NLRP3炎性小体与2型糖尿病的关系及中医药调控研究进展
The Relationship between NLRP3 Inflammasome and Type 2 Diabetes Mellitus and the Research Progress of Traditional Chinese Medicine Regulation
DOI: 10.12677/pi.2025.146043, PDF, HTML, XML,   
作者: 黄思源:黑龙江中医药大学研究生学院,黑龙江 哈尔滨;张 杨*:黑龙江中医药大学附属第一医院,黑龙江 哈尔滨
关键词: 2型糖尿病NOD样受体热蛋白结构域3炎性小体中医药作用机制Type 2 Diabetes Mellitus NLRP3 Inflammasome Chinese Medicine Mechanism of Action
摘要: 目的:为今后中医药经NLRP3炎性小体治疗2型糖尿病的研究提供参考。方法:分析汇总近年来NLRP3炎性小体与2型糖尿病的研究文献,并就中医药经其干预2型糖尿病的作用机制来分类阐述。结果:在中医药经NLRP3炎性小体调控2型糖尿病的研究中,其主要作用机制为调节免疫反应,调控炎症信号通路,影响细胞焦亡、自噬等,减少炎性细胞因子的合成与释放。结论:中医药经NLRP3炎性小体治疗2型糖尿病的药理作用较为明确,但其作用机制和药用价值需要进一步研究。
Abstract: Objective: This study will provide a reference for the future research on the treatment of type 2 diabetes mellitus by NLRP3 inflammasome in traditional Chinese medicine. Methods: This paper analyzes and summarizes the research literature on NLRP3 inflammasome and type 2 diabetes mellitus in recent years, and classifies and expounds the mechanism of action of traditional Chinese medicine in the intervention of type 2 diabetes. Results: In the study of the regulation of type 2 diabetes by NLRP3 inflammasome in traditional Chinese medicine, the main mechanism of action is to regulate immune response, regulate inflammatory signaling pathways, affect pyroptosis, autophagy, etc., and reduce the synthesis and release of inflammatory cytokines. Conclusion: The pharmacological effects of traditional Chinese medicine in the treatment of type 2 diabetes mellitus through NLRP3 inflammasome are relatively clear, but its mechanism of action and medicinal value need to be further studied.
文章引用:黄思源, 张杨. NLRP3炎性小体与2型糖尿病的关系及中医药调控研究进展[J]. 药物资讯, 2025, 14(6): 379-387. https://doi.org/10.12677/pi.2025.146043

1. 引言

2型糖尿病(T2DM)是一种由于胰岛素抵抗和(或)胰岛素分泌不足而引起的糖脂代谢紊乱的代谢性疾病[1]。在我国糖尿病人群中,T2DM占90%以上[2]。近40年来,我国糖尿病患病率显著增加并呈年轻化态势:从1980年30万全年龄人群的糖尿病患病率0.67% [3]到2015年至2017年7.6万18岁及以上人群的糖尿病患病率11.2% [2]。研究发现,炎症反应是影响IR和T2DM发生发展的重要途径[4]。作为炎性小体的重要组成部分,随着慢性炎症引起的代谢紊乱、ROS增加和线粒体损伤等,NLRP3炎性小体被激活,影响了糖耐量、胰岛素敏感性和肠道微生物的相互作用,进而导致T2DM的发生发展[5]。因此从NLRP3炎性小体的角度,结合我国传统医学,探究T2DM的发病和治疗有一定的现实意义。

2. NLRP3炎性小体概述

2.1. 组成

NLRP3炎性小体是迄今为止研究最广泛的炎性小体[6],它广泛存在于免疫细胞中。NLRP3炎性小体由NLRP3蛋白、凋亡相关斑点样蛋白(ASC)和胱天蛋白酶-1前体蛋白(pro-caspase-1)组成[7] [8]

NLRP3蛋白由C端富含亮氨酸重复结构域(LRR)、中央核苷酸结合寡聚化结构域(NACHT)和N端Pyrin结构域(PYD)三部分构成[9]。受到异常内外部刺激激活后,PYD促进NLRP3蛋白和ASC之间的同型相互作用[10],诱导NLRP3-ASC复合物的CARD和pro-caspase-1的CARD结合,三者构成了NLRP3炎性小体。ASC通过CARD的亲和招募pro-caspase-1 [10],并使其自行剪切为有活性的caspase-1,参与炎症反应、代谢调节等[11]

