纤维化性间质性肺疾病低氧血症研究进展
Research Progress on Hypoxemia in Fibrotic Interstitial Lung Disease
摘要: 纤维化性间质性肺疾病(F-ILD)是一组以肺间质纤维化为主要特征的异质性疾病,常伴随气体交换受损和低氧血症。劳力性低氧血症是F-ILD早期的常见表现,可在肺功能相对保留时即出现,并随着病情进展演变为静息性低氧血症,而夜间低氧血症在临床实践中常被忽视,但与疾病进展和死亡风险密切相关。近年来的研究表明,低氧血症的发生机制涉及通气–灌注比例失调、弥散功能障碍、低氧性肺血管收缩等。弥散量下降是预测劳力性和静息性低氧血症的重要指标,夜间低氧血症则与肺动脉高压密切相关。不同类型低氧血症均提示不良预后,其识别对于疾病分期和预后评估具有重要意义。氧疗作为目前主要的干预措施,包括长期氧疗、动态氧疗和夜间氧疗,可改善症状和生活质量,但其对生存的获益仍缺乏确切证据。综上,F-ILD患者低氧血症的早期识别与干预应受到重视,未来需进一步通过大样本、前瞻性研究明确不同类型低氧血症的临床价值,并优化氧疗策略以改善患者结局。
Abstract: Fibrotic interstitial lung disease (F-ILD) is a heterogeneous group of disorders characterized by interstitial pulmonary fibrosis, often accompanied by impaired gas exchange and hypoxemia. Exertional hypoxemia is a common early manifestation of F-ILD and may occur even when lung function is relatively preserved, progressing to resting hypoxemia as the disease advances. Nocturnal hypoxemia, frequently overlooked in clinical practice, is closely associated with disease progression and increased mortality risk. Recent studies indicate that the mechanisms underlying hypoxemia involve ventilation-perfusion mismatch, diffusion impairment, and hypoxic pulmonary vasoconstriction. Reduced diffusing capacity is a significant predictor of exertional and resting hypoxemia, while nocturnal hypoxemia is strongly linked to pulmonary hypertension. All types of hypoxemia indicate poor prognosis, and their identification plays a crucial role in disease staging and outcome assessment. Oxygen therapy, including long-term oxygen therapy, ambulatory oxygen therapy, and nocturnal oxygen therapy, is the primary intervention to alleviate symptoms and improve quality of life, though its survival benefits remain inconclusive. In conclusion, early recognition and intervention of hypoxemia in F-ILD patients should be prioritized. Future large-scale, prospective studies are needed to clarify the clinical significance of different hypoxemia types and optimize oxygen therapy strategies to improve patient outcomes.
文章引用:樊俊玲, 陈亚娟. 纤维化性间质性肺疾病低氧血症研究进展[J]. 临床医学进展, 2025, 15(11): 408-415. https://doi.org/10.12677/acm.2025.15113112

1. 引言

纤维化性间质性肺疾病(Fibrosing Interstitial Lung Disease, F-ILD)是一类以明显肺间质纤维化伴炎症为特征的异质性疾病。部分间质性肺疾病(ILD)即使经过积极治疗,仍呈现与特发性肺纤维化(Idiopathic Pulmonary Fibrosis, IPF)相似的临床过程,表现为呼吸道症状加重、肺功能持续下降及早期死亡风险增加,称为进展性F-ILD (Progressive F-ILD) [1]。F-ILD患者普遍存在限制性通气功能障碍和气体交换受损,常导致劳力性低氧血症,并随疾病进展演变为静息性低氧血症[2]。此外,夜间低氧血症在ILD中亦较为常见,已被证实与患者预后密切相关[3]-[6]。然而,劳力性和夜间低氧血症在临床实践中常被忽视,其病理生理机制及预后意义尚未充分阐明。鉴于低氧血症在F-ILD进展与死亡风险中的重要作用,本文旨在综述不同类型低氧血症的发生机制及临床意义,强调早期识别与干预的必要性,以期为疾病严重程度评估及个体化治疗策略提供参考。

2. 低氧血症概念及在ILD中发病率

2.1. 劳力性低氧血症

ILD患者,尤其是IPF患者,常表现为活动后呼吸困难并逐渐加重,伴随血氧饱和度下降。劳力性低氧血症通常定义为六分钟步行试验(Six-Minute Walk Test, 6MWT)中脉搏血氧饱和度(Pulse Oxygen Saturation, SpO2)最低值 < 88%。部分需要动态氧疗的患者亦属于此类。劳力性低氧血症在F-ILD中十分常见,一项国际多中心研究显示其在1年、2年和5年的累积发生率分别为6.1%、17.3%和40.1% [7]

