|
[1]
|
American Diabetes Association (2011) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, S62-S69. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., et al. (2020) Prevalence of Diabetes Recorded in Mainland of China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, m997. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
全国糖尿病研究协作组调查研究组. 全国14省市30万人口中糖尿病调查报告[J]. 中华内科杂志, 1981, 20(11): 678-683.
|
|
[4]
|
Hotamisligil, G.S. (2006) Inflammation and Metabolic Disorders. Nature, 444, 860-867. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. and Paquot, N. (2014) Inflammation as a Link between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Research and Clinical Practice, 105, 141-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, M., Ye, X., He, X. and Ouyang, D. (2021) The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation, 44, 1229-1245. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lu, A. and Wu, H. (2014) Structural Mechanisms of Inflammasome Assembly. The FEBS Journal, 282, 435-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hu, Z. and Chai, J. (2016) Structural Mechanisms in NLR Inflammasome Assembly and Signaling. In: Backert, S., Ed., Inflammasome Signaling and Bacterial Infections, Springer International Publishing, 23-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Akther, M., Haque, M.E., Park, J., Kang, T. and Lee, K. (2021) NLRP3 Ubiquitination—A New Approach to Target NLRP3 Inflammasome Activation. International Journal of Molecular Sciences, 22, Article No. 8780. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lu, A., Magupalli, V.G., Ruan, J., Yin, Q., Atianand, M.K., Vos, M.R., et al. (2014) Unified Polymerization Mechanism for the Assembly of Asc-Dependent Inflammasomes. Cell, 156, 1193-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yang, M., Wang, X., Han, Y., Li, C., Wei, L., Yang, J., et al. (2021) Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 28, 8810-8824. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Shao, B., Wang, S., Pan, P., Yao, J., Wu, K., Li, Z., et al. (2019) Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting Out the Fire of Inflammation. Inflammation, 42, 1147-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Voet, S., Srinivasan, S., Lamkanfi, M. and van Loo, G. (2019) Inflammasomes in Neuroinflammatory and Neurodegenerative Diseases. EMBO Molecular Medicine, 11, e10248. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Heneka, M.T., McManus, R.M. and Latz, E. (2018) Inflammasome Signalling in Brain Function and Neurodegenerative Disease. Nature Reviews Neuroscience, 19, 610-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Purvis, G.S.D., Collino, M., Aranda‐Tavio, H., Chiazza, F., O’Riordan, C.E., Zeboudj, L., et al. (2020) Inhibition of Bruton’s TK Regulates Macrophage NF‐κB and NLRP3 Inflammasome Activation in Metabolic Inflammation. British Journal of Pharmacology, 177, 4416-4432. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liston, A. and Masters, S.L. (2017) Homeostasis-Altering Molecular Processes as Mechanisms of Inflammasome Activation. Nature Reviews Immunology, 17, 208-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, Article No. 688. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Silke, J. and Vince, J. (2016) IAPs and Cell Death. In: Nagata, S. and Nakano, H., Eds., Apoptotic and Non-Apoptotic Cell Death, Springer International Publishing, 95-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
He, Y., Hara, H. and Núñez, G. (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41, 1012-1021. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Martinon, F., Agostini, L., Meylan, E. and Tschopp, J. (2004) Identification of Bacterial Muramyl Dipeptide as Activator of the NALP3/Cryopyrin Inflammasome. Current Biology, 14, 1929-1934. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kanneganti, T., Özören, N., Body-Malapel, M., Amer, A., Park, J., Franchi, L., et al. (2006) Bacterial RNA and Small Antiviral Compounds Activate Caspase-1 through Cryopyrin/Nalp3. Nature, 440, 233-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Samra, Y.A., Said, H.S., Elsherbiny, N.M., Liou, G.I., El-Shishtawy, M.M. and Eissa, L.A. (2016) Cepharanthine and Piperine Ameliorate Diabetic Nephropathy in Rats: Role of NF-κB and NLRP3 Inflammasome. Life Sciences, 157, 187-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tang, Y., Wa, Q., Peng, L., Zheng, Y., Chen, J., Chen, X., et al. (2022) Salvianolic Acid B Suppresses ER Stress‐Induced NLRP3 Inflammasome and Pyroptosis via the AMPK/FoxO4 and Syndecan‐4/Rac1 Signaling Pathways in Human Endothelial Progenitor Cells. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8332825. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xing, J., Li, R., Gao, Y., Wang, M., Liu, Y., Hong, J., et al. (2019) NLRP3 Inflammasome Mediate Palmitate-Induced Endothelial Dysfunction. Life Sciences, 239, Article ID: 116882. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Parzych, K.R. and Klionsky, D.J. (2014) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Khalid, M., Alkaabi, J., Khan, M.A.B. and Adem, A. (2021) Insulin Signal Transduction Perturbations in Insulin Resistance. International Journal of Molecular Sciences, 22, Article No. 8590. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
郭晓蕙, 姚军. 炎症与2型糖尿病[J]. 国外医学内分泌学分册, 2004(4): 293-295+304.
