Human Diabetic Retina. Journal of Anatomy, 194, 89-100. [Google Scholar] [CrossRef] [PubMed]
[49] Borrelli, E., Sacconi, R., Brambati, M., Bandello, F. and Querques, G. (2019) In Vivo Rotational Three-Dimensional OCTA Analysis of Microaneurysms in the Human Diabetic Retina. Scientific Reports, 9, Article No. 16789. [Google Scholar] [CrossRef] [PubMed]
[50] Soliman, W., Sander, B., Hasler, P.W. and Larsen, M. (2008) Correlation between Intraretinal Changes in Diabetic Macular Oedema Seen in Fluorescein Angiography and Optical Coherence Tomography. Acta Ophthalmologica, 86, 34-39. [Google Scholar] [CrossRef] [PubMed]
[51] Fukuda, Y., Nakao, S., Kaizu, Y., Arima, M., Shimokawa, S., Wada, I., et al. (2022) Morphology and Fluorescein Leakage in Diabetic Retinal Microaneurysms: A Study Using Multiple En Face OCT Angiography Image Averaging. Graefes Archive for Clinical and Experimental Ophthalmology, 260, 3517-3523. [Google Scholar] [CrossRef] [PubMed]
[52] Takamura, Y., Yamada, Y., Noda, K., Morioka, M., Hashimoto, Y., Gozawa, M., et al. (2020) Characteristic Distribution of Microaneurysms and Capillary Dropouts in Diabetic Macular Edema. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 1625-1630. [Google Scholar] [CrossRef] [PubMed]
[53] Abdel-Kader, A.A., Ramsey, D.J., Yussuf, W.A., Mohalhal, A.A., Eldaly, M.A. and Elnahry, A.G. (2023) Diabetic Microaneurysms Detected by Fluorescein Angiography Spatially Correlate with Regions of Macular Ischemia Delineated by Optical Coherence Tomography Angiography. Indian Journal of Ophthalmology, 71, 3085-3090. [Google Scholar] [CrossRef] [PubMed]
[54] Santos, A.R., Mendes, L., Madeira, M.H., Marques, I.P., Tavares, D., Figueira, J., et al. (2021) Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy Is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study. Journal of Clinical Medicine, 10, Article 2142. [Google Scholar] [CrossRef] [PubMed]
[55] Marques, I.P., Madeira, M.H., Messias, A.L., Martinho, A.C.-., Santos, T., Sousa, D.C., et al. (2020) Different Retinopathy Phenotypes in Type 2 Diabetes Predict Retinopathy Progression. Acta Diabetologica, 58, 197-205. [Google Scholar] [CrossRef] [PubMed]
[56] Haritoglou, C., Kernt, M., Neubauer, A., Gerss, J., Oliveira, C.M., Kampik, A., et al. (2014) Microaneurysm Formation Rate as a Predictive Marker for Progression to Clinically Significant Macular Edema in Nonproliferative Diabetic Retinopathy. Retina, 34, 157-164. [Google Scholar] [CrossRef] [PubMed]
[57] Leicht, S.F., Kernt, M., Neubauer, A., Wolf, A., Oliveira, C.M., Ulbig, M., et al. (2014) Microaneurysm Turnover in Diabetic Retinopathy Assessed by Automated Retmarkerdr Image Analysis-Potential Role as Biomarker of Response to Ranibizumab Treatment. Ophthalmologica, 231, 198-203. [Google Scholar] [CrossRef] [PubMed]
[58] Takamura, Y., Yamada, Y., Morioka, M., Gozawa, M., Matsumura, T. and Inatani, M. (2023) Turnover of Microaneurysms after Intravitreal Injections of Faricimab for Diabetic Macular Edema. Investigative Opthalmology & Visual Science, 64, Article 31. [Google Scholar] [CrossRef] [PubMed]