2.2. 静息性低氧血症

随着ILD疾病进展,部分患者由劳力性低氧血症逐渐演变为静息性低氧血症。其定义包括:① 6MWT起始时SpO2 < 88%;② 动脉血气分析提示动脉血氧分压(Partial Pressure of Arterial Oxygen, PaO2) ≤ 60~65 mmHg,或PaO2 < 60 mmHg并伴随或不伴随低氧相关器官损伤(如右心衰竭、肺动脉高压、红细胞增多症);③ 长期依赖氧疗的患者亦可视为存在静息性低氧血症[8]。研究显示,F-ILD患者中静息性低氧血症在1年、2年和5年的累积发生率分别为2.4%、5.6%和16.5% [7]。其中,IPF患者发生劳力性和静息性低氧血症的风险均显著高于非IPF纤维化ILD患者。重度静息性低氧血症通常定义为PaO2 ≤ 55 mmHg,或PaO2为56~59 mmHg且伴随低氧性器官损伤,其发生率约为25%~28% [9]

2.3. 夜间低氧血症

夜间低氧血症在ILD患者中相对常见,但在临床中易被忽视。临床上常用的定义为:睡眠期间SpO2 < 90%的时间占总睡眠时间(Total Sleep Time, TST)的比例 ≥ 10% [10]。现有研究表明,夜间低氧血症在ILD中的患病率为26%~37% [11]。一项针对34例IPF患者的研究发现,所有受试者均存在夜间低氧血症[12]。另有研究提示,即便在未出现劳力性低氧血症的ILD患者中,仍可能发生夜间低氧血症[13]

3. ILD低氧血症病理生理级联反应

在F-ILD患者中,劳力性低氧血症往往由多重因素共同作用引起,包括通气–灌注不匹配、弥散功能受限伴肺泡–毛细血管膜破裂、劳力时混合静脉血氧浓度低、血液通过肺血管时间加快使氧合时间减少和骨骼肌对氧的摄取成比例增加等[7]。夜间低氧血症则与睡眠过程中肺泡低通气密切相关。主要因素包括:呼吸中枢驱动减弱、呼吸肌活动降低、气道阻力增加等。这些改变导致通气/血流比失调,从而进一步加重低氧状态。ILD患者在仰卧位时更易发生夜间低氧血症,其原因在于睡眠状态下通气驱动进一步降低,加重低通气现象。阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea, OSA)是ILD患者的常见合并症。在伴有OSA的患者中,夜间低氧血症往往更为严重,表现为胸腔内压力显著波动和反复通气/再通气过程,这些改变可能造成肺泡上皮细胞损伤,从而诱发或加重夜间低氧血症[14]

缺氧被认为是IPF的早期特征。其不仅可促进成纤维细胞增殖,还会形成“缺氧–纤维化”的恶性循环。一项研究[15]证明了低氧可促进IPF间充质祖细胞的自我更新,其机制涉及缺氧介导的乳酸脱氢酶A功能增强和乳酸的产生和释放,同时缺氧也增加了缺氧诱导因子(HIF1α)的水平,而这种增加反过来又增加了G蛋白偶联受体81的表达,外源性乳酸通过G蛋白偶联受体81促进IPF间充质祖细胞自我更新。因此,低氧可通过乳酸/G蛋白偶联受体81/HIF-1α途径形成前馈回路,增强IPF间充质祖细胞的纤维化潜能,从而直接推动肺纤维化的进展。

在ILD患者中,肺动脉高压的发生率较高,且被认为是预测死亡风险的重要指标[16]。其发生与慢性肺泡低氧及肺血管重构密切相关[17] [18]。劳力性或夜间低氧血症导致肺泡长期处于低氧环境。与体循环血管在低氧状态下扩张不同,肺血管在血氧分压下降时出现收缩,即所谓低氧性肺血管收缩(Hypoxic Pulmonary Vasoconstriction, HPV)。在健康肺组织中,HPV通过将血流从缺氧区域重新分配至氧合较好的区域,从而改善通气/灌注匹配,维持动脉血氧。然而,在大面积纤维化和弥漫性肺泡缺氧的背景下,长期反复的低氧可导致肺血管重构,包括平滑肌增生及血管腔狭窄。这一过程最终导致可用于气体交换的毛细血管床减少,推动间质性肺疾病与肺动脉高压的进展,并导致预后不良。

