|
[1]
|
Kadkol, S.S., Brody, J.R., Epstein, J.I., Kuhajda, F.P. and Pasternack, G.R. (1998) Novel Nuclear Phosphoprotein pp32 Is Highly Expressed in Intermediate-and High-Grade Prostate Cancer. The Prostate, 34, 231-237. [Google Scholar] [CrossRef]
|
|
[2]
|
Mutai, H., Toyoshima, Y., Sun, W., Hattori, N., Tanaka, S. and Shiota, K. (2000) PAL31, a Novel Nuclear Protein, Expressed in the Developing Brain. Biochemical and Biophysical Research Communications, 274, 427-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pan, W., da Graca, L.S., Shao, Y., Yin, Q., Wu, H. and Jiang, X. (2009) PHAPI/pp32 Suppresses Tumorigenesis by Stimulating Apoptosis. Journal of Biological Chemistry, 284, 6946-6954. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Khan, M.Z., Vaidya, A. and Meucci, O. (2011) CXCL1 2-Mediated Regulation of ANP32A/LANP, a Component of the Inhibitor of Histone Acetyl Transferase (INHAT) Complex, in Cortical Neurons. Journal of Neuroimmune Pharmacology, 6, 163-170.
|
|
[5]
|
Reilly, P.T., Yu, Y., Hamiche, A., et al. (2014) Cracking the ANP32 Whips: Important Functions, Unequal Requirement, and Hints at Disease Implications. Bioessays, 36, 1062-1071.
|
|
[6]
|
Katayose, Y., Li, M., Al-Murrani, S.W.K., Shenolikar, S. and Damuni, Z. (2000) Protein Phosphatase 2A Inhibitors, I1PP2A and I2PP2A, Associate with and Modify the Substrate Specificity of Protein Phosphatase 1. Journal of Biological Chemistry, 275, 9209-9214. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Habrukowich, C., Han, D.K., Le, A., Rezaul, K., Pan, W., Ghosh, M., et al. (2010) Sphingosine Interaction with Acidic Leucine-Rich Nuclear Phosphoprotein-32a (ANP32A) Regulates PP2A Activity and Cyclooxygenase (COX)-2 Expression in Human Endothelial Cells. Journal of Biological Chemistry, 285, 26825-26831. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moore, M.J. and Rosbash, M. (2001) TAPping into mRNA Export. Science, 294, 1841-1842. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fries, B., Heukeshoven, J., Hauber, I., Grüttner, C., Stocking, C., Kehlenbach, R.H., et al. (2007) Analysis of Nucleocytoplasmic Trafficking of the Hur Ligand APRIL and Its Influence on CD83 Expression. Journal of Biological Chemistry, 282, 4504-4515. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, H., Jiang, X., Du, F. and Wang, X. (2008) PHAPI, CAS, and Hsp70 Promote Apoptosome Formation by Preventing Apaf-1 Aggregation and Enhancing Nucleotide Exchange on Apaf-1. Molecular Cell, 30, 239-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shen, S.M., Yu, Y., Wu, Y.L., et al. (2010) Downregulation of ANP32B, a Novel Substrate of Caspase-3, Enhances Caspase-3 Activation and Apoptosis Induction in Myeloid Leukemic Cells. Carcinogenesis, 31, 419-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Matilla, A. and Radrizzani, M. (2005) The Anp32 Family of Proteins Containing Leucine-Rich Repeats. The Cerebellum, 4, 7-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Leo, V.I., Bunte, R.M. and Reilly, P.T. (2016) BALB/c-Congenic Anp32b-Deficient Mice Reveal a Modifying Locus That Determines Viability. Experimental Animals, 65, 53-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vaesen, M., Barnikol-Watanabe, S., Gotz, H., et al. (1994) Purification and Characterization of Two Putative HLA Class II Associated Proteins: PHAPI and PHAPII. Biological Chemistry Hoppe-Seyler, 375, 113-126.
