酸性核磷酸蛋白32在恶性肿瘤中的研究进展
Research Progress of Acidic Nuclear Phosphoprotein 32 in Malignant Tumor
摘要: 酸性核磷酸蛋白32B (Acidic Nuclear Phosphate Protein 32B, ANP32B)是ANP32家族中的一员,ANP32蛋白参与多种生理过程,包括细胞分化、凋亡和细胞增殖。近年来的研究证据表明,ANP32B与多种恶性肿瘤的发生发展及预后密切相关。鉴于ANP32B在恶性肿瘤中的重要作用,其有望成为肿瘤诊断与预后评估的新兴生物标志物。本文旨在综述ANP32B在恶性肿瘤研究中的最新进展。
Abstract: Acidic nuclear phosphate protein 32b (ANP32b) is a member of ANP32 family, which is involved in many physiological processes, including cell differentiation, apoptosis and cell proliferation. Recent research evidence shows that ANP32B is closely related to the occurrence, development and prognosis of various malignant tumors. In view of its important role in malignant tumors, ANP32B is expected to become a new biomarker for tumor diagnosis and prognosis evaluation. The purpose of this paper is to review the latest progress of ANP32B in the study of malignant tumors.
文章引用:康玥坤, 龚科瑞. 酸性核磷酸蛋白32在恶性肿瘤中的研究进展[J]. 亚洲急诊医学病例研究, 2025, 13(4): 339-346. https://doi.org/10.12677/acrem.2025.134047

1. 引言

酸性核磷酸蛋白32 (Acidic Nuclear Phosphate Protein 32, ANP32)家族是一类在进化上高度保守的蛋白质。根据人类基因组数据库(GenBank)的记录,该家族包含9个成员,均为智人来源,具体为ANP32A至E (其中ANP32E涵盖5种转录变体)。这些家族成员的氨基酸序列长度介于220至290个残基之间。其结构特点是包含N端的亮氨酸富集重复区(Leucine-Rich Repeat, LRR)和C端的低复杂度酸性区段(Low Complexity Acidic Region, LCAR)。正是这两个区域赋予了翻译后蛋白显著的酸性特征,使其能够与细胞核内的碱性蛋白(如组蛋白)紧密结合,因此ANP32家族成员的主要亚细胞定位是细胞核[1]-[5]。ANP32家族成员参与多种生物学过程,包括染色质重塑[6] [7]、细胞内物质转运[8] [9]和细胞凋亡[10] [11]等。此外,该家族的蛋白还能与SET、KLF5、pRB、NM23H1和Axin-110等多种蛋白结合并相互作用[5],因此,ANP32家族与肿瘤的发生发展密切相关。

酸性核磷酸蛋白32B (Acidic Nuclear Phosphate Protein 32 family member B, ANP32B)是ANP32家族的一个成员[12]。它也具有多个同义词,如PHAPI2、SSP29、PAL31或APRIL [13]。ANP32B最初是从人类B淋巴细胞系H2LCL的细胞质中分离纯化,并被认为与人类白细胞抗原II类分子(Human Leukocyte Antigen class II, HLA-II)相关的细胞内信号转导过程有关[14]。后续研究表明,ANP32B在凋亡小体形成后能够促进caspase-9的激活,从而揭示了其在细胞凋亡过程中作为肿瘤抑制物的调控作用[15]。目前的研究提示,ANP32B与白血病[11] [16]-[19]、肝癌[20]-[22]、乳腺癌[23] [24]、胰腺癌[25]、结直肠癌[26]、以及前列腺癌[27]等多种肿瘤的发生存在关联。本文旨在综述ANP32B的结构特征、生物学功能及其在恶性肿瘤发生发展中的最新研究进展,为恶性肿瘤的临床诊断和治疗新靶点的探索提供参考思路。