4. ILD中低氧血症的早期识别工具

ILD患者在肺功能检查中主要表现为限制性通气功能障碍,典型特征包括用力肺活量(Forced Lung Capacity, FVC)、总肺活量(Total Lung Capacity, TLC)及一氧化碳弥散量(Diffusing Capacity of the Lungs for Carbon Monoxide, DLCO)下降。值得注意的是,即使肺功能参数相对保留,患者仍可能出现劳力性低氧血症;随着病情进展,则可能进一步发展为静息性低氧血症。多项研究表明,DLCO是预测劳力性低氧血症最重要的指标[19]。在纤维化ILD中,DLCO下降也是劳力性低氧血症进展为静息性低氧血症的唯一独立预测因子[7],其机制可能与纤维化导致的肺泡–毛细血管膜破坏和气体交换障碍直接相关。Saleem等[20]建立并验证了一种预测F-ILD患者新发劳力性和静息性低氧血症的风险评估工具。结果显示:年龄较大、体重指数较高、FVC%及DLCO%较低,以及诊断为IPF的患者,更易发生劳力性或新发静息性低氧血症,其具体评分模型见表1

夜间低氧血症往往与DLCO下降以及肺动脉高压相关,其常用指标包括三尖瓣反流速度、肺动脉直径及脑钠肽水平等[11]。此外,静息状态下的SpO2与肺动脉收缩压呈显著相关性[21]。因此,对于静息状态下SpO2较低的ILD患者,应高度警惕合并肺动脉高压及夜间低氧血症的可能。

Table 1. Prediction model of new onset fatigue hypoxemia and new onset resting hypoxemia

1. 新发劳力性低氧血症和新发静息性低氧血症预测模型

预测因素

分数

年龄(岁)

≤60

0

>60

1

体重指数(kg/m2)

<25

0

≥25

2

FVC%预计值

>75

0

50~75

2

<50

3

DLCO%预计值

>55

0

36~55

2

≤35 or cannot perform

3

ILD亚型

非IPF

0

IPF

2

总分

11

6个月后新发劳力性和静息性低氧血症风险:

风险类型

总分

初始风险

末次随访风险

劳力性

低氧血症

静息性

低氧血症

劳力性

低氧血症

静息性

低氧血症

轻危

0~

3.8

0.2

12.2

1.4

中危

4~5

8.3

2.6

28.1

9.4

高危

>5

19.0

7.3

46.3

24.3

5. ILD患者低氧血症的预后评估

5.1. 劳力性及静息性低氧血症

在普通型间质性肺炎(Usual Interstitial Pneumonia, UIP)和非特异性间质性肺炎(Non-Specific Interstitial Pneumonia, NSIP)患者中,6MWT期间血氧饱和度下降十分常见。研究显示,约90%的UIP和NSIP患者在运动过程中SpO2下降≥2%,其中约50%的UIP患者和36%的NSIP患者SpO2降至88%以下[3]。值得注意的是,即使SpO2未下降至88%的阈值,6MWT中出现的血氧饱和度下降仍与死亡风险增加相关[4]。美国胸科学会的共识声明也指出,运动时SpO2下降 ≥ 4%是IPF患者不良预后的重要指标[22]。因此,运动相关的血氧饱和度变化可为ILD患者提供有价值的预后信息。近年来,针对F-ILD患者低氧血症的研究不断增多。数据显示,F-ILD患者在发生劳力性低氧血症后,其1、2、3年无移植生存率分别为96%、92%和84%;而在出现静息性低氧血症后,1、2、3年无移植生存率则明显下降,分别为58%、44%和28% [7]。与劳力性低氧血症相比,静息性低氧血症患者的死亡率更高。前者通常被视为疾病的早期表现,而后者则多见于终末期阶段。此外,中至重度静息性低氧血症患者发生心血管疾病和肺动脉高压的风险明显增加[21]。在F-ILD患者群体中,IPF患者发生劳力性及静息性低氧血症的风险均显著高于非IPF纤维化ILD患者。此外,劳力性低氧血症还会对F-ILD患者的脑氧合产生不良影响。Marillier等[23]的对照研究显示,劳力性低氧血症可呈剂量依赖性地损害脑氧合,从而导致患者运动耐量下降。

