|
[1]
|
Li, M., Chen, S., Li, Y., Chen, Y., Cheng, Y., Hu, D., et al. (2013) Prevalence of Unruptured Cerebral Aneurysms in Chinese Adults Aged 35 to 75 Years: A Cross-Sectional Study. Annals of Internal Medicine, 159, 514-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Greving, J.P., Wermer, M.J.H., Brown, R.D., Morita, A., Juvela, S., Yonekura, M., et al. (2014) Development of the PHASES Score for Prediction of Risk of Rupture of Intracranial Aneurysms: A Pooled Analysis of Six Prospective Cohort Studies. The Lancet Neurology, 13, 59-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Neifert, S.N., Chapman, E.K., Martini, M.L., Shuman, W.H., Schupper, A.J., Oermann, E.K., et al. (2020) Aneurysmal Subarachnoid Hemorrhage: The Last Decade. Translational Stroke Research, 12, 428-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pontes, F.G.d.B., da Silva, E.M., Baptista-Silva, J.C. and Vasconcelos, V. (2021) Treatments for Unruptured Intracranial Aneurysms. Cochrane Database of Systematic Reviews, 2021, Cd013312. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kandregula, S., Savardekar, A.R., Terrell, D., Adeeb, N., Whipple, S., Beyl, R., et al. (2023) Microsurgical Clipping and Endovascular Management of Unruptured Anterior Circulation Aneurysms: How Age, Frailty, and Comorbidity Indexes Influence Outcomes. Journal of Neurosurgery, 138, 922-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lambin, P., Leijenaar, R.T.H., Deist, T.M., Peerlings, J., de Jong, E.E.C., van Timmeren, J., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nature Reviews Clinical Oncology, 14, 749-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Houman, S., Hossein, S.A., et al. (2021) Emerging Applications of Radiomics in Neurological Disorders: A Review. Cureus, 13, e20080-e.
|
|
[11]
|
Cao, X., Zeng, Y., Wang, J., Cao, Y., Wu, Y. and Xia, W. (2022) Differentiation of Cerebral Dissecting Aneurysm from Hemorrhagic Saccular Aneurysm by Machine-Learning Based on Vessel Wall MRI: A Multicenter Study. Journal of Clinical Medicine, 11, Article No. 3623. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kong, D., Li, J., Lv, Y., Wang, M., Li, S., Qian, B., et al. (2023) Radiomics Nomogram Model Based on TOF-MRA Images: A New Effective Method for Predicting Microaneurysms. International Journal of General Medicine, 16, 1091-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Podgorsak, A.R., Rava, R.A., Shiraz Bhurwani, M.M., Chandra, A.R., Davies, J.M., Siddiqui, A.H., et al. (2019) Automatic Radiomic Feature Extraction Using Deep Learning for Angiographic Parametric Imaging of Intracranial Aneurysms. Journal of NeuroInterventional Surgery, 12, 417-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, K., Gu, D., Qi, P., Cao, X., Wu, D., Chen, L., et al. (2022) Evaluation of an Automated Intracranial Aneurysm Detection and Rupture Analysis Approach Using Cascade Detection and Classification Networks. Computerized Medical Imaging and Graphics, 102, Article ID: 102126. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Feng, J., Zeng, R., Geng, Y., Chen, Q., Zheng, Q., Yu, F., et al. (2023) Automatic Differentiation of Ruptured and Unruptured Intracranial Aneurysms on Computed Tomography Angiography Based on Deep Learning and Radiomics. Insights into Imaging, 14, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Neulen, A., Pantel, T., König, J., Brockmann, M.A., Ringel, F. and Kantelhardt, S.R. (2021) Comparison of Unruptured Intracranial Aneurysm Treatment Score and PHASES Score in Subarachnoid Hemorrhage Patients with Multiple Intracranial Aneurysms. Frontiers in Neurology, 12, Article ID: 616497. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, Q., Jiang, P., Jiang, Y., Li, S., Ge, H., Jin, H., et al. (2019) Bifurcation Configuration Is an Independent Risk Factor for Aneurysm Rupture Irrespective of Location. Frontiers in Neurology, 10, Article No. 844. