|
[1]
|
Penny, S.M. (2020) Ovarian Cancer: An Overview. Radiologic Technology, 91, 561-575.
|
|
[2]
|
Stewart, C., Ralyea, C. and Lockwood, S. (2019) Ovarian Cancer: An Integrated Review. Seminars in Oncology Nursing, 35, 151-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Konstantinopoulos, P.A. and Matulonis, U.A. (2023) Clinical and Translational Advances in Ovarian Cancer Therapy. Nature Cancer, 4, 1239-1257. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
韩明轩, 牟一凡, 马宇婷, 等. 中医药调控肿瘤相关巨噬细胞干预卵巢癌的研究进展[J]. 中医药学报, 2025, 53(3): 118-124.
|
|
[5]
|
陈中元, 闫瑶, 孙继树, 等. 丹皮酚抗动脉粥样硬化的药理作用研究进展[J]. 现代药物与临床, 2025, 40(8): 2134-2140.
|
|
[6]
|
赵桢, 徐佳越, 刘少璇, 等. 黄酮类中药单体对卵巢癌信号通路调控作用的研究进展[J]. 中国实验方剂学杂志, 2022, 28(19): 222-230.
|
|
[7]
|
周炜根, 徐建勤, 袁军, 等. 细胞周期蛋白D1和热休克转录因子1在卵巢高级别浆液性癌患者癌组织中的表达及与临床病理特征的关系[J]. 中国妇幼保健, 2025, 40(17): 3258-3262.
|
|
[8]
|
张亮, 杨波, 肖婷, 等. 丹皮酚通通过EZH2/NXPH4/CDKN2A轴抑制肺癌A549细胞的增殖、迁移和侵袭能力[J]. 中国肿瘤生物治疗杂志, 2025, 32(8): 814-822.
|
|
[9]
|
Li, N., Fan, L.L., Sun, G.P., et al. (2010) Paeonol Inhibits Tumor Growth in Gastric Cancer in Vitro and in Vivo. World Journal of Gastroenterology, 16, 4483-4490. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
汤融, 庞芙蓉, 赵娇, 等. 中药单体调控Wnt/β-Catenin信号通路干预卵巢癌研究进展[J]. 现代中医药, 2024, 44(4): 7-12.
|
|
[12]
|
Luo, Z., Wang, Q., Lau, W.B., Lau, B., Xu, L., Zhao, L., et al. (2016) Tumor Microenvironment: The Culprit for Ovarian Cancer Metastasis? Cancer Letters, 377, 174-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Carey, P., Low, E., Harper, E. and Stack, M.S. (2021) Metalloproteinases in Ovarian Cancer. International Journal of Molecular Sciences, 22, Article 3403. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Behm, C., Nemec, M., Weissinger, F., Rausch, M.A., Andrukhov, O. and Jonke, E. (2021) MMPs and Timps Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of in Vitro and in Vivo Studies. International Journal of Molecular Sciences, 22, Article 6967. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Goldman, S. and Shalev, E. (2004) MMPS and TIMPS in Ovarian Physiology and Pathophysiology. Frontiers in Bioscience: A Journal and Virtual Library, 9, 2474-2483.
|
|
[16]
|
Lv, J., Zhu, S., Chen, H., Xu, Y., Su, Q., Yu, G., et al. (2021) Paeonol Inhibits Human Lung Cancer Cell Viability and Metastasis in Vitro via miR-126-5p/ZEB2 Axis. Drug Development Research, 83, 432-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lyu, Z., Li, C., Jin, Y., Liu, Y., Zhang, X., Zhang, F., et al. (2017) Paeonol Exerts Potential Activities to Inhibit the Growth, Migration and Invasion of Human Gastric Cancer BGC823 Cells via Downregulating MMP-2 and MMP-9. Molecular Medicine Reports, 16, 7513-7519. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, X.M., Jia, C.L. and Zhu, Z.Y. (2023) Paeonol Impacts Ovarian Cancer Cell Proliferation, Migration, Invasion and Apoptosis via Modulating the Transforming Growth Factor Beta/SMAD3 Signaling Pathway. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 74.
|
|
[19]
|
Pistritto, G., Trisciuoglio, D., Ceci, C., et al. (2016) Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging, 8, 603-619.