5.2. 夜间低氧血症

Troy等[10]在一项前瞻性队列研究中纳入92例ILD患者,结果显示其中35.9%的患者符合夜间低氧血症诊断标准(即睡眠时间中≥10%的SpO2低于90%)。该研究还发现,睡眠中低氧的多个指标可预测肺动脉高压的新发或恶化;其中,SpO2 < 90%所占TST比例不仅与总体生存期相关,也可预测无进展生存期。一项对35例IPF患者进行中位12个月随访的研究表明,同时合并OSA和临床显著夜间低氧血症的患者,其疾病进展及死亡风险均显著增加[24]。Myall等[25]开展的一项前瞻性研究共纳入102例患者,其中约20%的纤维化ILD患者存在长时间夜间低氧血症,近1/3合并中度OSA。结果显示,预测1年生活质量下降和死亡率增加的关键因素是夜间低氧血症的存在,而非OSA本身。长期夜间低氧血症不仅预示疾病相关的生活质量下降和死亡率升高,还与能量水平降低及日间社会与身体功能受损密切相关。既往研究提示,夜间低氧血症在肺动脉高压患者中较为常见。因此,对于此类患者应常规进行夜间血氧监测,以明确是否合并夜间低氧血症。

6. 针对低氧血症的氧疗及联合管理策略

6.1. 氧疗的类型与适应证

氧疗是F-ILD支持治疗的核心环节,主要包括长期氧疗、动态氧疗与夜间氧疗三种形式。长期氧疗适用于静息性或劳力性低氧血症患者,其主要目标是改善呼吸困难、提高运动耐量并维持重要器官氧供。根据美国胸科学会与英国胸科学会指南,建议每日氧疗时间不少于15小时,当PaO2 < 55 mmHg或伴有右心衰、红细胞增多症时应启动长期氧疗[8] [9]。尽管氧疗可改善症状与生活质量,其生存获益尚未得到充分证实。一项未发表的随机对照研究显示家庭长期氧疗未显著改善生存[26],另一项回顾性研究亦发现,在中至重度低氧血症的ILD患者中,长期氧疗对生存率无显著影响[27]。因此,未来需通过前瞻性、分层化研究明确不同类型低氧血症中氧疗的真正价值。动态氧疗在运动或日常活动中补充氧气,能有效缓解呼吸困难并改善健康相关生活质量(Health-Related Quality of Life, HRQoL)。Visca等[28]的随机交叉研究显示,动态氧疗可改善患者生活质量与运动耐受性。此外氧疗还可改善脑与骨骼肌氧合,从而减轻疲乏并延缓运动时氧饱和度下降[29] [30]。夜间氧疗在F-ILD合并夜间低氧血症者中亦具有潜在意义。国际德尔菲专家共识推荐对排除其他原因后仍存在夜间低氧的患者实施氧疗[31]。但目前启动时机与疗程尚无统一标准,未来研究应关注夜间氧疗对肺动脉高压进展、睡眠质量及长期预后的影响。

6.2. 抗纤维化治疗对低氧血症的影响

抗纤维化药物可通过延缓肺功能下降、减轻纤维化进展,从而间接推迟低氧血症的发展[32]。临床观察提示,接受抗纤维化治疗的患者在劳力性低氧血症进展为静息性低氧血症的时间明显延后。其作用机制可能与抑制成纤维细胞活化、减少细胞外基质沉积及改善肺顺应性相关。然而,目前尚缺乏以低氧血症为主要终点的大样本前瞻性研究,需进一步验证其对氧合功能的长期影响。

6.3. 免疫抑制与联合治疗策略

在结缔组织病相关ILD等亚型中,糖皮质激素及免疫抑制剂可能通过控制炎症、减缓纤维化进程而间接改善低氧状态。但目前缺乏高质量研究证实其对长期氧合与肺动脉高压的影响。近年来的研究趋势是抗纤维化与免疫调节治疗的联合应用。此策略可同时靶向炎症与纤维化通路,具有理论上的协同潜力。未来研究应评估其在不同ILD亚型中的安全性、疗效及对低氧血症进展的影响。