|
|
[29]
|
Rheinheimer, J., de Souza, B.M., Cardoso, N.S., Bauer, A.C. and Crispim, D. (2017) Current Role of the NLRP3 Inflammasome on Obesity and Insulin Resistance: A Systematic Review. Metabolism, 74, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yaribeygi, H., Mohammadi, M.T., Rezaee, R. and Sahebkar, A. (2018) Fenofibrate Improves Renal Function by Amelioration of NOX‐4, IL‐18, and P53 Expression in an Experimental Model of Diabetic Nephropathy. Journal of Cellular Biochemistry, 119, 7458-7469. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Olefsky, J.M. and Glass, C.K. (2010) Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 72, 219-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Youm, Y., Adijiang, A., Vandanmagsar, B., Burk, D., Ravussin, A. and Dixit, V.D. (2011) Elimination of the NLRP3-ASC Inflammasome Protects against Chronic Obesity-Induced Pancreatic Damage. Endocrinology, 152, 4039-4045. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dror, E., Dalmas, E., Meier, D.T., Wueest, S., Thévenet, J., Thienel, C., et al. (2017) Postprandial Macrophage-Derived Il-1β Stimulates Insulin, and Both Synergistically Promote Glucose Disposal and Inflammation. Nature Immunology, 18, 283-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, X., Dai, J., Li, L., Chen, H. and Chai, Y. (2017) NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages. Journal of Diabetes Research, 2017, Article ID: 5281358. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Wang, Y., Antony, V., Sun, H. and Liang, G. (2020) Metabolism-Associated Molecular Patterns (Mamps). Trends in Endocrinology & Metabolism, 31, 712-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Poznyak, A., Grechko, A.V., Poggio, P., Myasoedova, V.A., Alfieri, V. and Orekhov, A.N. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article No. 1835. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J. (2009) Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology, 11, 136-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Romero, A., Dongil, P., Valencia, I., Vallejo, S., Hipólito-Luengo, Á.S., Díaz-Araya, G., et al. (2022) Pharmacological Blockade of NLRP3 Inflammasome/il-1β-Positive Loop Mitigates Endothelial Cell Senescence and Dysfunction. Aging and disease, 13, 284-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, M., Yang, Z., Zhang, C., Shi, Y., Han, W., Song, S., et al. (2021) Inhibition of NLRP3 Inflammasome Ameliorates Podocyte Damage by Suppressing Lipid Accumulation in Diabetic Nephropathy. Metabolism, 118, Article ID: 154748. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
苗德根. 黄帝内经·素问[M]. 北京: 中国中医药出版社, 2017.
|
|
[41]
|
邓志慧, 曾洁, 付红娟, 等. 茶黄素-3,3’-O-双没食子酸酯对糖尿病大鼠血管内皮损伤及炎症反应的保护作用[J]. 茶叶科学, 2021, 41(6): 823-830.
|
|
[42]
|
李彬, 张大传, 李学望, 等. 人参皂苷Rg_1抑制NLRP3炎症小体对2型糖尿病小鼠视网膜病变的保护作用[J]. 中国中药杂志, 2022, 47(2): 476-483.
|
|
[43]
|
Wu, C., Hua, K., Hsu, W., Suzuki, Y., Chu, L.J., Lee, Y., et al. (2020) Iga Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. The Journal of Immunology, 205, 202-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
赵静, 张丽英, 康红霞. 基于自噬途径探讨黄芪甲苷抑制糖尿病肾病系膜细胞NLRP3炎症小体活化通路及机制[J]. 中医药导报, 2021, 27(9): 41-46.
|
|
[45]
|
葛凡, 王文恺, 朱景天, 等. 黄芪甲苷通过NLRP3炎性小体调节糖尿病动脉粥样硬化早期大鼠血脂及炎症因子的研究[J]. 南京中医药大学学报, 2021, 37(3): 383-387.
|
|
[46]
|
冯雪艳, 张慧芹, 李幸, 等. 芍药二酮对糖尿病视网膜病变大鼠血管损伤及NLRP3活性的影响[J]. 实用药物与临床, 2021, 24(7): 585-590.