2. ANP32B的结构与生物学行为

ANP32B是高度保守的酸性富亮氨酸核磷蛋白32 (ANP32)家族的成员。ANP32蛋白参与多种生理过程,包括细胞分化、凋亡和细胞增殖。ANP32B被鉴定为caspase-3的新型直接底物,并作为白血病细胞凋亡的负调节因子。ANP32B通过调节树突状细胞成熟因子CD83的mRNA向细胞质的转运来控制其表达。它还调节转录因子Kruppel样因子5 (KLF5)的活性。酸性核磷蛋白32B (ANP32B)被确定为与DNA结合蛋白Krüppel样因子相互作用的蛋白,并被证明以启动子区域特异性的方式介导组蛋白掺入。ANP32B还参与细胞凋亡、进入S期和淋巴母细胞调节。ANP32B的组蛋白伴侣活性与ANP32B同源物ANP32A是INHAT (乙酰转移酶抑制剂)复合物组成部分之一的证据相一致,该复合物含有组蛋白伴侣TAF-I (模板活化因子-I),可直接结合核心组蛋白,抑制核心组蛋白H3和H4的乙酰化。ANP32A和ANP32B的氨基酸同一性为69.8%,ANP32磷酸化蛋白家族成员由N端进化保守的富含亮氨酸重复(LRR)结构域和C端可变阴离子区组成。ANP32B是ANP32家族的成员,该家族是酸性、核进化保守的磷蛋白,其特征是N末端区域含有参与蛋白质–蛋白质相互作用的LRR,C末端区域为简单的酸性,含有许多天冬氨酸和谷氨酸残基[6] [7] [23]。LRR参与激素–受体相互作用和酶抑制[6]、基因表达调控[27]、早期哺乳动物发育[9]和凋亡信号传导[25]。C末端酸性结构域可能在核小体组装过程中结合组蛋白伴侣[6]。最近,ANP32B已被证明可作为组蛋白伴侣,也能结合转录因子来调节转录[26] [27]

3. ANP32B对肿瘤的调控作用

3.1. ANP32B与肝细胞肝癌

肝细胞肝癌(HCC)是世界范围内最常见的恶性肿瘤之一[28]。近年来,通过早期诊断和更有效的治疗,HCC的预后已得到显著改善[29]。然而,晚期患者或局部区域治疗后病情进展的患者预后不良[30]。HCC患者具有两大特点。一是HCC常导致多中心致癌,局部区域治疗后常出现复发。二是HCC常伴有肝硬化。重复或侵入性治疗有导致肝衰竭的风险。预测预后和治疗效果的标志物对于选择治疗方法具有重要意义。

据报道,在肝细胞肝癌(HCC)中,酸性富含亮氨酸的核磷蛋白32家族成员A (ANP32A)可促进肿瘤生长,并作为不良预后的标志物[31] [32]。此外,蛋白质组学分析表明ANP32A是HCC组织中的潜在标志物[33]。在肝脏中,ANP32A充当生长因子[34],并保护肝细胞免受CCL4诱导的损伤[35]。ANP32A还能减轻乙醇喂养引起的氧化损伤和纤维化[36]

ANP32B mRNA表达的低肿瘤/非肿瘤比例与晚期UICC分期相关。在人类肝细胞肝癌组织中,TUNEL阳性细胞与ANP32B表达同时存在。肝细胞癌中ANP32B的下调可能导致对细胞凋亡的敏感性降低,从而促进肿瘤进展。这些发现表明,ANP32B与细胞凋亡相关,可作为肝细胞肝癌的预后标志物。此外,ANP32B可作为肝细胞肝癌基因治疗的治疗靶点。因此,抑制ANP32B的下调应能阻止肝细胞肝癌的发展。此外,识别下调ANP32B的因子可能有助于识别与ANP32B相关的肝细胞癌凋亡调控靶点。

ANP32B调节Bad磷酸化以及Bak和Bax的表达,从而调控肝细胞肝癌中的细胞凋亡。尤其值得一提的是,ANP32B的下调在抑制细胞凋亡方面发挥着作用。ANP32B可能成为肝细胞肝癌治疗的一个潜在靶点。

3.2. ANP32B与血液系统肿瘤

ATRA信号传导通过RARa髓系细胞分化[37] [38],在此期间,RARa视黄酸反应元件(RARE)位于RARb [19]和RARc [20]等许多基因的启动子中,并刺激负责ATRA诱导分化的基因转录。最近,ANP32B被鉴定为一种新型组蛋白伴侣,与转录因子KLF5特异性结合,通过抑制启动子组蛋白乙酰化导致KLF5下游基因的转录抑制[39]。基于这些发现,我们提出RAR a是另一种由ANP32B调节的转录因子。因此,我们试图检查ANP32B是否能调控RARa的转录活性,发现ANP32B过表达显著抑制了RARa荧光素酶报告基因测定法对RARb启动子的ATRA依赖性激活。ANP32B如何抑制RARa的ATRA激活转录活性仍有待研究ANP32B的下调不仅增强了白血病细胞的细胞凋亡,而且还有助于ATRA诱导的白血病细胞分化。因此,ANP32B可能作为白血病治疗的潜在治疗靶点。