2.2. 激活与调控

NLRP3炎性小体可通过经典途径和非经典途径激活。经典激活途径主要包括两阶段。第一阶段是感知和产生阶段:PRRs识别PAMPs或DAMPs后,通过钾离子通道模型、溶酶体破坏模型或活性氧簇模型,激活NF-κB信号通路,促进NLRP3蛋白、pro-IL-1β、pro-IL-18的生成[12]-[14]。其中,过程关键因子NF-κB控制着NLRP3炎性小体的转录[15]。第二阶段是装配和效应器阶段:在受到刺激后,NLRP3蛋白、ASC和pro-caspase-1组装成NLRP3炎性小体,然后caspase-1将pro-IL-1β和pro-IL-18转化为IL-1β和IL-18 [16],参与后续的炎症反应[10] [17] [18]。在非经典激活途径中,NLRP3炎性小体可以通过激活caspase-4/5或caspase-11裂解GSDMD,使其N端片段作用于细胞膜形成孔道结构,促进IL-18、IL-1β的合成和分泌,诱导细胞焦亡[10] [17]-[19]。两种途径皆可导致炎症级联反应。

NLRP3炎性小体的具体激活机制尚不清楚。但K+外流、Ca2+信号转导、线粒体功能障碍(MtD)、ROS的产生、溶酶体损伤等是公认的激活信号[16] [20]。此外,微生物[21]、非微生物因素、脂多糖[22]、细菌RNA [22]等刺激导致的Toll样受体(TLRs)、核转录因子-κB (NF-κB)通路过度激活等也可激活NLRP3炎性小体。

NF-κB信号通路[23]、ROS/TXNIP信号通路[24]、AMPK/mTOR信号通路[25]、Nrf2信号通路、自噬[26]、JNK信号通路[27]等均参与NLRP3炎性小体的激活和调控。

3. 2型糖尿病与NLRP3炎性小体的关系

1999年,Schmidt等首次提出炎症介质可预测2型糖尿病的发生[28]。NLRP3炎性小体可直接或间接影响胰岛素信号通路的传导,在T2DM和IR的发生发展中起重要作用[29] [30]。炎症细胞因子也与异常的胰岛素信号通路密切相关。肿瘤坏死因子-α (TNF-α)、白细胞介素-1 (IL-1)、单核细胞趋化蛋白-1 (MCP-1)、c反应蛋白等皆可引起细胞内炎症反应,激活炎症细胞因子信号,阻断靶组织细胞内胰岛素信号传导,触发IR [31]有。研究发现,IL-1β、IL-18可以直接作用于胰岛和胰岛素受体,降低胰岛素敏感性,诱导胰岛β细胞功能紊乱,加重胰岛β细胞的损伤,并且会损伤血管内皮细胞,导致IR和T2DM [5] [32]-[34]

糖脂代谢产物及其衍生物也参与了NLRP3炎性小体的激活。传统意义上,研究人员认为糖脂代谢紊乱,特别是高血糖,是慢性炎症启动的关键因素[35] [36]。来源于慢性高血糖小鼠的胰岛细胞,在受到细胞外高浓度血糖的刺激后,可激活NLRP3炎性小体,诱导IL-1β的产生和分泌,从而促进IR [37]

NLRP3炎性小体是脂质代谢和炎症之间的桥梁。NLRP3炎性小体可以导致糖耐量降低、IR、炎症细胞凋亡和内皮功能障碍[38],其大量积累将加速IR的进展[39]

4. 中医药经NLRP3炎性小体调控糖尿病的研究进展

在《黄帝内经》中,糖尿病以“消渴”、“消瘅”等病名出现[40]。中药单体、中药粗体、中成药及中药复方在治疗T2DM上具有多靶点、不良反应少的优点。NLRP3炎性小体作为促进T2DM发生、发展的关键一环,中药可以通过调控该介质,调节炎症信号通路、免疫反应等,发挥防治T2DM的作用。

4.1. 中药单体

红茶中的茶黄素-3,3'-O-双没食子酸酯(TFDG)、人参皂苷Rg1、人参皂苷代谢产物化合物K、黄芪甲苷、芍药二酮、芍药苷、小白菊内酯、甘草素通过调控NF-κB信号通路,影响NLRP3炎性小体的激活和调控,有效抑制炎症反应[41]-[50]。紫檀芪、小檗碱、白藜芦醇通过自噬抑制NLRP3炎性小体激活[51]-[55]。红景天苷有多种途径抑制NLRP3炎性小体的激活[56]-[60]。獐牙苋素可以抑制NOXs/ROS/NLRP3炎性小体信号通路[61]。三七皂苷可以激活PKB/Nrf2通路,抑制NLRP3炎性小体的炎症瀑布反应[62]。田蓟苷调节Nrf2/TXNIP/NLRP3炎性小体通路,进而减少炎症反应[63]。丹参多酚酸B调节AMPK通路,抑制NLRP3炎性小体激活[24],见表1

Table 1. The mechanism by which traditional Chinese medicine monomers regulate type 2 diabetes through the NLRP3 inflammasome

