|
[1]
|
曾凡正, 邓乾春, 禹晓. 加工部位及提取工艺对沙棘油品质特性及主要脂质伴随物油相迁移的影响[J]. 中国油脂, 2020, 45(5): 93-99.
|
|
[2]
|
Shields, B.A., VanFosson, C.A., Pruskowski, K.A., Gurney, J.M., Rizzo, J.A. and Cancio, L.C. (2019) High-Carbohydrate vs High-Fat Nutrition for Burn Patients. Nutrition in Clinical Practice, 34, 688-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, H., Song, G., Ma, W., Guo, M., Ling, X., Yu, D., et al. (2023) Microencapsulation Protects the Biological Activity of Sea Buckthorn Seed Oil. Frontiers in Nutrition, 9, Article 1043879. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
黄俊恺. 沙棘籽油、果油品质特性及贮藏稳定性研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2024.
|
|
[5]
|
Zielińska, A. and Nowak, I. (2017) Abundance of Active Ingredients in Sea-Buckthorn Oil. Lipids in Health and Disease, 16, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Solà Marsiñach, M. and Cuenca, A.P. (2019) The Impact of Sea Buckthorn Oil Fatty Acids on Human Health. Lipids in Health and Disease, 18, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Abdullahzadeh, M. and Shafiee, S. (2021) To Compare the Effect of sea Buckthorn and Silver Sulfadiazine Dressing on Period of Wound Healing in Patients with Second-Degree Burns: A Randomized Triple-Blind Clinical Trial. Wound Repair and Regeneration, 29, 732-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Okamoto, T., Nakashima, F., Shibata, T. and Mori, D. (2024) Seabuckthorn (Hippophae rhamnoides, L.) Pulp Oil Prevents Ultraviolet-Induced Damage in Human Fibroblasts. Bioscience, Biotechnology, and Biochemistry, 88, 948-955. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bermúdez, M.A., Pereira, L., Fraile, C., Valerio, L., Balboa, M.A. and Balsinde, J. (2022) Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells, 11, Article 2146. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bueno-Hernández, N., Sixtos-Alonso, M.S., Milke García, M.D.P. and Yamamoto-Furusho, J.K. (2017) Effect of Cis-Palmitoleic Acid Supplementation on Inflammation and Expression of HNF4γ, HNF4α and IL6 in Patients with Ulcerative Colitis. Minerva Gastroenterology, 63, 257-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Santa-María, C., López-Enríquez, S., Montserrat-de la Paz, S., Geniz, I., Reyes-Quiroz, M.E., Moreno, M., et al. (2023) Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients, 15, Article 224. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, B., Zeng, M., Wang, Y., Li, M., Wu, Y., Xu, R., et al. (2022) Oleic Acid Alleviates LPS-Induced Acute Kidney Injury by Restraining Inflammation and Oxidative Stress via the Ras/MAPKs/PPAR-γ Signaling Pathway. Phytomedicine, 94, Artilce 153818. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Camell, C. and Smith, C.W. (2013) Dietary Oleic Acid Increases M2 Macrophages in the Mesenteric Adipose Tissue. PLOS ONE, 8, e75147. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, Y., Wang, Y., Wang, L. and Jiang, H. (2024) The Efficacy of Omega-3 Polyunsaturated Fatty Acids for Severe Burn Patients: A Systematic Review and Trial Sequential Meta-Analysis of Randomized Controlled Trials. Clinical Nutrition ESPEN, 59, 126-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Singer, P. and Shapiro, H. (2009) Enteral Omega-3 in Acute Respiratory Distress Syndrome. Current Opinion in Clinical Nutrition & Metabolic Care, 12, 123-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hou, D.D., Di, Z.H., Qi, R.Q., Wang, H.X., Zheng, S., et al. (2017) Sea Buckthorn (Hippophaë rhamnoides L.) Oil Improves Atopic Dermatitis-Like Skin Lesions via Inhibition of NF-κB and STAT1 Activation. Skin Pharmacology and Physiology, 30, 268-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tingö, L., Hutchinson, A.N., Bergh, C., Stiefvatter, L., Schweinlin, A., Jensen, M.G., et al. (2022) Potential Modulation of Inflammation by Probiotic and Omega-3 Supplementation in Elderly with Chronic Low-Grade Inflammation—A Randomized, Placebo-Controlled Trial. Nutrients, 14, Article 3998. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Calder, P.C. (2017) Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochemical Society Transactions, 45, 1105-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gutiérrez, S., Svahn, S.L. and Johansson, M.E. (2019) Effects of Omega-3 Fatty Acids on Immune Cells. International Journal of Molecular Sciences, 20, Article 5028. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
王毛毛, 张庆, 吴博文, 等. 脂质体凝胶负载油酸促进慢性烧伤创面的修复[J]. 中国组织工程研究, 2024, 28(22): 3524-3531.