首次为ANP32B在B-ALL中的抑癌作用提供了证据。与非白血病对照相比,CML患者的ANP32B表达较高,而通过数据库分析和临床患者样本发现B-ALL患者的ANP32B表达受到抑制,ANP32B表达低的患者预后较差。DNA高甲基化和翻译后调控是抑癌基因失调的常见机制[40] [41],因此B-ALL患者中ANP32B下调的潜在机制有待进一步研究。使用了两种特征明确的小鼠模型来研究Anp32b缺陷对B-ALL发生和发展的影响。定向祖细胞B细胞中的N-myc过表达能够诱导前B-ALL/淋巴瘤[42]。BCR-ABL p190诱导的小鼠模型是一种与人类相关的模型,反映了人类疾病的病理,因为人类B-ALL细胞通常含有BCR-ABL p190融合基因[43]。Yang等人研究表明[44],Anp32b缺陷在两种模型中均显着促进B-ALL的发展,这表明ANP32B对由不同基因突变体驱动的不同类型B-ALL具有相同的影响。证明ANP32B与PU.1相互作用并增强其转录活性,从而抑制小鼠B-ALL的发生发展。值得注意的是,ANP32B在B-ALL患者中表达较低,因此上调ANP32B的表达有望成为治疗B-ALL的一种极具前景的治疗策略。

3.3. ANP32B与前列腺癌

前列腺癌(PC)影响着全球数百万男性;其发病率和死亡率都在上升[45]。尽管降低AR信号的雄激素剥夺治疗(ADT)最初有效,但随后调控基因的突变最终导致去势抵抗性前列腺癌(CRPC),这与病情进一步进展和侵袭性相关[46] [47]。多西他赛和第二代雄激素受体靶向药物(恩杂鲁胺和阿比特龙)是CRPC的传统标准治疗方法[48] [49];耐药性不可避免地会出现。新的治疗策略至关重要。

Zhou等人[50]发现ANP32B敲低后c-Myc蛋白和mRNA水平降低,这表明ANP32B组蛋白伴侣可能直接与c-Myc结合,从而调节其转录活性或上游控制通路,如MAPK/ERK/P38 [51],JAK/STAT通路[52],PI3K/AKT通路[53]和/或经典的WNT/β-catenin通路[54],间接影响c-Myc活性。我们发现c-Myc活性受ANP32B调控,这是一个新发现;ANP32B下游存在一条新的致癌途径。

c-Myc是一种“全局”转录因子,影响免疫系统和许多下游事件,包括细胞增殖、分化、存活和凋亡[53]。我们发现ANP32B敲低会抑制PC细胞生长/增殖,而异位c-Myc表达可挽救这些缺陷。细胞周期分析表明,异位c-Myc还可挽救shANP32B细胞中的细胞周期G0/G1阻滞以及细胞周期蛋白DI和E1以及p-Rb蛋白表达。我们发现c-Myc显著影响细胞周期和细胞增殖。在之前的研究中,shRNA介导的10种癌细胞系中的c-Myc敲低引发了G0/G1细胞周期阻滞[53] [54]。c-Myc诱导CDK2、CDK4和CDK6 [32]以及细胞周期蛋白D1 [54]、D2 [56]、D3 [57]、E1 [58]、E2 [59]的表达。细胞周期蛋白E1/2-CDK2复合物是G1末期Rb磷酸化所必需的[60]。此外,c-Myc可以反式激活AP4以消除TGF-β诱导的p21表达[61]。这些研究结果以及我们的研究结果表明ANP32B通过c-Myc信号传导调节PC细胞增殖和细胞周期。

ANP32B敲低可降低c-Myc信号,进而抑制前列腺癌(PC)细胞生长。Zhou等人研究表明[62]ANP32B与c-Myc信号之间存在调控关联,这进一步加深了对c-Myc如何调控恶性肿瘤的认识。ANP32B在PC组织中的水平较高,尤其是在高GS患者中。因此,ANP32B既可以作为PC的有用预后生物标志物,也可以作为有价值的治疗靶点。