1. 中药单体通过NLRP3炎性小体调控2型糖尿病的作用机制

活性成分

主要来源

作用机制

参考文献

茶黄素-3,3'-O-双没食子酸酯

红茶

抑制Toll样受体、ROS的产生,通过调节NF-κB信号通路、ROS/TXNIP信号通路、AMPK/mTOR信号通路,抑制NLRP3炎性小体的活化

[41]

人参皂苷Rg1、人参皂苷代谢产物化合物K

人参

通过NF-κB信号通路,抑制NLRP3炎性小体活化

[42] [43]

黄芪甲苷

黄芪

抑制NLRP3炎性小体信号通路的活化

[44] [45]

芍药二酮、芍药苷

芍药

抑制NLRP3炎性小体的活化,降低炎性细胞因子的表达

[46] [47]

小白菊内酯

辛夷

影响NLRP3的ATP酶活性,抑制NF-κB的激活,或直接抑制NLRP3炎性小体的激活

[48] [49]

甘草素

甘草

调节NF-κB信号通路,抑制NLRP3炎性小体的激活

[50]

紫檀芪

紫檀

通过自噬抑制NLRP3炎性小体激活

[51]

小檗碱

黄连

触发巨噬细胞自噬,抑制NLRP3炎性小体的激活

[52] [53]

白藜芦醇

虎杖

预防线粒体损伤、激活p38促进自噬,使mtROS的生成减少,进而抑制NLRP3炎性小体的激活

[54] [55]

红景天苷

红景天

抑制P2X7受体的表达、影响NF-κB信号通路、调节AMPK-NLRP3炎性小体轴、诱导自噬等途径,抑制NLRP3炎性小体的激活

[56]-[60]

獐牙苋素

獐牙菜

抑制NOXs/ROS/NLRP3炎性小体信号通路,纠正炎症因子失衡

[61]

三七皂苷

三七

激活PKB/Nrf2通路,抑制NLRP3炎性小体的炎症瀑布反应

[62]

田蓟苷

香青兰

调节Nrf2/TXNIP/NLRP3炎性小体通路

[63]

丹参多酚酸B

丹参

调节AMPK通路,抑制NLRP3炎性小体激活

[24]

4.2. 中药粗体物

白及多糖、黄连总生物碱与三七总皂苷组合物、洋甘菊精油、灵芝多糖通过抑制NF-κB/NLRP3信号通路,抑制炎症反应[64]-[67]。异黄酮以AMPK依赖性方式激活自噬,抑制NLRP3炎性小体的活性[68],见表2

Table 2. The mechanism by which bold traditional Chinese medicine substances regulate type 2 diabetes through the NLRP3 inflammasome

2. 中药粗体物通过NLRP3炎性小体调控2型糖尿病的作用机制

中药粗体物

主要来源

作用机制

参考文献

白及多糖

白及

降低ROS水平,减少NLRP3炎性小体的激活

[64]

黄连总生物碱与三七总皂苷组合物

黄连、三七

降低血糖、血脂、TNF-α等的水平,降低NF-κB、NLRP3、caspase-3蛋白的表达

[65]

洋甘菊精油

洋甘菊

通过NF-κB/NLRP3信号通路,降低炎症水平

[66]

灵芝多糖

灵芝

通过抑制NF-κB/NLRP3信号通路,下调炎症因子水平

[67]

异黄酮

葛根

通过AMPK依赖性方式激活自噬,抑制NLRP3炎性小体的活性,降低ROS、IL1β、IL-18水平

[68]

4.3. 中药复方及中成药

当归补血汤、滋肾丸、抵挡汤、八仙草汤通过影响NF-κB信号通路,抑制NLRP3炎性小体活化,降低炎症水平[69]-[75]。中药复方益糖康可通过抑制TLR4/MyD88/NF-κB信号通路、NLRP3/ASC/pro-Caspase-1炎性小体通路,发挥抗炎、抗焦亡作用[76]。研究表明,糖肾方可降低ROS的产生和TXNIP的表达,TXNIP-NLRP3-GSDMD轴发挥抗细胞焦亡作用,降低DN的肾损害程度[77],见表3

Table 3. The mechanism by which traditional Chinese medicine compound prescriptions and Chinese patent medicines regulate type 2 diabetes through the NLRP3 inflammasome

3. 中药复方及中成药通过NLRP3炎性小体调控2型糖尿病的作用机制

中药复方及中成药

主要组成

功效

作用机制

参考文献

当归补血汤

黄芪、当归

补气生血

通过NLRP3/ASC/Caspase-1信号通路抑制NLRP3炎性小体活化,降低血清NF-κB、IL-6、TNF-α、ICAM-1水平

[69]

滋肾丸

黄柏、知母、肉桂

滋肾通关

降低cleaved Caspase-1、cleaved IL-1β、IL-1β蛋白的表达,抑制NLRP3炎性小体的激活

[70]