|
|
[21]
|
Li, J., Guo, J., Yuen, M., Yuen, H. and Peng, Q. (2025) The Comparative Effects of ω-7 Fatty Acid-Rich Sea Buckthorn Oil and ω-3 Fatty Acid-Rich DHA Algal Oil on Improving High-Fat Diet-Induced Hyperlipidemia. Food & Function, 16, 1241-1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hussain, L., Rana, S., Abbas, G., Alshammari, A., Alasmari, A.F., Alharbi, M., et al. (2023) Pharmacological Potential of Hippophae rhamnoides L. Nano-Emulsion for Management of Polycystic Ovarian Syndrome in Animals’ Model: In Vitro and in Vivo Studies. ACS Omega, 8, 32977-32989. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Situmorang, J.H., Chen, M., Kuo, W., Lin, S., Shih, C., Lin, P., et al. (2023) 9-Pohsa Prevents NF-kB Activation and Ameliorates LPS-Induced Inflammation in Rat Hepatocytes. Lipids, 58, 241-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gęgotek, A., Jastrząb, A., Jarocka-Karpowicz, I., Muszyńska, M. and Skrzydlewska, E. (2018) The Effect of Sea Buckthorn (Hippophae Rhamnoides L.) Seed Oil on UV-Induced Changes in Lipid Metabolism of Human Skin Cells. Antioxidants, 7, Article 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Dudau, M., Codrici, E., Tarcomnicu, I., Mihai, S., Popescu, I.D., Albulescu, L., et al. (2021) A Fatty Acid Fraction Purified from Sea Buckthorn Seed Oil Has Regenerative Properties on Normal Skin Cells. Frontiers in Pharmacology, 12, Article 737571. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Guo, W., Qiu, W., Ao, X., Li, W., He, X., Ao, L., et al. (2020) Low‐Concentration DMSO Accelerates Skin Wound Healing by Akt/mTOR‐Mediated Cell Proliferation and Migration in Diabetic Mice. British Journal of Pharmacology, 177, 3327-3341. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mi, X.J., Le, H.M., Lee, S., Park, H.R. and Kim, Y.J. (2022) Silymarin-Functionalized Selenium Nanoparticles Prevent LPS-Induced Inflammatory Response in RAW264.7 Cells through Downregulation of the PI3K/Akt/NF-κB Pathway. ACS Omega, 7, 42723-42732. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Proksch, E., Brandner, J.M. and Jensen, J. (2008) The Skin: An Indispensable Barrier. Experimental Dermatology, 17, 1063-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Alipoor, E., Jazayeri, S., Dahmardehei, M., Salehi, S., Yaseri, M., Emami, M.R., et al. (2023) Effect of a Collagen-Enriched Beverage with or without Omega-3 Fatty Acids on Wound Healing, Metabolic Biomarkers, and Adipokines in Patients with Major Burns. Clinical Nutrition, 42, 298-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tihista, S. and Echavarría, E. (2018) Effect of Omega 3 Polyunsaturated Fatty Acids Derived from Fish Oil in Major Burn Patients: A Prospective Randomized Controlled Pilot Trial. Clinical Nutrition, 37, 107-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
李勋, 李德胜, 陈杰. ω-3多不饱和脂肪酸对慢性难愈性创面大鼠创面愈合的影响[J]. 医学分子生物学杂志, 2025, 22(3): 283-289.