|
|
[15]
|
Jiang, X., Kim, H., Shu, H., Zhao, Y., Zhang, H., Kofron, J., et al. (2003) Distinctive Roles of PHAP Proteins and Prothymosin-α in a Death Regulatory Pathway. Science, 299, 223-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, W., Kimura, H., Hattori, N., Tanaka, S., Matsuyama, S. and Shiota, K. (2006) Proliferation Related Acidic Leucine-Rich Protein PAL31 Functions as a Caspase-3 Inhibitor. Biochemical and Biophysical Research Communications, 342, 817-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sun, W., Hattori, N., Mutai, H., Toyoshima, Y., Kimura, H., Tanaka, S., et al. (2001) PAL31, a Nuclear Protein Required for Progression to the S Phase. Biochemical and Biophysical Research Communications, 280, 1048-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yu, Y., Shen, S., Zhang, F., Wu, Z., Han, B. and Wang, L. (2012) Acidic Leucine-Rich Nuclear Phosphoprotein 32 Family Member B (ANP32B) Contributes to Retinoic Acid-Induced Differentiation of Leukemic Cells. Biochemical and Biophysical Research Communications, 423, 721-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, C.X., Shen, S.M., Wang, L.S., et al. (2015) Caspase-3-Resistant Uncleavable form of Acidic Leucine-Rich Nuclear Phosphoprotein 32B Potentiates Leukemic Cell Apoptosis. Molecular Medicine Reports, 11, 2813-2818.
|
|
[20]
|
Ohno, Y., Koizumi, M., Nakayama, H., et al. (2017) Downregulation of ANP32B Exerts Anti-Apoptotic Effects in Hepatocellular Carcinoma. PLOS ONE, 12, e0177343.
|
|
[21]
|
朱迪, 朱晓娜, 杨烁, 等. 酸性亮氨酸核磷酸蛋白32B在肝癌组织表达增强并促进肝癌细胞生长的研究[J]. 诊断学理论与实践, 2019, 18(2): 170-176.
|
|
[22]
|
朱迪. ANP32B在肝癌发生发展中的作用研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
|
|
[23]
|
Reilly, P.T., Afzal, S., Gorrini, C., et al. (2011) Acidic Nuclear Phosphoprotein 32kDa (ANP32) B-Deficient Mouse Reveals a Hierarchy of ANP32 Importance in Mammalian Development. Proceedings of the National Academy of Sciences of the United States of America, 108, 10243-10248.
|
|
[24]
|
Yang, S., Zhou, L., Reilly, P.T., Shen, S., He, P., Zhu, X., et al. (2016) ANP32B Deficiency Impairs Proliferation and Suppresses Tumor Progression by Regulating AKT Phosphorylation. Cell Death & Disease, 7, e2082. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
D’Angelo, A., Sobhani, N., Roviello, G., et al. (2019) Tumour Infiltrating Lymphocytes and Immune-Related Genes as Predictors of Outcome in Pancreatic Adenocarcinoma. PLOS ONE, 14, e0219566.
|
|
[26]
|
Uzozie, A.C., Selevsek, N., Wahlander, A., Nanni, P., Grossmann, J., Weber, A., et al. (2017) Targeted Proteomics for Multiplexed Verification of Markers of Colorectal Tumorigenesis. Molecular & Cellular Proteomics, 16, 407-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Snezhkina, A.V.,. Lukyanova, E.N., Fedorova, M.S., et al. (2019) Novel Genes Associated with the Development of Carotid Paragangliomas. Journal of Molecular Biology, 53, 613-626.
|
|
[28]
|
Bosch, F.X., Ribes, J., Díaz, M. and Cléries, R. (2004) Primary Liver Cancer: Worldwide Incidence and Trends. Gastroenterology, 127, S5-S16. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Saraswat, V.A., Pandey, G. and Shetty, S. (2014) Treatment Algorithms for Managing Hepatocellular Carcinoma. Journal of Clinical and Experimental Hepatology, 4, S80-S89.
|
|
[30]
|
Siegel, A.B., Olsen, S.K., Magun, A. and Brown, R.S. (2010) Sorafenib: Where Do We Go from Here? Hepatology, 52, 360-369.