[59] Yamada, Y., Takamura, Y., Morioka, M., Gozawa, M., Matsumura, T. and Inatani, M. (2020) Microaneurysm Density in Residual Oedema after Anti‐Vascular Endothelial Growth Factor Therapy for Diabetic Macular Oedema. Acta Ophthalmologica, 99, e876-e883. [Google Scholar] [CrossRef] [PubMed]
[60] Garg, I., Uwakwe, C., Le, R., Lu, E.S., Cui, Y., Wai, K.M., et al. (2022) Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmology Science, 2, Article ID: 100144. [Google Scholar] [CrossRef] [PubMed]
[61] Kim, K., In You, J., Park, J.R., Kim, E.S., Oh, W. and Yu, S. (2021) Quantification of Retinal Microvascular Parameters by Severity of Diabetic Retinopathy Using Wide-Field Swept-Source Optical Coherence Tomography Angiography. Graefes Archive for Clinical and Experimental Ophthalmology, 259, 2103-2111. [Google Scholar] [CrossRef] [PubMed]
[62] Mirshahi, R., Riazi-Esfahani, H., Khalili Pour, E., Fadakar, K., Yarmohamadi, P., Alemzadeh, S.A., et al. (2021) Differentiating Features of OCT Angiography in Diabetic Macular Edema. Scientific Reports, 11, Article No. 23398. [Google Scholar] [CrossRef] [PubMed]
[63] Fan, W., Nittala, M.G., Velaga, S.B., Hirano, T., Wykoff, C.C., Ip, M., et al. (2019) Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic Retinopathy (RECOVERY Study): Report 1. American Journal of Ophthalmology, 206, 154-160. [Google Scholar] [CrossRef] [PubMed]
[64] Eldaly, Z., Soliman, W., Sharaf, M. and Reyad, A.N. (2020) Morphological Characteristics of Normal Foveal Avascular Zone by Optical Coherence Tomography Angiography. Journal of Ophthalmology, 2020, Article ID: 8281459. [Google Scholar] [CrossRef] [PubMed]
[65] Krawitz, B.D., Mo, S., Geyman, L.S., Agemy, S.A., Scripsema, N.K., Garcia, P.M., et al. (2017) Acircularity Index and Axis Ratio of the Foveal Avascular Zone in Diabetic Eyes and Healthy Controls Measured by Optical Coherence Tomography Angiography. Vision Research, 139, 177-186. [Google Scholar] [CrossRef] [PubMed]
[66] Waheed, N.K., Rosen, R.B., Jia, Y., Munk, M.R., Huang, D., Fawzi, A., et al. (2023) Optical Coherence Tomography Angiography in Diabetic Retinopathy. Progress in Retinal and Eye Research, 97, Article ID: 101206. [Google Scholar] [CrossRef] [PubMed]
[67] Han, R., Gong, R., Liu, W. and Xu, G. (2022) Optical Coherence Tomography Angiography Metrics in Different Stages of Diabetic Macular Edema. Eye and Vision, 9, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
[68] Zhou, C., Zhou, Z., Feng, X., Zou, D., Zhou, Y., Zhang, B., et al. (2024) The Retinal Oxygen Metabolism and Hemodynamics as a Substitute for Biochemical Tests to Predict Nonproliferative Diabetic Retinopathy. Journal of Biophotonics, 17, e202300567. [Google Scholar] [CrossRef] [PubMed]
[69] Rahimi, M., Hossain, F., Leahy, S., Blair, N.P., Jiang, X. and Shahidi, M. (2024) Inner Retinal Oxygen Delivery and Metabolism in Progressive Stages of Diabetic Retinopathy. Scientific Reports, 14, Article No. 4414. [Google Scholar] [CrossRef] [PubMed]
[70] Abu El‐Asrar, A.M., Alsarhani, W.K., AlBloushi, A.F., Alzubaidi, A., Gikandi, P. and Stefánsson, E. (2025) Effect of Panretinal Photocoagulation on Retinal Oxygen Metabolism and Ocular Blood Flow in Diabetic Retinopathy. Acta Ophthalmologica, 103, 380-387. [Google Scholar] [CrossRef] [PubMed]