6.4. 患者报告结局与生活质量

低氧血症显著影响F-ILD患者的生活质量与社会功能。研究发现,呼吸困难、疲乏及睡眠质量下降是最常见的主观困扰。Takei等[33]的研究显示,圣乔治呼吸问卷及慢性阻塞性肺病评估测试评分与疾病进展显著相关。因此,未来低氧血症干预研究应同时纳入患者报告结局(Patient Reported Outcome, PRO)指标(如呼吸困难评分、HRQoL量表)以综合评价治疗效果。在IPF的抗纤维化治疗研究中,Kreuter等人基于INPULSIS试验的患者PRO数据分析发现:疾病进展(如FVC下降、急性加重)与HRQoL恶化相关,同时尼达尼布在晚期患者中减缓PRO恶化具有一定作用[34]。抗纤维化药物与氧疗可能未显著延长生存,但在改善PRO方面已显示潜在价值。

7. 总结与展望

本文阐述了纤维化ILD患者劳力性、静息性及夜间低氧血症的定义、流行病学特征、病理机制及其预后价值。总体而言,各类型低氧血症均提示疾病进展并具有重要的预后意义:劳力性低氧血症多为疾病早期特征,而静息性低氧血症则常见于终末期阶段。夜间低氧血症虽常被忽视,但其临床价值同样不容低估。目前有关不同亚型ILD (特别是非纤维化ILD)低氧血症的预后研究仍较为缺乏,未来亟需更多大样本、前瞻性研究以明确低氧血症的发生特点及其临床意义。此外,应进一步探索低氧血症与抗纤维化药物、肺动脉高压治疗及氧疗策略之间的相互作用,从而推动精准化管理。重视劳力性及夜间低氧血症的早期识别与干预,有助于更全面地评估疾病进展,并在适宜时机启动氧疗方案,从而改善患者的生活质量并潜在延长生存期。