|
|
[47]
|
Sun, X., Wang, X., Zhao, Z., Chen, J., Li, C. and Zhao, G. (2020) Paeoniflorin Inhibited Nod‐Like Receptor Protein‐3 Inflammasome and NF-κB-Mediated Inflammatory Reactions in Diabetic Foot Ulcer by Inhibiting the Chemokine Receptor CXCR2. Drug Development Research, 82, 404-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chinta, P.K., Tambe, S., Umrani, D., Pal, A.K. and Nandave, M. (2022) Effect of Parthenolide, an NLRP3 Inflammasome Inhibitor, on Insulin Resistance in High-Fat Diet-Obese Mice. Canadian Journal of Physiology and Pharmacology, 100, 272-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Nakshatri, H., Appaiah, H.N., Anjanappa, M., Gilley, D., Tanaka, H., Badve, S., et al. (2015) NF-κB-Dependent and-Independent Epigenetic Modulation Using the Novel Anti-Cancer Agent DMAPT. Cell Death & Disease, 6, e1608-e1608. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhu, X., Shi, J. and Li, H. (2018) Liquiritigenin Attenuates High Glucose-Induced Mesangial Matrix Accumulation, Oxidative Stress, and Inflammation by Suppression of the NF-κB and NLRP3 Inflammasome Pathways. Biomedicine & Pharmacotherapy, 106, 976-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, Y., Chen, Y., Hsiao, C., Pan, M., Wang, B., Chen, Y., et al. (2020) Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-Mesenchymal Transition. Frontiers in Cell and Developmental Biology, 8, Article No. 436. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhou, H., Feng, L., Xu, F., Sun, Y., Ma, Y., Zhang, X., et al. (2017) Berberine Inhibits Palmitate-Induced NLRP3 Inflammasome Activation by Triggering Autophagy in Macrophages: A New Mechanism Linking Berberine to Insulin Resistance Improvement. Biomedicine & Pharmacotherapy, 89, 864-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ma, Z., Zhu, L., Wang, S., Guo, X., Sun, B., Wang, Q., et al. (2022) Berberine Protects Diabetic Nephropathy by Suppressing Epithelial-to-Mesenchymal Transition Involving the Inactivation of the NLRP3 Inflammasome. Renal Failure, 44, 923-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chang, Y., Ka, S., Hsu, W., Chen, A., Chao, L.K., Lin, C., et al. (2015) Resveratrol Inhibits NLRP3 Inflammasome Activation by Preserving Mitochondrial Integrity and Augmenting Autophagy. Journal of Cellular Physiology, 230, 1567-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Brasnyó, P., Molnár, G.A., Mohás, M., Markó, L., Laczy, B., Cseh, J., et al. (2011) Resveratrol Improves Insulin Sensitivity, Reduces Oxidative Stress and Activates the Akt Pathway in Type 2 Diabetic Patients. British Journal of Nutrition, 106, 383-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ni, G., Cui, R., Shao, A. and Wu, Z. (2017) Salidroside Ameliorates Diabetic Neuropathic Pain in Rats by Inhibiting Neuroinflammation. Journal of Molecular Neuroscience, 63, 9-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hu, R., Wang, M., Ni, S., Wang, M., Liu, L., You, H., et al. (2020) Salidroside Ameliorates Endothelial Inflammation and Oxidative Stress by Regulating the AMPK/NF-κB/NLRP3 Signaling Pathway in AGEs-Induced HUVECs. European Journal of Pharmacology, 867, Article ID: 172797. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zheng, T., Wang, Q., Bian, F., Zhao, Y., Ma, W., Zhang, Y., et al. (2021) Salidroside Alleviates Diabetic Neuropathic Pain through Regulation of the AMPK-NLRP3 Inflammasome Axis. Toxicology and Applied Pharmacology, 416, Article ID: 115468. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zheng, T., Yang, X., Li, W., Wang, Q., Chen, L., Wu, D., et al. (2018) Salidroside Attenuates High‐Fat Diet‐Induced Nonalcoholic Fatty Liver Disease via AMPK‐Dependent TXNIP/NLRP3 Pathway. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8597897. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
You, L., Zhang, D., Geng, H., Sun, F. and Lei, M. (2021) Salidroside Protects Endothelial Cells against Lps-Induced Inflammatory Injury by Inhibiting NLRP3 and Enhancing Autophagy. BMC Complementary Medicine and Therapies, 21, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, B., Yao, J., Yao, X., et al. (2021) Swertiamarin Alleviates Diabetic Peripheral Neuropathy in Rats by Suppressing NOXS/ROS/NLRP3 Signal Pathway. Journal of Southern Medical University, 41, 937-941.