抵挡汤

桃仁、水蛭、虻虫、大黄

活血化瘀

降低AIF、Apaf-1、半胱天冬肽酶-3基因的表达,调节粘附分子ICAM-1、VCAM-1的表达,影响NF-κB信号通路,下调NLRP3、Caspase-1蛋白表达,降低炎症因子水平

[71]-[74]

八仙草汤

八仙草、三七、薏苡、制大黄、黄芪、甘草

清热利湿泄浊,散瘀解毒消肿

抑制NLRP3炎性小体活化,降低NLRP3蛋白、Caspase-1、IL-1β的表达

[75]

益糖康胶囊

黄芪、黄柏、黄连、黄精、丹参、枸杞子等

健脾益气,养阴清热活血

通过调控TLR4/MyD88/NF-κB信号通路、NLRP3/ASC/pro-Caspase-1信号通路,抑制NLRP3炎性小体

[76]

糖肾方

黄芪、生地黄、山茱萸、熟大黄、三七、枳壳、鬼剑羽

益气柔肝,活血通络

抑制ROS的产生和TXNIP的表达,通过TXNIP-NLRP3-GSDMD轴发挥抗细胞焦亡、抗炎作用

[77]

5. 讨论

随着中医药防治T2DM研究的不断深入,中医药治疗T2DM的作用日益突出。NLRP3炎性小体的过度激活,引发了一系列的炎症反应,最终阻断胰岛素信号传导或直接损伤胰岛细胞,在T2DM的发病机制中扮演了重要角色。而中医药可通过多通路、多靶点影响NLRP3炎性小体的活化,减缓T2DM的发生发展,调控NLRP3炎性小体已成为中医药防治T2DM新的研究方向。

目前NLRP3炎性小体及中医药调控机制的研究已经十分全面,但有部分内容仍能进一步深入。首先,NLRP3炎症小体的下游信号因子的机制研究已经较为全面,但其上游信号分子及具体调节机制尚不清楚。其次,中药调控NLRP3炎性小体治疗T2DM的研究多源于动物和细胞实验,临床研究相对缺乏。最后,在中药粗体物及中药复方治疗T2DM的研究中,多个活性成分的协同作用机制尚不明确,需进一步研究。

总之,进一步的研究或许可以深入发掘NLRP3炎性小体与2型糖尿病之间的相关性,为中医药治疗2型糖尿病提供有力的临床证据,为2型糖尿病的防治提供更有效的临床治疗方案。