3.4. ANP32B与乳腺癌

ANP32B蛋白在乳腺癌患者中高表达,且其表达水平与乳腺癌组织的组织学分级直接相关。这些数据提示ANP32B可作为乳腺癌治疗的预测指标。肿瘤和敲低模型中ANP32B的表达升高也与p-AKT的高表达相关,提示ANP32B可能通过其作用机制影响细胞增殖和肿瘤进展。

已证实激活的AKT通路在正常细胞和乳腺癌细胞增殖中发挥重要作用[63] [64]。我们发现,在ANP32B敲低的细胞中,p-AKT水平显著降低。此外,恢复AKT或维持AKT的组成性活性表达可以挽救ANP32B缺陷对细胞增殖的抑制,ANP32B缺陷对乳腺癌细胞增殖的抑制主要通过激活AKT介导。

Yang等人研究[65]表明,ANP32B通过对p-AKT的正向调控,发挥着细胞增殖的主要促进作用。在生理学背景下,ANP32B的敲除会阻碍哺乳动物的正常发育;而在病理学背景下,ANP32B的缺失则可抑制肿瘤的生长和转化。值得注意的是,ANP32B在乳腺癌患者中检测出率较高,因此ANP32B有望成为乳腺癌治疗的潜在靶点。

4. 小结与展望

综上所述,ANP32B在转录及翻译后水平上,均参与调控细胞增殖、细胞凋亡、细胞周期进程和基因表达等关键生物学过程。近年来的研究报道提示,ANP32B可作为关键的细胞辅助因子或限制因子,参与多种病毒在人体内复制的过程。然而,相较于其广泛的生物学功能,目前关于ANP32B在肿瘤发生发展中的研究仍显不足。已有证据表明,ANP32B可通过调控周期相关蛋白(如Bcl-2、Bad、Bak和Bax)来影响肿瘤细胞的凋亡进程;此外,ANP32B也可能与MARK及PI3K-AKT信号通路相互作用,从而在肿瘤发生中发挥促进作用。基于这些发现,ANP32B展现出成为新型恶性肿瘤预后生物标志物及潜在药物治疗靶点的潜力。然而,ANP32B在肿瘤发生发展中的具体作用机制仍需通过大样本、多角度地深入研究加以阐明。特别是在肿瘤侵袭转移、血管生成以及抗肿瘤药物耐药性等方面,相关研究尚待深入,以期填补现有知识空白,为肿瘤的诊断、治疗和预防策略创新提供新的科学依据。