|
|
[31]
|
Zhu, B., Li, X., Liu, Y., Chang, J., Liu, Y., Zhang, D., et al. (2010) Involvement of Hepatopoietin Cn in the Development of Human Hepatocellular Carcinoma. Clinical & Experimental Metastasis, 27, 571-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chang, J. (2010) Hepatopoietin Cn Suppresses Apoptosis of Human Hepatocellular Carcinoma Cells by Up-Regulating Myeloid Cell Leukemia-1. World Journal of Gastroenterology, 16, 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, C., Ruan, H., Liu, Y., Xu, M., Dai, J., Sheng, Q., et al. (2011) Quantitative Proteomics Reveal Up-Regulated Protein Expression of the SET Complex Associated with Hepatocellular Carcinoma. Journal of Proteome Research, 11, 871-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
崔春平, 张大庆, 石炳祥, 杜绍江, 吴丹, 魏平, 等. 新型人类肝脏生长因子——肝细胞生成素的分离及功能鉴定[J]. 肝脏病学, 2008(47): 986-995.
|
|
[35]
|
崔春平, 魏平, 刘燕, 张大庆, 王立新, 吴程特. 肝细胞生成素Cn对四氯化碳诱导大鼠肝损伤的保护作用[J]. 肝病学研究, 2009(39): 200-206.
|
|
[36]
|
Liu, Y., Saiyan, S., Men, T., Gao, H., Wen, C., Liu, Y., et al. (2013) Hepatopoietin Cn Reduces Ethanol-Induced Hepatoxicity via Sphingosine Kinase 1 and Sphingosine 1-phosphate Receptors. The Journal of Pathology, 230, 365-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhu, J. (2001) Lineage Restriction of the Raralpha Gene Expression in Myeloid Differentiation. Blood, 98, 2563-2567. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Collins, S.J. (2002) The Role of Retinoids and Retinoic Acid Receptors in Normal Hematopoiesis. Leukemia, 16, 1896-1905. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
de The, H., del Mar Vivanco-Ruiz, M., Tiollais, P., Stunnenberg, H. and Dejean, A. (1990) Identification of a Retinoic Acid Responsive Element in the Retinoic Acid Receptor & Beta Gene. Nature, 343, 177-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lehmann, J.M., Zhang, X.K. and Pfahl, M. (1992) RAR Gamma 2 Expression Is Regulated through a Retinoic Acid Response Element Embedded in Sp1 Sites. Molecular and Cellular Biology, 12, 2976-2985. [Google Scholar] [CrossRef]
|
|
[41]
|
Munemasa, Y., Suzuki, T., Aizawa, K., Miyamoto, S., Imai, Y., Matsumura, T., et al. (2008) Promoter Region-Specific Histone Incorporation by the Novel Histone Chaperone ANP32B and DNA-Binding Factor Klf5. Molecular and Cellular Biology, 28, 1171-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. In: Advances in Genetics, Elsevier, 27-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, L., Liu, S. and Tao, Y. (2020) Regulating Tumor Suppressor Genes: Post-Translational Modifications. Signal Transduction and Targeted Therapy, 5, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sugihara, E., Shimizu, T., Kojima, K., Onishi, N., Kai, K., Ishizawa, J., et al. (2012) Ink4a and Arf Are Crucial Factors in the Determination of the Cell of Origin and the Therapeutic Sensitivity of Myc-Induced Mouse Lymphoid Tumor. Oncogene, 31, 2849-2861. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, C., Hao, X., Lai, X., Liu, L., Zhu, J., Shao, H., et al. (2021) Oxidative Phosphorylation Enhances the Leukemogenic Capacity and Resistance to Chemotherapy of B Cell Acute Lymphoblastic Leukemia. Science Advances, 7, eabd6280. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yang, Q., Liu, H.R., Yang, S., Wei, Y.S., et al. (2023) ANP32B Suppresses B-Cell Acute Lymphoblastic Leukemia through Activation of PU.1 in Mice. Cancer Science, 114, 2882-2894. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rebello, R.J., Oing, C., Knudsen, K.E., Loeb, S., Johnson, D.C., Reiter, R.E., et al. (2021) Prostate Cancer. Nature Reviews Disease Primers, 7, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pagliarulo, V., Bracarda, S., Eisenberger, M.A., Mottet, N., Schröder, F.H., Sternberg, C.N., et al. (2012) Contemporary Role of Androgen Deprivation Therapy for Prostate Cancer. European Urology, 61, 11-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sandhu, S., Moore, C.M., Chiong, E., Beltran, H., Bristow, R.G. and Williams, S.G. (2021) Prostate Cancer. The Lancet, 398, 1075-1090. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Cumberbatch, M.G., De Santis, M., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. European Urology, 79, 263-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wang, X., Wei, Y., Hu, B., Liao, Y., Wang, X., Wan, W., et al. (2022) C-Myc-Driven Glycolysis Polarizes Functional Regulatory B Cells That Trigger Pathogenic Inflammatory Responses. Signal Transduction and Targeted Therapy, 7, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lu, X., An, L., Fan, G., Zang, L., Huang, W., Li, J., et al. (2022) EGFR Signaling Promotes Nuclear Translocation of Plasma Membrane Protein TSPAN8 to Enhance Tumor Progression via Stat3-Mediated Transcription. Cell Research, 32, 359-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Scholz, B.A., Sumida, N., de Lima, C.D.M., Chachoua, I., Martino, M., Tzelepis, I., et al. (2019) WNT Signaling and AHCTF1 Promote Oncogenic MYC Expression through Super-Enhancer-Mediated Gene Gating. Nature Genetics, 51, 1723-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, H., Mannava, S., Grachtchouk, V., Zhuang, D., Soengas, M.S., Gudkov, A.V., et al. (2008) C-myc Depletion Inhibits Proliferation of Human Tumor Cells at Various Stages of the Cell Cycle. Oncogene, 27, 1905-1915. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bouchard, C., Dittrich, O., Kiermaier, A., Dohmann, K., Menkel, A., Eilers, M., et al. (2001) Regulation of Cyclin D2 Gene Expression by the Myc/Max/Mad Network: Myc-Dependent TRRAP Recruitment and Histone Acetylation at the cyclin D2 Promoter. Genes & Development, 15, 2042-2047. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Yu, Q., Ciemerych, M.A. and Sicinski, P. (2005) Ras and Myc Can Drive Oncogenic Cell Proliferation through Individual D-Cyclins. Oncogene, 24, 7114-7119. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zeller, K.I., Zhao, X., Lee, C.W.H., Chiu, K.P., Yao, F., Yustein, J.T., et al. (2006) Global Mapping of C-Myc Binding Sites and Target Gene Networks in Human B Cells. Proceedings of the National Academy of Sciences, 103, 17834-17839. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Qi, Y., Tu, Y., Yang, D., Chen, Q., Xiao, J., Chen, Y., et al. (2007) Cyclin a but Not Cyclin D1 Is Essential for C-Myc-Modulated Cell-Cycle Progression. Journal of Cellular Physiology, 210, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Nevins, J.R. (2001) The Rb/E2F Pathway and Cancer. Human Molecular Genetics, 10, 699-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Jung, P., Menssen, A., Mayr, D. and Hermeking, H. (2008) AP4 Encodes a C-MYC-Inducible Repressor of p21. Proceedings of the National Academy of Sciences, 105, 15046-15051. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Dillon, R.L., White, D.E. and Muller, W.J. (2007) The Phosphatidyl Inositol 3-Kinase Signaling Network: Implications for Human Breast Cancer. Oncogene, 26, 1338-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Skeen, J.E., Bhaskar, P.T., Chen, C., Chen, W.S., Peng, X., Nogueira, V., et al. (2006) Akt Deficiency Impairs Normal Cell Proliferation and Suppresses Oncogenesis in a P53-Independent and Mtorc1-Dependent Manner. Cancer Cell, 10, 269-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Zhou, F., Li, F., Xie, F., Zhang, Z., Huang, H. and Zhang, L. (2014) TRAF4 Mediates Activation of TGF-β Signaling and Is a Biomarker for Oncogenesis in Breast Cancer. Science China Life Sciences, 57, 1172-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Yang, S., Zhou, L., Reilly, P.T., Shen, S., He, P., Zhu, X., et al. (2016) ANP32B Deficiency Impairs Proliferation and Suppresses Tumor Progression by Regulating AKT Phosphorylation. Cell Death & Disease, 7, e2082. [Google Scholar] [CrossRef] [PubMed]
|