NOTES

*通讯作者。

参考文献

[1] American Diabetes Association (2011) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, S62-S69. [Google Scholar] [CrossRef] [PubMed]
[2] Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., et al. (2020) Prevalence of Diabetes Recorded in Mainland of China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, m997. [Google Scholar] [CrossRef] [PubMed]
[3] 全国糖尿病研究协作组调查研究组. 全国14省市30万人口中糖尿病调查报告[J]. 中华内科杂志, 1981, 20(11): 678-683.
[4] Hotamisligil, G.S. (2006) Inflammation and Metabolic Disorders. Nature, 444, 860-867. [Google Scholar] [CrossRef] [PubMed]
[5] Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. and Paquot, N. (2014) Inflammation as a Link between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Research and Clinical Practice, 105, 141-150. [Google Scholar] [CrossRef] [PubMed]
[6] Chen, M., Ye, X., He, X. and Ouyang, D. (2021) The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation, 44, 1229-1245. [Google Scholar] [CrossRef] [PubMed]
[7] Lu, A. and Wu, H. (2014) Structural Mechanisms of Inflammasome Assembly. The FEBS Journal, 282, 435-444. [Google Scholar] [CrossRef] [PubMed]
[8] Hu, Z. and Chai, J. (2016) Structural Mechanisms in NLR Inflammasome Assembly and Signaling. In: Backert, S., Ed., Inflammasome Signaling and Bacterial Infections, Springer International Publishing, 23-42. [Google Scholar] [CrossRef] [PubMed]
[9] Akther, M., Haque, M.E., Park, J., Kang, T. and Lee, K. (2021) NLRP3 Ubiquitination—A New Approach to Target NLRP3 Inflammasome Activation. International Journal of Molecular Sciences, 22, Article No. 8780. [Google Scholar] [CrossRef] [PubMed]
[10] Lu, A., Magupalli, V.G., Ruan, J., Yin, Q., Atianand, M.K., Vos, M.R., et al. (2014) Unified Polymerization Mechanism for the Assembly of Asc-Dependent Inflammasomes. Cell, 156, 1193-1206. [Google Scholar] [CrossRef] [PubMed]
[11] Yang, M., Wang, X., Han, Y., Li, C., Wei, L., Yang, J., et al. (2021) Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 28, 8810-8824. [Google Scholar] [CrossRef] [PubMed]
[12] Shao, B., Wang, S., Pan, P., Yao, J., Wu, K., Li, Z., et al. (2019) Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting Out the Fire of Inflammation. Inflammation, 42, 1147-1159. [Google Scholar] [CrossRef] [PubMed]
[13] Voet, S., Srinivasan, S., Lamkanfi, M. and van Loo, G. (2019) Inflammasomes in Neuroinflammatory and Neurodegenerative Diseases. EMBO Molecular Medicine, 11, e10248. [Google Scholar] [CrossRef] [PubMed]
[14] Heneka, M.T., McManus, R.M. and Latz, E. (2018) Inflammasome Signalling in Brain Function and Neurodegenerative Disease. Nature Reviews Neuroscience, 19, 610-621. [Google Scholar] [CrossRef] [PubMed]
[15] Purvis, G.S.D., Collino, M., Aranda‐Tavio, H., Chiazza, F., O’Riordan, C.E., Zeboudj, L., et al. (2020) Inhibition of Bruton’s TK Regulates Macrophage NF‐κB and NLRP3 Inflammasome Activation in Metabolic Inflammation. British Journal of Pharmacology, 177, 4416-4432. [Google Scholar] [CrossRef] [PubMed]
[16] Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
[17] Liston, A. and Masters, S.L. (2017) Homeostasis-Altering Molecular Processes as Mechanisms of Inflammasome Activation. Nature Reviews Immunology, 17, 208-214. [Google Scholar] [CrossRef] [PubMed]
[18] Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, Article No. 688. [Google Scholar] [CrossRef] [PubMed]
[19] Silke, J. and Vince, J. (2016) IAPs and Cell Death. In: Nagata, S. and Nakano, H., Eds., Apoptotic and Non-Apoptotic Cell Death, Springer International Publishing, 95-117. [Google Scholar] [CrossRef] [PubMed]
[20] He, Y., Hara, H. and Núñez, G. (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41, 1012-1021. [Google Scholar] [CrossRef] [PubMed]
[21] Martinon, F., Agostini, L., Meylan, E. and Tschopp, J. (2004) Identification of Bacterial Muramyl Dipeptide as Activator of the NALP3/Cryopyrin Inflammasome. Current Biology, 14, 1929-1934. [Google Scholar] [CrossRef] [PubMed]