参考文献

[1] Kadkol, S.S., Brody, J.R., Epstein, J.I., Kuhajda, F.P. and Pasternack, G.R. (1998) Novel Nuclear Phosphoprotein pp32 Is Highly Expressed in Intermediate-and High-Grade Prostate Cancer. The Prostate, 34, 231-237. [Google Scholar] [CrossRef
[2] Mutai, H., Toyoshima, Y., Sun, W., Hattori, N., Tanaka, S. and Shiota, K. (2000) PAL31, a Novel Nuclear Protein, Expressed in the Developing Brain. Biochemical and Biophysical Research Communications, 274, 427-433. [Google Scholar] [CrossRef] [PubMed]
[3] Pan, W., da Graca, L.S., Shao, Y., Yin, Q., Wu, H. and Jiang, X. (2009) PHAPI/pp32 Suppresses Tumorigenesis by Stimulating Apoptosis. Journal of Biological Chemistry, 284, 6946-6954. [Google Scholar] [CrossRef] [PubMed]
[4] Khan, M.Z., Vaidya, A. and Meucci, O. (2011) CXCL1 2-Mediated Regulation of ANP32A/LANP, a Component of the Inhibitor of Histone Acetyl Transferase (INHAT) Complex, in Cortical Neurons. Journal of Neuroimmune Pharmacology, 6, 163-170.
[5] Reilly, P.T., Yu, Y., Hamiche, A., et al. (2014) Cracking the ANP32 Whips: Important Functions, Unequal Requirement, and Hints at Disease Implications. Bioessays, 36, 1062-1071.
[6] Katayose, Y., Li, M., Al-Murrani, S.W.K., Shenolikar, S. and Damuni, Z. (2000) Protein Phosphatase 2A Inhibitors, I1PP2A and I2PP2A, Associate with and Modify the Substrate Specificity of Protein Phosphatase 1. Journal of Biological Chemistry, 275, 9209-9214. [Google Scholar] [CrossRef] [PubMed]
[7] Habrukowich, C., Han, D.K., Le, A., Rezaul, K., Pan, W., Ghosh, M., et al. (2010) Sphingosine Interaction with Acidic Leucine-Rich Nuclear Phosphoprotein-32a (ANP32A) Regulates PP2A Activity and Cyclooxygenase (COX)-2 Expression in Human Endothelial Cells. Journal of Biological Chemistry, 285, 26825-26831. [Google Scholar] [CrossRef] [PubMed]
[8] Moore, M.J. and Rosbash, M. (2001) TAPping into mRNA Export. Science, 294, 1841-1842. [Google Scholar] [CrossRef] [PubMed]
[9] Fries, B., Heukeshoven, J., Hauber, I., Grüttner, C., Stocking, C., Kehlenbach, R.H., et al. (2007) Analysis of Nucleocytoplasmic Trafficking of the Hur Ligand APRIL and Its Influence on CD83 Expression. Journal of Biological Chemistry, 282, 4504-4515. [Google Scholar] [CrossRef] [PubMed]
[10] Kim, H., Jiang, X., Du, F. and Wang, X. (2008) PHAPI, CAS, and Hsp70 Promote Apoptosome Formation by Preventing Apaf-1 Aggregation and Enhancing Nucleotide Exchange on Apaf-1. Molecular Cell, 30, 239-247. [Google Scholar] [CrossRef] [PubMed]
[11] Shen, S.M., Yu, Y., Wu, Y.L., et al. (2010) Downregulation of ANP32B, a Novel Substrate of Caspase-3, Enhances Caspase-3 Activation and Apoptosis Induction in Myeloid Leukemic Cells. Carcinogenesis, 31, 419-426. [Google Scholar] [CrossRef] [PubMed]
[12] Matilla, A. and Radrizzani, M. (2005) The Anp32 Family of Proteins Containing Leucine-Rich Repeats. The Cerebellum, 4, 7-18. [Google Scholar] [CrossRef] [PubMed]
[13] Leo, V.I., Bunte, R.M. and Reilly, P.T. (2016) BALB/c-Congenic Anp32b-Deficient Mice Reveal a Modifying Locus That Determines Viability. Experimental Animals, 65, 53-62. [Google Scholar] [CrossRef] [PubMed]
[14] Vaesen, M., Barnikol-Watanabe, S., Gotz, H., et al. (1994) Purification and Characterization of Two Putative HLA Class II Associated Proteins: PHAPI and PHAPII. Biological Chemistry Hoppe-Seyler, 375, 113-126.
[15] Jiang, X., Kim, H., Shu, H., Zhao, Y., Zhang, H., Kofron, J., et al. (2003) Distinctive Roles of PHAP Proteins and Prothymosin-α in a Death Regulatory Pathway. Science, 299, 223-226. [Google Scholar] [CrossRef] [PubMed]