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, Q., Jiang, P., Jiang, Y., Ge, H., Li, S., Jin, H., et al. (2019) Prediction of Aneurysm Stability Using a Machine Learning Model Based on Pyradiomics-Derived Morphological Features. Stroke, 50, 2314-2321. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tong, X., Feng, X., Peng, F., Niu, H., Zhang, B., Yuan, F., et al. (2021) Morphology-Based Radiomics Signature: A Novel Determinant to Identify Multiple Intracranial Aneurysms Rupture. Aging, 13, 13195-13210. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jia, X., Chen, Y., Zheng, K., Zhu, D., Chen, C., Liu, J., et al. (2024) Clinical-Radiomics Nomogram Model Based on CT Angiography for Prediction of Intracranial Aneurysm Rupture: A Multicenter Study. Journal of Multidisciplinary Healthcare, 17, 5917-5926. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Korja, M., Kivisaari, R., Rezai Jahromi, B. and Lehto, H. (2017) Size and Location of Ruptured Intracranial Aneurysms: Consecutive Series of 1993 Hospital-Admitted Patients. Journal of Neurosurgery, 127, 748-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
陈鹏飞, 范文辉, 梁奕, 等. 基于CTA影像组学特征的前交通动脉瘤破裂的预测模型的构建及验证[J]. 中国临床神经外科杂志, 2024, 29(7): 385-390.
|
|
[23]
|
杨净松, 赵卫, 黄建强. 基底动脉尖区动脉瘤合并基底动脉尖综合征介入术相关性分析及治疗进展[J]. 介入放射学杂志, 2018, 27(8): 801-805.
|
|
[24]
|
刘松, 田超, 任涛, 等. CT血管造影影像组学评估基底动脉尖动脉瘤破裂风险[J]. 中国医学影像技术, 2025, 41(1): 20-24.
|
|
[25]
|
Maupu, C., Lebas, H. and Boulaftali, Y. (2022) Imaging Modalities for Intracranial Aneurysm: More than Meets the Eye. Frontiers in Cardiovascular Medicine, 9, Article ID: 793072. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Larsen, N., von der Brelie, C., Trick, D., Riedel, C.H., Lindner, T., Madjidyar, J., et al. (2018) Vessel Wall Enhancement in Unruptured Intracranial Aneurysms: An Indicator for Higher Risk of Rupture? High-Resolution MR Imaging and Correlated Histologic Findings. American Journal of Neuroradiology, 39, 1617-1621. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gaidzik, F., Pravdivtseva, M., Larsen, N., Jansen, O., Hövener, J. and Berg, P. (2021) Luminal Enhancement in Intracranial Aneurysms: Fact or Feature?—A Quantitative Multimodal Flow Analysis. International Journal of Computer Assisted Radiology and Surgery, 16, 1999-2008. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Veeturi, S.S., Saleem, A., Ojeda, D.J., Sagues, E., Sanchez, S., Gudino, A., et al. (2024) Radiomics-Based Predictive Nomogram for Assessing the Risk of Intracranial Aneurysms. Translational Stroke Research, 16, 79-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wermer, M.J.H., van der Schaaf, I.C., Algra, A. and Rinkel, G.J.E. (2007) Risk of Rupture of Unruptured Intracranial Aneurysms in Relation to Patient and Aneurysm Characteristics: An Updated Meta-Analysis. Stroke, 38, 1404-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yuan, W., Jiang, S., Wang, Z., Yan, C., Jiang, Y., Guo, D., et al. (2025) High-Resolution Vessel Wall Imaging-Driven Radiomic Analysis for the Precision Prediction of Intracranial Aneurysm Rupture Risk: A Promising Approach. Frontiers in Neuroscience, 19, Article ID: 1581373. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xie, Y., Liu, S., Lin, H., Wu, M., Shi, F., Pan, F., et al. (2023) Automatic Risk Prediction of Intracranial Aneurysm on CTA Image with Convolutional Neural Networks and Radiomics Analysis. Frontiers in Neurology, 14, Article ID: 1126949. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Turhon, M., Li, M., Kang, H., Huang, J., Zhang, F., Zhang, Y., et al. (2023) Development and Validation of a Deep Learning Model for Prediction of Intracranial Aneurysm Rupture Risk Based on Multi-Omics Factor. European Radiology, 33, 6759-6770. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, T., Li, W., Zhou, Y., Zhong, W. and Zhou, Z. (2024) Can the Radiomics Features of Intracranial Aneurysms Predict the Prognosis of Aneurysmal Subarachnoid Hemorrhage? Frontiers in Neuroscience, 18, Article ID: 1446784. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shan, D., Wang, J., Qi, P., Lu, J. and Wang, D. (2023) Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Bioengineering, 10, Article No. 967. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Peng, Y., Wang, Y., Wen, Z., Xiang, H., Guo, L., Su, L., et al. (2024) Deep Learning and Machine Learning Predictive Models for Neurological Function after Interventional Embolization of Intracranial Aneurysms. Frontiers in Neurology, 15, Article ID: 1321923. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Vergouwen, M.D.I., Vermeulen, M., van Gijn, J., Rinkel, G.J.E., Wijdicks, E.F., Muizelaar, J.P., et al. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group. Stroke, 41, 2391-2395. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Galea, J.P., Dulhanty, L. and Patel, H.C. (2017) Predictors of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients: Observations from a Multicenter Data Set. Stroke, 48, 2958-2963. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, L., Wang, X., Wang, S., Zhao, X., Yan, Y., Yuan, M., et al. (2025) Development of a Non-Contrast CT-Based Radiomics Nomogram for Early Prediction of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. BMC Medical Imaging, 25, Article No. 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Aravind, G., Mayank, G., Alexis, W.T., et al. (2022) Association of Iatrogenic Infarcts with Clinical and Cognitive Out-comes in the Evaluating Neuroprotection in Aneurysm Coiling Therapy Trial. Neurology, 98, e1446-e1458.
|
|
[40]
|
Park, J.C., Lee, D.H., Kim, J.K., Ahn, J.S., Kwun, B.D., Kim, D.Y., et al. (2016) Microembolism after Endovascular Coiling of Unruptured Cerebral Aneurysms: Incidence and Risk Factors. Journal of Neurosurgery, 124, 777-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lee, E., Kang, D. and Warach, S. (2016) Silent New Brain Lesions: Innocent Bystander or Guilty Party? Journal of Stroke, 18, 38-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sangha, R.S., Caprio, F.Z., Askew, R., Corado, C., Bernstein, R., Curran, Y., et al. (2015) Quality of Life in Patients with TIA and Minor Ischemic Stroke. Neurology, 85, 1957-1963. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, R., Lu, Y., Tian, Z., Chen, J., Li, W., Wang, C., et al. (2025) Dwi-Based Deep Learning Radiomics Nomogram for Predicting the Impaired Quality of Life in Patients with Unruptured Intracranial Aneurysm Developing New Iatrogenic Cerebral Infarcts Following Stent Placement: A Multicenter Cohort Study. Neurosurgical Review, 48, Article No. 508. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kang, H., Zhou, Y., Luo, B., Lv, N., Zhang, H., Li, T., et al. (2021) Pipeline Embolization Device for Intracranial Aneurysms in a Large Chinese Cohort: Complication Risk Factor Analysis. Neurotherapeutics, 18, 1198-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ma, C., Liang, S., Liang, F., Lu, L., Zhu, H., Lv, X., et al. (2024) Predicting Postinterventional Rupture of Intracranial Aneurysms Using Arteriography-Derived Radiomic Features after Pipeline Embolization. Frontiers in Neurology, 15, Article ID: 1327127. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wang, H., Xu, H., Fan, J., Liu, J., Li, L., Kong, Z., et al. (2024) Predictive Value of Radiomics for Intracranial Aneurysm Rupture: A Systematic Review and Meta-Analysis. Frontiers in Neuroscience, 18, Article ID: 1474780. [Google Scholar] [CrossRef] [PubMed]
|