[22] Kanneganti, T., Özören, N., Body-Malapel, M., Amer, A., Park, J., Franchi, L., et al. (2006) Bacterial RNA and Small Antiviral Compounds Activate Caspase-1 through Cryopyrin/Nalp3. Nature, 440, 233-236. [Google Scholar] [CrossRef] [PubMed]
[23] Samra, Y.A., Said, H.S., Elsherbiny, N.M., Liou, G.I., El-Shishtawy, M.M. and Eissa, L.A. (2016) Cepharanthine and Piperine Ameliorate Diabetic Nephropathy in Rats: Role of NF-κB and NLRP3 Inflammasome. Life Sciences, 157, 187-199. [Google Scholar] [CrossRef] [PubMed]
[24] Tang, Y., Wa, Q., Peng, L., Zheng, Y., Chen, J., Chen, X., et al. (2022) Salvianolic Acid B Suppresses ER Stress‐Induced NLRP3 Inflammasome and Pyroptosis via the AMPK/FoxO4 and Syndecan‐4/Rac1 Signaling Pathways in Human Endothelial Progenitor Cells. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8332825. [Google Scholar] [CrossRef] [PubMed]
[25] Xing, J., Li, R., Gao, Y., Wang, M., Liu, Y., Hong, J., et al. (2019) NLRP3 Inflammasome Mediate Palmitate-Induced Endothelial Dysfunction. Life Sciences, 239, Article ID: 116882. [Google Scholar] [CrossRef] [PubMed]
[26] Parzych, K.R. and Klionsky, D.J. (2014) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460-473. [Google Scholar] [CrossRef] [PubMed]
[27] Khalid, M., Alkaabi, J., Khan, M.A.B. and Adem, A. (2021) Insulin Signal Transduction Perturbations in Insulin Resistance. International Journal of Molecular Sciences, 22, Article No. 8590. [Google Scholar] [CrossRef] [PubMed]
[28] 郭晓蕙, 姚军. 炎症与2型糖尿病[J]. 国外医学内分泌学分册, 2004(4): 293-295+304.
[29] Rheinheimer, J., de Souza, B.M., Cardoso, N.S., Bauer, A.C. and Crispim, D. (2017) Current Role of the NLRP3 Inflammasome on Obesity and Insulin Resistance: A Systematic Review. Metabolism, 74, 1-9. [Google Scholar] [CrossRef] [PubMed]
[30] Yaribeygi, H., Mohammadi, M.T., Rezaee, R. and Sahebkar, A. (2018) Fenofibrate Improves Renal Function by Amelioration of NOX‐4, IL‐18, and P53 Expression in an Experimental Model of Diabetic Nephropathy. Journal of Cellular Biochemistry, 119, 7458-7469. [Google Scholar] [CrossRef] [PubMed]
[31] Olefsky, J.M. and Glass, C.K. (2010) Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 72, 219-246. [Google Scholar] [CrossRef] [PubMed]
[32] Youm, Y., Adijiang, A., Vandanmagsar, B., Burk, D., Ravussin, A. and Dixit, V.D. (2011) Elimination of the NLRP3-ASC Inflammasome Protects against Chronic Obesity-Induced Pancreatic Damage. Endocrinology, 152, 4039-4045. [Google Scholar] [CrossRef] [PubMed]
[33] Dror, E., Dalmas, E., Meier, D.T., Wueest, S., Thévenet, J., Thienel, C., et al. (2017) Postprandial Macrophage-Derived Il-1β Stimulates Insulin, and Both Synergistically Promote Glucose Disposal and Inflammation. Nature Immunology, 18, 283-292. [Google Scholar] [CrossRef] [PubMed]
[34] Zhang, X., Dai, J., Li, L., Chen, H. and Chai, Y. (2017) NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages. Journal of Diabetes Research, 2017, Article ID: 5281358. [Google Scholar] [CrossRef] [PubMed]
[35] Wang, X., Wang, Y., Antony, V., Sun, H. and Liang, G. (2020) Metabolism-Associated Molecular Patterns (Mamps). Trends in Endocrinology & Metabolism, 31, 712-724. [Google Scholar] [CrossRef] [PubMed]
[36] Poznyak, A., Grechko, A.V., Poggio, P., Myasoedova, V.A., Alfieri, V. and Orekhov, A.N. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article No. 1835. [Google Scholar] [CrossRef] [PubMed]
[37] Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J. (2009) Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology, 11, 136-140. [Google Scholar] [CrossRef] [PubMed]
[38] Romero, A., Dongil, P., Valencia, I., Vallejo, S., Hipólito-Luengo, Á.S., Díaz-Araya, G., et al. (2022) Pharmacological Blockade of NLRP3 Inflammasome/il-1β-Positive Loop Mitigates Endothelial Cell Senescence and Dysfunction. Aging and disease, 13, 284-297. [Google Scholar] [CrossRef] [PubMed]