[16] Sun, W., Kimura, H., Hattori, N., Tanaka, S., Matsuyama, S. and Shiota, K. (2006) Proliferation Related Acidic Leucine-Rich Protein PAL31 Functions as a Caspase-3 Inhibitor. Biochemical and Biophysical Research Communications, 342, 817-823. [Google Scholar] [CrossRef] [PubMed]
[17] Sun, W., Hattori, N., Mutai, H., Toyoshima, Y., Kimura, H., Tanaka, S., et al. (2001) PAL31, a Nuclear Protein Required for Progression to the S Phase. Biochemical and Biophysical Research Communications, 280, 1048-1054. [Google Scholar] [CrossRef] [PubMed]
[18] Yu, Y., Shen, S., Zhang, F., Wu, Z., Han, B. and Wang, L. (2012) Acidic Leucine-Rich Nuclear Phosphoprotein 32 Family Member B (ANP32B) Contributes to Retinoic Acid-Induced Differentiation of Leukemic Cells. Biochemical and Biophysical Research Communications, 423, 721-725. [Google Scholar] [CrossRef] [PubMed]
[19] Li, C.X., Shen, S.M., Wang, L.S., et al. (2015) Caspase-3-Resistant Uncleavable form of Acidic Leucine-Rich Nuclear Phosphoprotein 32B Potentiates Leukemic Cell Apoptosis. Molecular Medicine Reports, 11, 2813-2818.
[20] Ohno, Y., Koizumi, M., Nakayama, H., et al. (2017) Downregulation of ANP32B Exerts Anti-Apoptotic Effects in Hepatocellular Carcinoma. PLOS ONE, 12, e0177343.
[21] 朱迪, 朱晓娜, 杨烁, 等. 酸性亮氨酸核磷酸蛋白32B在肝癌组织表达增强并促进肝癌细胞生长的研究[J]. 诊断学理论与实践, 2019, 18(2): 170-176.
[22] 朱迪. ANP32B在肝癌发生发展中的作用研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
[23] Reilly, P.T., Afzal, S., Gorrini, C., et al. (2011) Acidic Nuclear Phosphoprotein 32kDa (ANP32) B-Deficient Mouse Reveals a Hierarchy of ANP32 Importance in Mammalian Development. Proceedings of the National Academy of Sciences of the United States of America, 108, 10243-10248.
[24] Yang, S., Zhou, L., Reilly, P.T., Shen, S., He, P., Zhu, X., et al. (2016) ANP32B Deficiency Impairs Proliferation and Suppresses Tumor Progression by Regulating AKT Phosphorylation. Cell Death & Disease, 7, e2082. [Google Scholar] [CrossRef] [PubMed]
[25] D’Angelo, A., Sobhani, N., Roviello, G., et al. (2019) Tumour Infiltrating Lymphocytes and Immune-Related Genes as Predictors of Outcome in Pancreatic Adenocarcinoma. PLOS ONE, 14, e0219566.
[26] Uzozie, A.C., Selevsek, N., Wahlander, A., Nanni, P., Grossmann, J., Weber, A., et al. (2017) Targeted Proteomics for Multiplexed Verification of Markers of Colorectal Tumorigenesis. Molecular & Cellular Proteomics, 16, 407-427. [Google Scholar] [CrossRef] [PubMed]
[27] Snezhkina, A.V.,. Lukyanova, E.N., Fedorova, M.S., et al. (2019) Novel Genes Associated with the Development of Carotid Paragangliomas. Journal of Molecular Biology, 53, 613-626.
[28] Bosch, F.X., Ribes, J., Díaz, M. and Cléries, R. (2004) Primary Liver Cancer: Worldwide Incidence and Trends. Gastroenterology, 127, S5-S16. [Google Scholar] [CrossRef] [PubMed]
[29] Saraswat, V.A., Pandey, G. and Shetty, S. (2014) Treatment Algorithms for Managing Hepatocellular Carcinoma. Journal of Clinical and Experimental Hepatology, 4, S80-S89.
[30] Siegel, A.B., Olsen, S.K., Magun, A. and Brown, R.S. (2010) Sorafenib: Where Do We Go from Here? Hepatology, 52, 360-369.
[31] Zhu, B., Li, X., Liu, Y., Chang, J., Liu, Y., Zhang, D., et al. (2010) Involvement of Hepatopoietin Cn in the Development of Human Hepatocellular Carcinoma. Clinical & Experimental Metastasis, 27, 571-580. [Google Scholar] [CrossRef] [PubMed]
[32] Chang, J. (2010) Hepatopoietin Cn Suppresses Apoptosis of Human Hepatocellular Carcinoma Cells by Up-Regulating Myeloid Cell Leukemia-1. World Journal of Gastroenterology, 16, 193. [Google Scholar] [CrossRef] [PubMed]