NOTES

*通讯作者。

参考文献

[1] Kolb, M. and Vašáková, M. (2019) The Natural History of Progressive Fibrosing Interstitial Lung Diseases. Respiratory Research, 20, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
[2] Khor, Y.H., Goh, N.S., Glaspole, I., Holland, A.E. and McDonald, C.F. (2019) Exertional Desaturation and Prescription of Ambulatory Oxygen Therapy in Interstitial Lung Disease. Respiratory Care, 64, 299-306. [Google Scholar] [CrossRef] [PubMed]
[3] Lama, V.N., Flaherty, K.R., Toews, G.B., Colby, T.V., Travis, W.D., Long, Q., et al. (2003) Prognostic Value of Desaturation during a 6-Minute Walk Test in Idiopathic Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 168, 1084-1090. [Google Scholar] [CrossRef] [PubMed]
[4] Flaherty, K.R., Andrei, A., Murray, S., Fraley, C., Colby, T.V., Travis, W.D., et al. (2006) Idiopathic Pulmonary Fibrosis: Prognostic Value of Changes in Physiology and Six-Minute-Walk Test. American Journal of Respiratory and Critical Care Medicine, 174, 803-809. [Google Scholar] [CrossRef] [PubMed]
[5] Collard, H.R., King, T.E., Bartelson, B.B., Vourlekis, J.S., Schwarz, M.I. and Brown, K.K. (2003) Changes in Clinical and Physiologic Variables Predict Survival in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 168, 538-542. [Google Scholar] [CrossRef] [PubMed]
[6] Zubairi, A.B.S., Ahmad, H., Hassan, M., Sarwar, S., Abbas, A., Shahzad, T., et al. (2017) Clinical Characteristics and Factors Associated with Mortality in Idiopathic Pulmonary Fibrosis: An Experience from a Tertiary Care Center in Pakistan. The Clinical Respiratory Journal, 12, 1191-1196. [Google Scholar] [CrossRef] [PubMed]
[7] Khor, Y.H., Gutman, L., Abu Hussein, N., Johannson, K.A., Glaspole, I.N., Guler, S.A., et al. (2021) Incidence and Prognostic Significance of Hypoxemia in Fibrotic Interstitial Lung Disease: An International Cohort Study. Chest, 160, 994-1005. [Google Scholar] [CrossRef] [PubMed]
[8] McDonald, C.F., Whyte, K., Jenkins, S., Serginson, J. and Frith, P. (2015) Clinical Practice Guideline on Adult Domiciliary Oxygen Therapy: Executive Summary from the Thoracic Society of Australia and New Zealand. Respirology, 21, 76-78. [Google Scholar] [CrossRef] [PubMed]
[9] Khor, Y.H., Harrison, A., Robinson, J., Goh, N.S.L., Glaspole, I. and McDonald, C.F. (2020) Moderate Resting Hypoxaemia in Fibrotic Interstitial Lung Disease. European Respiratory Journal, 57, Article ID: 2001563. [Google Scholar] [CrossRef] [PubMed]
[10] Troy, L.K., Young, I.H., Lau, E.M.T., Wong, K.K.H., Yee, B.J., Torzillo, P.J., et al. (2019) Nocturnal Hypoxaemia Is Associated with Adverse Outcomes in Interstitial Lung Disease. Respirology, 24, 996-1004. [Google Scholar] [CrossRef] [PubMed]
[11] Margaritopoulos, G.A., Proklou, A., Trachalaki, A., Badenes Bonet, D., Kokosi, M., Kouranos, V., et al. (2023) Overnight Desaturation in Interstitial Lung Diseases: Links to Pulmonary Vasculopathy and Mortality. ERJ Open Research, 10, Article ID: 00740-2023. [Google Scholar] [CrossRef] [PubMed]
[12] 马燕燕, 曹洁, 王彦, 等. 特发性肺间质纤维化患者合并睡眠呼吸紊乱的临床分析[J]. 天津医药, 2017, 45(1): 39-43.
[13] Corte, T.J., Wort, S.J., Talbot, S., et al. (2012) Elevated Nocturnal Desaturation Index Predicts Mortality in Interstitial Lung Disease. Sarcoidosis, Vasculitis and Diffuse Lung Diseases, 29, 41-50.
[14] Pihtili, A., Bingol, Z., Kiyan, E., Cuhadaroglu, C., Issever, H. and Gulbaran, Z. (2013) Obstructive Sleep Apnea Is Common in Patients with Interstitial Lung Disease. Sleep and Breathing, 17, 1281-1288. [Google Scholar] [CrossRef] [PubMed]
[15] Yang, L., Gilbertsen, A., Xia, H., Benyumov, A., Smith, K., Herrera, J., et al. (2023) Hypoxia Enhances IPF Mesenchymal Progenitor Cell Fibrogenicity via the Lactate/GPR81/HIF1α Pathway. JCI Insight, 8, e163820. [Google Scholar] [CrossRef] [PubMed]
[16] 樊铭薇, 蒋天赐, 李鹏飞, 等. 结缔组织病相关间质性肺疾病合并肺动脉高压的预后模型开发与验证[J]. 中国呼吸与危重监护杂志, 2024, 23(9): 640-650.
[17] Haynes, Z.A., Chandel, A. and King, C.S. (2023) Pulmonary Hypertension in Interstitial Lung Disease: Updates in Disease, Diagnosis, and Therapeutics. Cells, 12, Article No. 2394. [Google Scholar] [CrossRef] [PubMed]
[18] Tuder, R.M. (2016) Pulmonary Vascular Remodeling in Pulmonary Hypertension. Cell and Tissue Research, 367, 643-649. [Google Scholar] [CrossRef] [PubMed]