[39] Wu, M., Yang, Z., Zhang, C., Shi, Y., Han, W., Song, S., et al. (2021) Inhibition of NLRP3 Inflammasome Ameliorates Podocyte Damage by Suppressing Lipid Accumulation in Diabetic Nephropathy. Metabolism, 118, Article ID: 154748. [Google Scholar] [CrossRef] [PubMed]
[40] 苗德根. 黄帝内经·素问[M]. 北京: 中国中医药出版社, 2017.
[41] 邓志慧, 曾洁, 付红娟, 等. 茶黄素-3,3’-O-双没食子酸酯对糖尿病大鼠血管内皮损伤及炎症反应的保护作用[J]. 茶叶科学, 2021, 41(6): 823-830.
[42] 李彬, 张大传, 李学望, 等. 人参皂苷Rg_1抑制NLRP3炎症小体对2型糖尿病小鼠视网膜病变的保护作用[J]. 中国中药杂志, 2022, 47(2): 476-483.
[43] Wu, C., Hua, K., Hsu, W., Suzuki, Y., Chu, L.J., Lee, Y., et al. (2020) Iga Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. The Journal of Immunology, 205, 202-212. [Google Scholar] [CrossRef] [PubMed]
[44] 赵静, 张丽英, 康红霞. 基于自噬途径探讨黄芪甲苷抑制糖尿病肾病系膜细胞NLRP3炎症小体活化通路及机制[J]. 中医药导报, 2021, 27(9): 41-46.
[45] 葛凡, 王文恺, 朱景天, 等. 黄芪甲苷通过NLRP3炎性小体调节糖尿病动脉粥样硬化早期大鼠血脂及炎症因子的研究[J]. 南京中医药大学学报, 2021, 37(3): 383-387.
[46] 冯雪艳, 张慧芹, 李幸, 等. 芍药二酮对糖尿病视网膜病变大鼠血管损伤及NLRP3活性的影响[J]. 实用药物与临床, 2021, 24(7): 585-590.
[47] Sun, X., Wang, X., Zhao, Z., Chen, J., Li, C. and Zhao, G. (2020) Paeoniflorin Inhibited Nod‐Like Receptor Protein‐3 Inflammasome and NF-κB-Mediated Inflammatory Reactions in Diabetic Foot Ulcer by Inhibiting the Chemokine Receptor CXCR2. Drug Development Research, 82, 404-411. [Google Scholar] [CrossRef] [PubMed]
[48] Chinta, P.K., Tambe, S., Umrani, D., Pal, A.K. and Nandave, M. (2022) Effect of Parthenolide, an NLRP3 Inflammasome Inhibitor, on Insulin Resistance in High-Fat Diet-Obese Mice. Canadian Journal of Physiology and Pharmacology, 100, 272-281. [Google Scholar] [CrossRef] [PubMed]
[49] Nakshatri, H., Appaiah, H.N., Anjanappa, M., Gilley, D., Tanaka, H., Badve, S., et al. (2015) NF-κB-Dependent and-Independent Epigenetic Modulation Using the Novel Anti-Cancer Agent DMAPT. Cell Death & Disease, 6, e1608-e1608. [Google Scholar] [CrossRef] [PubMed]
[50] Zhu, X., Shi, J. and Li, H. (2018) Liquiritigenin Attenuates High Glucose-Induced Mesangial Matrix Accumulation, Oxidative Stress, and Inflammation by Suppression of the NF-κB and NLRP3 Inflammasome Pathways. Biomedicine & Pharmacotherapy, 106, 976-982. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, Y., Chen, Y., Hsiao, C., Pan, M., Wang, B., Chen, Y., et al. (2020) Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-Mesenchymal Transition. Frontiers in Cell and Developmental Biology, 8, Article No. 436. [Google Scholar] [CrossRef] [PubMed]
[52] Zhou, H., Feng, L., Xu, F., Sun, Y., Ma, Y., Zhang, X., et al. (2017) Berberine Inhibits Palmitate-Induced NLRP3 Inflammasome Activation by Triggering Autophagy in Macrophages: A New Mechanism Linking Berberine to Insulin Resistance Improvement. Biomedicine & Pharmacotherapy, 89, 864-874. [Google Scholar] [CrossRef] [PubMed]
[53] Ma, Z., Zhu, L., Wang, S., Guo, X., Sun, B., Wang, Q., et al. (2022) Berberine Protects Diabetic Nephropathy by Suppressing Epithelial-to-Mesenchymal Transition Involving the Inactivation of the NLRP3 Inflammasome. Renal Failure, 44, 923-932. [Google Scholar] [CrossRef] [PubMed]
[54] Chang, Y., Ka, S., Hsu, W., Chen, A., Chao, L.K., Lin, C., et al. (2015) Resveratrol Inhibits NLRP3 Inflammasome Activation by Preserving Mitochondrial Integrity and Augmenting Autophagy. Journal of Cellular Physiology, 230, 1567-1579. [Google Scholar] [CrossRef] [PubMed]
[55] Brasnyó, P., Molnár, G.A., Mohás, M., Markó, L., Laczy, B., Cseh, J., et al. (2011) Resveratrol Improves Insulin Sensitivity, Reduces Oxidative Stress and Activates the Akt Pathway in Type 2 Diabetic Patients. British Journal of Nutrition, 106, 383-389. [Google Scholar] [CrossRef] [PubMed]
[56] Ni, G., Cui, R., Shao, A. and Wu, Z. (2017) Salidroside Ameliorates Diabetic Neuropathic Pain in Rats by Inhibiting Neuroinflammation. Journal of Molecular Neuroscience, 63, 9-16. [Google Scholar] [CrossRef] [PubMed]