[33] Li, C., Ruan, H., Liu, Y., Xu, M., Dai, J., Sheng, Q., et al. (2011) Quantitative Proteomics Reveal Up-Regulated Protein Expression of the SET Complex Associated with Hepatocellular Carcinoma. Journal of Proteome Research, 11, 871-885. [Google Scholar] [CrossRef] [PubMed]
[34] 崔春平, 张大庆, 石炳祥, 杜绍江, 吴丹, 魏平, 等. 新型人类肝脏生长因子——肝细胞生成素的分离及功能鉴定[J]. 肝脏病学, 2008(47): 986-995.
[35] 崔春平, 魏平, 刘燕, 张大庆, 王立新, 吴程特. 肝细胞生成素Cn对四氯化碳诱导大鼠肝损伤的保护作用[J]. 肝病学研究, 2009(39): 200-206.
[36] Liu, Y., Saiyan, S., Men, T., Gao, H., Wen, C., Liu, Y., et al. (2013) Hepatopoietin Cn Reduces Ethanol-Induced Hepatoxicity via Sphingosine Kinase 1 and Sphingosine 1-phosphate Receptors. The Journal of Pathology, 230, 365-376. [Google Scholar] [CrossRef] [PubMed]
[37] Zhu, J. (2001) Lineage Restriction of the Raralpha Gene Expression in Myeloid Differentiation. Blood, 98, 2563-2567. [Google Scholar] [CrossRef] [PubMed]
[38] Collins, S.J. (2002) The Role of Retinoids and Retinoic Acid Receptors in Normal Hematopoiesis. Leukemia, 16, 1896-1905. [Google Scholar] [CrossRef] [PubMed]
[39] de The, H., del Mar Vivanco-Ruiz, M., Tiollais, P., Stunnenberg, H. and Dejean, A. (1990) Identification of a Retinoic Acid Responsive Element in the Retinoic Acid Receptor & Beta Gene. Nature, 343, 177-180. [Google Scholar] [CrossRef] [PubMed]
[40] Lehmann, J.M., Zhang, X.K. and Pfahl, M. (1992) RAR Gamma 2 Expression Is Regulated through a Retinoic Acid Response Element Embedded in Sp1 Sites. Molecular and Cellular Biology, 12, 2976-2985. [Google Scholar] [CrossRef
[41] Munemasa, Y., Suzuki, T., Aizawa, K., Miyamoto, S., Imai, Y., Matsumura, T., et al. (2008) Promoter Region-Specific Histone Incorporation by the Novel Histone Chaperone ANP32B and DNA-Binding Factor Klf5. Molecular and Cellular Biology, 28, 1171-1181. [Google Scholar] [CrossRef] [PubMed]
[42] Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. In: Advances in Genetics, Elsevier, 27-56. [Google Scholar] [CrossRef] [PubMed]
[43] Chen, L., Liu, S. and Tao, Y. (2020) Regulating Tumor Suppressor Genes: Post-Translational Modifications. Signal Transduction and Targeted Therapy, 5, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
[44] Sugihara, E., Shimizu, T., Kojima, K., Onishi, N., Kai, K., Ishizawa, J., et al. (2012) Ink4a and Arf Are Crucial Factors in the Determination of the Cell of Origin and the Therapeutic Sensitivity of Myc-Induced Mouse Lymphoid Tumor. Oncogene, 31, 2849-2861. [Google Scholar] [CrossRef] [PubMed]
[45] Chen, C., Hao, X., Lai, X., Liu, L., Zhu, J., Shao, H., et al. (2021) Oxidative Phosphorylation Enhances the Leukemogenic Capacity and Resistance to Chemotherapy of B Cell Acute Lymphoblastic Leukemia. Science Advances, 7, eabd6280. [Google Scholar] [CrossRef] [PubMed]
[46] Yang, Q., Liu, H.R., Yang, S., Wei, Y.S., et al. (2023) ANP32B Suppresses B-Cell Acute Lymphoblastic Leukemia through Activation of PU.1 in Mice. Cancer Science, 114, 2882-2894. [Google Scholar] [CrossRef] [PubMed]
[47] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
[48] Rebello, R.J., Oing, C., Knudsen, K.E., Loeb, S., Johnson, D.C., Reiter, R.E., et al. (2021) Prostate Cancer. Nature Reviews Disease Primers, 7, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
[49] Pagliarulo, V., Bracarda, S., Eisenberger, M.A., Mottet, N., Schröder, F.H., Sternberg, C.N., et al. (2012) Contemporary Role of Androgen Deprivation Therapy for Prostate Cancer. European Urology, 61, 11-25. [Google Scholar] [CrossRef] [PubMed]
[50] Sandhu, S., Moore, C.M., Chiong, E., Beltran, H., Bristow, R.G. and Williams, S.G. (2021) Prostate Cancer. The Lancet, 398, 1075-1090. [Google Scholar] [CrossRef] [PubMed]