[19] Alfieri, V., Crisafulli, E., Visca, D., Chong, W.H., Stock, C., Mori, L., et al. (2019) Physiological Predictors of Exertional Oxygen Desaturation in Patients with Fibrotic Interstitial Lung Disease. European Respiratory Journal, 55, Article ID: 1901681. [Google Scholar] [CrossRef] [PubMed]
[20] Saleem, F., Ryerson, C.J., Sarma, N., Johannson, K., Marcoux, V., Fisher, J., et al. (2023) Predicting New-Onset Exertional and Resting Hypoxemia in Fibrotic Interstitial Lung Disease. Annals of the American Thoracic Society, 20, 1726-1734. [Google Scholar] [CrossRef] [PubMed]
[21] Gupta, S., Padhan, P., Subhankar, S. and Singh, P. (2021) Cardiovascular Complications in Patients with Interstitial Lung Disease and Their Correlation with 6-Minute Walk Test and Spirometry: A Single-Center Study. Journal of Family Medicine and Primary Care, 10, 3330-3335. [Google Scholar] [CrossRef] [PubMed]
[22] American Thoracic Society (2000) Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment. International Consensus Statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). American Journal of Respiratory and Critical Care Medicine, 161, 646-664.
[23] Marillier, M., Bernard, A., Verges, S., Moran-Mendoza, O., O’Donnell, D.E. and Neder, J.A. (2021) Influence of Exertional Hypoxemia on Cerebral Oxygenation in Fibrotic Interstitial Lung Disease. Respiratory Physiology & Neurobiology, 285, Article ID: 103601. [Google Scholar] [CrossRef] [PubMed]
[24] Bosi, M., Milioli, G., Fanfulla, F., Tomassetti, S., Ryu, J.H., Parrino, L., et al. (2017) OSA and Prolonged Oxygen Desaturation during Sleep Are Strong Predictors of Poor Outcome in Ipf. Lung, 195, 643-651. [Google Scholar] [CrossRef] [PubMed]
[25] Myall, K.J., West, A.G., Martinovic, J.L., Lam, J.L., Roque, D., Wu, Z., et al. (2023) Nocturnal Hypoxemia Associates with Symptom Progression and Mortality in Patients with Progressive Fibrotic Interstitial Lung Disease. Chest, 164, 1232-1242. [Google Scholar] [CrossRef] [PubMed]
[26] Crockett, A., Cranston, J.M. and Antic, N. (2001) Domiciliary Oxygen for Interstitial Lung Disease. Cochrane Database of Systematic Reviews, 2010, CD002883. [Google Scholar] [CrossRef] [PubMed]
[27] Palm, A. and Ekström, M. (2021) Hypoxemia Severity and Survival in ILD and COPD on Long-Term Oxygen Therapy—The Population-Based Discovery Study. Respiratory Medicine, 189, Article ID: 106659. [Google Scholar] [CrossRef] [PubMed]
[28] Visca, D., Mori, L., Tsipouri, V., Fleming, S., Firouzi, A., Bonini, M., et al. (2018) Effect of Ambulatory Oxygen on Quality of Life for Patients with Fibrotic Lung Disease (Ambox): A Prospective, Open-Label, Mixed-Method, Crossover Randomised Controlled Trial. The Lancet Respiratory Medicine, 6, 759-770. [Google Scholar] [CrossRef] [PubMed]
[29] Ora, J., Coppola, A., Perduno, A., Manzetti, G.M., Puxeddu, E. and Rogliani, P. (2021) Acute Effect of Oxygen Therapy on Exercise Tolerance and Dyspnea Perception in ILD Patients. Monaldi Archives for Chest Disease, 92. [Google Scholar] [CrossRef] [PubMed]
[30] Dipla, K., Boutou, A.K., Markopoulou, A., Pitsiou, G., Papadopoulos, S., Chatzikosti, A., et al. (2021) Exertional Desaturation in Idiopathic Pulmonary Fibrosis: The Role of Oxygen Supplementation in Modifying Cerebral-Skeletal Muscle Oxygenation and Systemic Hemodynamics. Respiration, 100, 463-475. [Google Scholar] [CrossRef] [PubMed]
[31] Lim, R.K., Humphreys, C., Morisset, J., Holland, A.E. and Johannson, K.A. (2019) Oxygen in Patients with Fibrotic Interstitial Lung Disease: An International Delphi Survey. European Respiratory Journal, 54, Article ID: 1900421. [Google Scholar] [CrossRef] [PubMed]
[32] Sood, S. and Kim, J.S. (2023) A Crystal Ball for Hypoxia in Fibrotic Interstitial Lung Disease. Annals of the American Thoracic Society, 20, 1705-1706. [Google Scholar] [CrossRef] [PubMed]
[33] Takei, R., Matsuda, T., Fukihara, J., Sasano, H., Yamano, Y., Yokoyama, T., et al. (2023) Changes in Patient-Reported Outcomes in Patients with Non-Idiopathic Pulmonary Fibrosis Fibrotic Interstitial Lung Disease and Progressive Pulmonary Fibrosis. Frontiers in Medicine (Lausanne), 10, Article ID: 1067149. [Google Scholar] [CrossRef] [PubMed]
[34] Kreuter, M., Wuyts, W.A., Wijsenbeek, M., Bajwah, S., Maher, T.M., Stowasser, S., et al. (2020) Health-Related Quality of Life and Symptoms in Patients with IPF Treated with Nintedanib: Analyses of Patient-Reported Outcomes from the INPULSIS® Trials. Respiratory Research, 21, Article No. 36. [Google Scholar] [CrossRef] [PubMed]