|
|
[20]
|
Yin, J., Wu, N., Zeng, F., Cheng, C., Kang, K. and Yang, H. (2013) Paeonol Induces Apoptosis in Human Ovarian Cancer Cells. Acta Histochemica, 115, 835-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, H., Sun, Q. and Cheng, Y. (2017) Paeonol Enhances the Sensitivity of Human Ovarian Cancer Cells to Radiotherapy-Induced Apoptosis Due to Downregulation of the Phosphatidylinositol-3-Kinase/Akt/Phosphatase and Tensin Homolog Pathway and Inhibition of Vascular Endothelial Growth Factor. Experimental and Therapeutic Medicine, 14, 3213-3220. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gao, L., Wang, Z., Lu, D., Huang, J., Liu, J. and Hong, L. (2019) Paeonol Induces Cytoprotective Autophagy via Blocking the Akt/mTOR Pathway in Ovarian Cancer Cells. Cell Death & Disease, 10, Article No. 609. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, S., Yao, S., Yang, H., Liu, S. and Wang, Y. (2023) Autophagy: Regulator of Cell Death. Cell Death & Disease, 14, Article No. 648. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yang, J., Wang, H., Li, B., Liu, J., Zhang, X., Wang, Y., et al. (2025) Inhibition of ACSS2 Triggers Glycolysis Inhibition and Nuclear Translocation to Activate SIRT1/ATG5/ATG2B Deacetylation Axis, Promoting Autophagy and Reducing Malignancy and Chemoresistance in Ovarian Cancer. Metabolism, 162, Article 156041. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
刘霞, 王亚军, 周航. 靶向肿瘤相关巨噬细胞治疗卵巢癌的研究进展[J]. 肿瘤学杂志, 2023, 29(7): 564-572.
|
|
[26]
|
Barnes, P., Agbo, E., Halm-Lai, F., Dankwa, K., Saahene, R.O., Nuvor, S.V., et al. (2025) Insight into the Immunomodulatory and Chemotherapeutic Mechanisms of Paeonol (Review). Medicine International, 5, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
张全华, 管文莉, 秦海霞. 尼拉帕利辅助化疗对中晚期卵巢癌患者近期疗效及生存期的影响[J]. 中国合理用药探索, 2025, 22(8): 33-38.
|
|
[28]
|
Yap, T.A., Fontana, E., Lee, E.K., Spigel, D.R., Højgaard, M., Lheureux, S., et al. (2023) Camonsertib in DNA Damage Response-Deficient Advanced Solid Tumors: Phase 1 Trial Results. Nature Medicine, 29, 1400-1411. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Liu, J., Wang, H., Wan, H., Yang, J., Gao, L., Wang, Z., et al. (2024) NEK6 Dampens FOXO3 Nuclear Translocation to Stabilize C-MYC and Promotes Subsequent De Novo Purine Synthesis to Support Ovarian Cancer Chemoresistance. Cell Death & Disease, 15, Article No. 661. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
韩立, 郭晓娟, 陈重, 等. 丹皮酚逆转卵巢癌SKOV3/DDP细胞多药耐药性的机制[J]. 药学学报, 2018, 53(9): 1511-1517.
|
|
[31]
|
牛琴, 钮红丽, 翟俊英, 等. 丹皮酚通过内质网应激和线粒体损伤途径促进卵巢癌细胞凋亡[J]. 广州中医药大学学报, 2020, 37(10): 1991-1998.
|
|
[32]
|
Thabassum Akhtar Iqbal, S., Tirupathi Pichiah, P.B., Raja, S. and Arunachalam, S. (2019) Paeonol Reverses Adriamycin Induced Cardiac Pathological Remodeling through Notch1 Signaling Reactivation in H9C2 Cells and Adult Zebrafish Heart. Chemical Research in Toxicology, 33, 312-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ding, M., Shi, R., Fu, F., Li, M., De, D., Du, Y., et al. (2023) Paeonol Protects against Doxorubicin-Induced Cardiotoxicity by Promoting Mfn2-Mediated Mitochondrial Fusion through Activating the Pkcε-Stat3 Pathway. Journal of Advanced Research, 47, 151-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wu, J., Sun, C., Wang, R., Li, J., Zhou, M., Yan, M., et al. (2018) Cardioprotective Effect of Paeonol against Epirubicin-Induced Heart Injury via Regulating miR-1 and PI3K/AKT Pathway. Chemico-Biological Interactions, 286, 17-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jing, X., Han, J., Zhang, J., Chen, Y., Yuan, J., Wang, J., et al. (2021) Long Non-Coding RNA MEG3 Promotes Cisplatin-Induced Nephrotoxicity through Regulating AKT/TSC/mTOR-Mediated Autophagy. International Journal of Biological Sciences, 17, 3968-3980. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wu, J., Xue, X., Zhang, B., et al. (2016) The Protective Effects of Paeonol against Epirubicin-Induced Hepatotoxicity in 4t1-Tumor Bearing Mice via Inhibition of the PI3K/Akt/NF-kB Pathway. Chemico-Biological Interactions, 244, 1-8.
|