|
|
[32]
|
Hokynková, A., Nováková, M., Babula, P., Sedláčková, M., Paulová, H., Hlaváčová, M., et al. (2022) Fatty Acid Supplementation Affects Skin Wound Healing in a Rat Model. Nutrients, 14, Article 2245. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
武胡雯, 邓晗彬, 周涵, 等. 水凝胶敷料减轻烧伤创面瘢痕的研究进展[J]. 海南医学院学报, 2024, 30(13): 1027-1034.
|
|
[34]
|
狄海波, 侯世科. 烧伤后瘢痕的非手术治疗研究进展[J]. 实用皮肤病学杂志, 2021, 14(4): 229-233.
|
|
[35]
|
Ishak, W.M.W., Katas, H., Yuen, N.P., Abdullah, M.A. and Zulfakar, M.H. (2018) Topical Application of Omega-3-, Omega-6-, and Omega-9-Rich Oil Emulsions for Cutaneous Wound Healing in Rats. Drug Delivery and Translational Research, 9, 418-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, J.X., Li, S.Y., Chen, M.L. and He, L.R. (2022) The Role of Altered Fatty Acid in Pathological Scars and Their Dermal Fibroblasts. Chinese Journal of Traumatology, 25, 218-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Pashkevich, N.I., Vilyanen, D.V., Marcinkevich, A.F., Borisova-Mubarakshina, M.M. and Osochuk, S.S. (2024) The Effect of Liposomes of Various Compositions on the Skin and Its Derivatives after II-IIIA Degree Thermal Burns. Acta Naturae, 16, 67-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Niimi, Y., Pérez-Bello, D., Ihara, K., Fukuda, S., Jacob, S., Andersen, C.R., et al. (2021) Omega-7 Oil Increases Telomerase Activity and Accelerates Healing of Grafted Burn and Donor Site Wounds. Scientific Reports, 11, Article No. 975. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Louw, L. and Dannhauser, A. (2000) Keloids in Rural Black South Africans Part 2: Dietary Fatty Acid Intake and Total Phospholipid Fatty Acid Profile in the Blood of Keloid Patients. Prostaglandins, Leukotrienes and Essential Fatty Acids, 63, 247-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
吴小花, 张慧仙, 黄亚川, 等. 沙棘油治疗口服中毒致上消化道烧伤疗效观察[J]. 陕西医学杂志, 2017, 46(2): 257-258.
|
|
[41]
|
Yao, Q., Jia, T., Qiao, W., Gu, H. and Kaku, K. (2021) Unsaturated Fatty Acid-Enriched Extract from Hippophae rhamnoides Seed Reduces Skin Dryness through Up‐Regulating Aquaporins 3 and Hyaluronan Synthetases 2 Expressions. Journal of Cosmetic Dermatology, 20, 321-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yue, X.F., Shang, X., Zhang, Z.J. and Zhang, Y.N. (2017) Phytochemical Composition and Antibacterial Activity of the Essential Oils from Different Parts of Sea Buckthorn (Hippophae rhamnoides L.). Journal of Food and Drug Analysis, 25, 327-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, Y., Mai, Q., Chen, Z., Lin, T., Cai, Y., Han, J., et al. (2023) Dietary Palmitoleic Acid Reprograms Gut Microbiota and Improves Biological Therapy against Colitis. Gut Microbes, 15, Article 2211501. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kumar, P., Lee, J., Beyenal, H. and Lee, J. (2020) Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology, 28, 753-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, R., Rupa, E.J., Zheng, S., Nahar, J., Yang, D.C., Kang, S.C., et al. (2021) Panos-Fermented Extract-Mediated Nanoemulsion: Preparation, Characterization, and in Vitro Anti-Inflammatory Effects on RAW 264.7 Cells. Molecules, 27, Article 218. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gore, D.D., Sharma, N., Mishra, N., Parmar, P.K., Ranjana, S., Kumar, D., et al. (2024) Wound-Healing Effect of Topical Nanoemulsion-Loaded Cream and Gel Formulations of Hippophae rhamnoides L. (Sea Buckthorn) Fruit Oil and Their Acute Dermal Toxicity Study on Female SD Rats. Indian Journal of Pharmacology, 56, 120-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kawahara, T., Takita, M., Masunaga, A., Morita, H., Tsukatani, T., Nakazawa, K., et al. (2019) Fatty Acid Potassium Had Beneficial Bactericidal Effects and Removed Staphylococcus Aureus Biofilms While Exhibiting Reduced Cytotoxicity towards Mouse Fibroblasts and Human Keratinocytes. International Journal of Molecular Sciences, 20, Article 312. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Priyadarshi, A., Keshri, G.K. and Gupta, A. (2023) Dual-NIR Wavelength (Pulsed 810 nm and Superpulsed 904 nm Lasers) Photobiomodulation Therapy Synergistically Augments Full-Thickness Burn Wound Healing: A Non-Invasive Approach. Journal of Photochemistry and Photobiology B: Biology, 246, Article 112761. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Slabu, A.I., Miu, L., Ghibu, E., Stavarache, C.E., Stan, R. and Teodorescu, F. (2023) Bioconjugation of Vegetable Oils with UV Absorbers: New Approach in Skin Photoprotection. Molecules, 28, Article 7550. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bergmann, C.B., McReynolds, C.B., Wan, D., Singh, N., Goetzman, H., Caldwell, C.C., et al. (2022) sEH-Derived Metabolites of Linoleic Acid Drive Pathologic Inflammation While Impairing Key Innate Immune Cell Function in Burn Injury. Proceedings of the National Academy of Sciences, 119, e2120691119. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
袁江玲, 徐晓辉, 杜勇, 等. 沙棘果油的遗传毒性及致畸作用动物实验研究[J]. 中国预防医学杂志, 2020, 21(5): 540-543.
|
|
[52]
|
张志刚, 姚玉军, 顾翔宇, 等. 植物油中塑化剂、苯并芘来源及沙棘籽油风险减控方法[J]. 中国油脂, 2021, 46(10): 88-91+115.
|
|
[53]
|
Dong, K., Binosha Fernando, W.M.A.D., Durham, R., Stockmann, R. and Jayasena, V. (2021) Nutritional Value, Health-Promoting Benefits and Food Application of Sea Buckthorn. Food Reviews International, 39, 2122-2137. [Google Scholar] [CrossRef]
|
|
[54]
|
郑玉霞. 超临界CO<, 2>萃取沙棘籽油的成分及其用作化妆品原料的安全性分析[D]: [硕士学位论文]. 无锡: 江南大学, 2007
|
|
[55]
|
刘美静, 魏晓博, 余君伟, 等. 沙棘籽油的超临界CO2提取及抗氧化活性研究[J]. 中国粮油学报, 2025, 40(1): 156-161.
|
|
[56]
|
孔令辉, 陈济民, 姚崇舜, 等. 沙棘油中α-LNA在大鼠体内的药动学[J]. 中国药学杂志, 2001(9): 36-39.
|
|
[57]
|
丁健, 阮成江, 杨红, 等. 基于UPLC-MS技术分析沙棘果肉成熟过程中生物活性成分差异[J]. 食品科学, 2023, 44(22): 276-286.
|
|
[58]
|
Chen, A., Gong, M., Chi, J., Wang, Z. and Dai, L. (2024) Exploring the Potential Mechanisms of the Ethyl Acetate Fraction of Hippophae rhamnoides L. Seeds as a Natural Healing Agent for Wound Repair. Journal of Ethnopharmacology, 335, Article 118688. [Google Scholar] [CrossRef] [PubMed]
|