[57] Hu, R., Wang, M., Ni, S., Wang, M., Liu, L., You, H., et al. (2020) Salidroside Ameliorates Endothelial Inflammation and Oxidative Stress by Regulating the AMPK/NF-κB/NLRP3 Signaling Pathway in AGEs-Induced HUVECs. European Journal of Pharmacology, 867, Article ID: 172797. [Google Scholar] [CrossRef] [PubMed]
[58] Zheng, T., Wang, Q., Bian, F., Zhao, Y., Ma, W., Zhang, Y., et al. (2021) Salidroside Alleviates Diabetic Neuropathic Pain through Regulation of the AMPK-NLRP3 Inflammasome Axis. Toxicology and Applied Pharmacology, 416, Article ID: 115468. [Google Scholar] [CrossRef] [PubMed]
[59] Zheng, T., Yang, X., Li, W., Wang, Q., Chen, L., Wu, D., et al. (2018) Salidroside Attenuates High‐Fat Diet‐Induced Nonalcoholic Fatty Liver Disease via AMPK‐Dependent TXNIP/NLRP3 Pathway. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8597897. [Google Scholar] [CrossRef] [PubMed]
[60] You, L., Zhang, D., Geng, H., Sun, F. and Lei, M. (2021) Salidroside Protects Endothelial Cells against Lps-Induced Inflammatory Injury by Inhibiting NLRP3 and Enhancing Autophagy. BMC Complementary Medicine and Therapies, 21, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
[61] Wang, B., Yao, J., Yao, X., et al. (2021) Swertiamarin Alleviates Diabetic Peripheral Neuropathy in Rats by Suppressing NOXS/ROS/NLRP3 Signal Pathway. Journal of Southern Medical University, 41, 937-941.
[62] Zhai, Y., Meng, X., Luo, Y., Wu, Y., Ye, T., Zhou, P., et al. (2018) Notoginsenoside R1 Ameliorates Diabetic Encephalopathy by Activating the Nrf2 Pathway and Inhibiting NLRP3 Inflammasome Activation. Oncotarget, 9, 9344-9363. [Google Scholar] [CrossRef] [PubMed]
[63] Zhang, Y., Gao, Z., Gao, X., Yuan, Z., Ma, T., Li, G., et al. (2020) Tilianin Protects Diabetic Retina through the Modulation of Nrf2/TXNIP/NLRP3 Inflammasome Pathways. Journal of Environmental Pathology, Toxicology and Oncology, 39, 89-99. [Google Scholar] [CrossRef] [PubMed]
[64] Zhao, Y., Wang, Q., Yan, S., Zhou, J., Huang, L., Zhu, H., et al. (2021) Bletilla Striata Polysaccharide Promotes Diabetic Wound Healing through Inhibition of the NLRP3 Inflammasome. Frontiers in Pharmacology, 12, Article ID: 659215. [Google Scholar] [CrossRef] [PubMed]
[65] 王晓. 黄连总生物碱与三七总皂苷组合物对糖尿病合并冠心病药效作用及作用机制研究[D]: [硕士学位论文]. 长春中医药大学, 2020.
[66] Saghahazrati, S., Ayatollahi, S.A., Kobarfard, F. and Minaii Zang, B. (2020) Attenuation of Inflammation in Streptozotocin-Induced Diabetic Rabbits by Matricaria chamomilla Oil: A Focus on Targeting NF-κB and NLRP3 Signaling Pathways. Chinese Herbal Medicines, 12, 73-78. [Google Scholar] [CrossRef] [PubMed]
[67] 马静, 芮海波, 陈全战, 等. 灵芝多糖对链脲佐菌素诱导的糖尿病肾病小鼠抗炎活性及疗效研究[J]. 南京医科大学学报(自然科学版), 2019, 39(3): 326-331+337.
[68] 朱四民, 王会芳, 林凤平, 等. 葛根提取物通过调控NOD样受体蛋白3/半胱氨酸天冬氨酸蛋白酶1通路减轻糖尿病大鼠肾损伤的研究[J]. 中国糖尿病杂志, 2019, 27(11): 852-857.
[69] 李秋芳, 王文恺, 龚曼, 等. 当归补血汤及其活性成分通过NLRP3/ASC/Caspase-1通路调控糖尿病大鼠动脉粥样硬化及网络药理学研究[J]. 中成药, 2022, 44(6): 1987-1992.
[70] 郭晓媛, 张程斐, 吴悠, 等. 滋肾丸对糖尿病肾病小鼠肾小管上皮细胞焦亡及上皮-间充质转化的影响[J]. 中国实验方剂学杂志, 2021, 27(21): 27-36.
[71] 傅红敏, 任秋月, 常柏. 抵挡汤对糖尿病大血管病变小鼠主动脉NLRP3炎症小体活化炎症级联反应的作用机制[J]. 中国实验方剂学杂志, 2021, 27(11): 1-8.
[72] 周胜男, 常柏, 吴晓明, 等. 抵挡汤早期干预对2型糖尿病大鼠血管内皮细胞凋亡的影响[J]. 中华中医药杂志, 2017, 32(9): 3985-3988.
[73] 潘从清, 常柏, 李巧芬, 等. 抵挡汤早期干预对2型糖尿病大鼠大血管病变的影响及其机制[J]. 中草药, 2013, 44(8): 1013-1016.
[74] Ye, S., Song, Z., Li, J., Li, C., Yang, J. and Chang, B. (2016) Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats. International Journal of Endocrinology, 2016, Article ID: 6704851. [Google Scholar] [CrossRef] [PubMed]
[75] 毛正奇. 八仙草汤对糖尿病肾病KKAy小鼠的肾脏保护作用及NLRP3-Casepase-1-IL-1β信号通路的机制研究[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2019.
[76] 张瀚文. 中药复方益糖康通过TLR4/MyD88/NF-κB通路防治糖尿病大鼠视网膜病变的机制研究[D]: [博士学位论文]. 沈阳: 辽宁中医药大学, 2021.
[77] Li, N., Zhao, T., Cao, Y., Zhang, H., Peng, L., Wang, Y., et al. (2021) Tangshen Formula Attenuates Diabetic Kidney Injury by Imparting Anti-Pyroptotic Effects via the TXNIP-NLRP3-GSDMD Axis. Frontiers in Pharmacology, 11, Article ID: 623489. [Google Scholar] [CrossRef] [PubMed]