|
|
[62]
|
Zhai, Y., Meng, X., Luo, Y., Wu, Y., Ye, T., Zhou, P., et al. (2018) Notoginsenoside R1 Ameliorates Diabetic Encephalopathy by Activating the Nrf2 Pathway and Inhibiting NLRP3 Inflammasome Activation. Oncotarget, 9, 9344-9363. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhang, Y., Gao, Z., Gao, X., Yuan, Z., Ma, T., Li, G., et al. (2020) Tilianin Protects Diabetic Retina through the Modulation of Nrf2/TXNIP/NLRP3 Inflammasome Pathways. Journal of Environmental Pathology, Toxicology and Oncology, 39, 89-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Zhao, Y., Wang, Q., Yan, S., Zhou, J., Huang, L., Zhu, H., et al. (2021) Bletilla Striata Polysaccharide Promotes Diabetic Wound Healing through Inhibition of the NLRP3 Inflammasome. Frontiers in Pharmacology, 12, Article ID: 659215. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
王晓. 黄连总生物碱与三七总皂苷组合物对糖尿病合并冠心病药效作用及作用机制研究[D]: [硕士学位论文]. 长春中医药大学, 2020.
|
|
[66]
|
Saghahazrati, S., Ayatollahi, S.A., Kobarfard, F. and Minaii Zang, B. (2020) Attenuation of Inflammation in Streptozotocin-Induced Diabetic Rabbits by Matricaria chamomilla Oil: A Focus on Targeting NF-κB and NLRP3 Signaling Pathways. Chinese Herbal Medicines, 12, 73-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
马静, 芮海波, 陈全战, 等. 灵芝多糖对链脲佐菌素诱导的糖尿病肾病小鼠抗炎活性及疗效研究[J]. 南京医科大学学报(自然科学版), 2019, 39(3): 326-331+337.
|
|
[68]
|
朱四民, 王会芳, 林凤平, 等. 葛根提取物通过调控NOD样受体蛋白3/半胱氨酸天冬氨酸蛋白酶1通路减轻糖尿病大鼠肾损伤的研究[J]. 中国糖尿病杂志, 2019, 27(11): 852-857.
|
|
[69]
|
李秋芳, 王文恺, 龚曼, 等. 当归补血汤及其活性成分通过NLRP3/ASC/Caspase-1通路调控糖尿病大鼠动脉粥样硬化及网络药理学研究[J]. 中成药, 2022, 44(6): 1987-1992.
|
|
[70]
|
郭晓媛, 张程斐, 吴悠, 等. 滋肾丸对糖尿病肾病小鼠肾小管上皮细胞焦亡及上皮-间充质转化的影响[J]. 中国实验方剂学杂志, 2021, 27(21): 27-36.
|
|
[71]
|
傅红敏, 任秋月, 常柏. 抵挡汤对糖尿病大血管病变小鼠主动脉NLRP3炎症小体活化炎症级联反应的作用机制[J]. 中国实验方剂学杂志, 2021, 27(11): 1-8.
|
|
[72]
|
周胜男, 常柏, 吴晓明, 等. 抵挡汤早期干预对2型糖尿病大鼠血管内皮细胞凋亡的影响[J]. 中华中医药杂志, 2017, 32(9): 3985-3988.
|
|
[73]
|
潘从清, 常柏, 李巧芬, 等. 抵挡汤早期干预对2型糖尿病大鼠大血管病变的影响及其机制[J]. 中草药, 2013, 44(8): 1013-1016.
|
|
[74]
|
Ye, S., Song, Z., Li, J., Li, C., Yang, J. and Chang, B. (2016) Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats. International Journal of Endocrinology, 2016, Article ID: 6704851. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
毛正奇. 八仙草汤对糖尿病肾病KKAy小鼠的肾脏保护作用及NLRP3-Casepase-1-IL-1β信号通路的机制研究[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2019.
|
|
[76]
|
张瀚文. 中药复方益糖康通过TLR4/MyD88/NF-κB通路防治糖尿病大鼠视网膜病变的机制研究[D]: [博士学位论文]. 沈阳: 辽宁中医药大学, 2021.
|
|
[77]
|
Li, N., Zhao, T., Cao, Y., Zhang, H., Peng, L., Wang, Y., et al. (2021) Tangshen Formula Attenuates Diabetic Kidney Injury by Imparting Anti-Pyroptotic Effects via the TXNIP-NLRP3-GSDMD Axis. Frontiers in Pharmacology, 11, Article ID: 623489. [Google Scholar] [CrossRef] [PubMed]
|