[51] Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Cumberbatch, M.G., De Santis, M., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. European Urology, 79, 263-282. [Google Scholar] [CrossRef] [PubMed]
[52] Wang, X., Wei, Y., Hu, B., Liao, Y., Wang, X., Wan, W., et al. (2022) C-Myc-Driven Glycolysis Polarizes Functional Regulatory B Cells That Trigger Pathogenic Inflammatory Responses. Signal Transduction and Targeted Therapy, 7, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
[53] Lu, X., An, L., Fan, G., Zang, L., Huang, W., Li, J., et al. (2022) EGFR Signaling Promotes Nuclear Translocation of Plasma Membrane Protein TSPAN8 to Enhance Tumor Progression via Stat3-Mediated Transcription. Cell Research, 32, 359-374. [Google Scholar] [CrossRef] [PubMed]
[54] Scholz, B.A., Sumida, N., de Lima, C.D.M., Chachoua, I., Martino, M., Tzelepis, I., et al. (2019) WNT Signaling and AHCTF1 Promote Oncogenic MYC Expression through Super-Enhancer-Mediated Gene Gating. Nature Genetics, 51, 1723-1731. [Google Scholar] [CrossRef] [PubMed]
[55] Wang, H., Mannava, S., Grachtchouk, V., Zhuang, D., Soengas, M.S., Gudkov, A.V., et al. (2008) C-myc Depletion Inhibits Proliferation of Human Tumor Cells at Various Stages of the Cell Cycle. Oncogene, 27, 1905-1915. [Google Scholar] [CrossRef] [PubMed]
[56] Bouchard, C., Dittrich, O., Kiermaier, A., Dohmann, K., Menkel, A., Eilers, M., et al. (2001) Regulation of Cyclin D2 Gene Expression by the Myc/Max/Mad Network: Myc-Dependent TRRAP Recruitment and Histone Acetylation at the cyclin D2 Promoter. Genes & Development, 15, 2042-2047. [Google Scholar] [CrossRef] [PubMed]
[57] Yu, Q., Ciemerych, M.A. and Sicinski, P. (2005) Ras and Myc Can Drive Oncogenic Cell Proliferation through Individual D-Cyclins. Oncogene, 24, 7114-7119. [Google Scholar] [CrossRef] [PubMed]
[58] Zeller, K.I., Zhao, X., Lee, C.W.H., Chiu, K.P., Yao, F., Yustein, J.T., et al. (2006) Global Mapping of C-Myc Binding Sites and Target Gene Networks in Human B Cells. Proceedings of the National Academy of Sciences, 103, 17834-17839. [Google Scholar] [CrossRef] [PubMed]
[59] Qi, Y., Tu, Y., Yang, D., Chen, Q., Xiao, J., Chen, Y., et al. (2007) Cyclin a but Not Cyclin D1 Is Essential for C-Myc-Modulated Cell-Cycle Progression. Journal of Cellular Physiology, 210, 63-71. [Google Scholar] [CrossRef] [PubMed]
[60] Nevins, J.R. (2001) The Rb/E2F Pathway and Cancer. Human Molecular Genetics, 10, 699-703. [Google Scholar] [CrossRef] [PubMed]
[61] Jung, P., Menssen, A., Mayr, D. and Hermeking, H. (2008) AP4 Encodes a C-MYC-Inducible Repressor of p21. Proceedings of the National Academy of Sciences, 105, 15046-15051. [Google Scholar] [CrossRef] [PubMed]
[62] Dillon, R.L., White, D.E. and Muller, W.J. (2007) The Phosphatidyl Inositol 3-Kinase Signaling Network: Implications for Human Breast Cancer. Oncogene, 26, 1338-1345. [Google Scholar] [CrossRef] [PubMed]
[63] Skeen, J.E., Bhaskar, P.T., Chen, C., Chen, W.S., Peng, X., Nogueira, V., et al. (2006) Akt Deficiency Impairs Normal Cell Proliferation and Suppresses Oncogenesis in a P53-Independent and Mtorc1-Dependent Manner. Cancer Cell, 10, 269-280. [Google Scholar] [CrossRef] [PubMed]
[64] Zhou, F., Li, F., Xie, F., Zhang, Z., Huang, H. and Zhang, L. (2014) TRAF4 Mediates Activation of TGF-β Signaling and Is a Biomarker for Oncogenesis in Breast Cancer. Science China Life Sciences, 57, 1172-1176. [Google Scholar] [CrossRef] [PubMed]
[65] Yang, S., Zhou, L., Reilly, P.T., Shen, S., He, P., Zhu, X., et al. (2016) ANP32B Deficiency Impairs Proliferation and Suppresses Tumor Progression by Regulating AKT Phosphorylation. Cell Death & Disease, 7, e2082. [Google Scholar] [CrossRef] [PubMed]