氢盐水超声雾化熏蒸对干眼症患者眼表炎症和症状的影响
Impact of Hydrogen Saline Ultrasonic Atomization Fumigation on Ocular Surface Inflammation and Symptoms in Dry Eye Disease Patients
DOI: 10.12677/acm.2025.15113121, PDF, HTML, XML,    科研立项经费支持
作者: 张尧敏:暨南大学附属爱尔眼科医院,眼科,广东 广州;罗汇慧, 徐 莉, 屈昊坤, 林英杰, 梁雪莹:佛山爱尔卓越眼科医院,眼科,广东 佛山;梁先军*:暨南大学附属爱尔眼科医院,眼科,广东 广州;佛山爱尔卓越眼科医院,眼科,广东 佛山
关键词: 干眼症氢盐水超声雾化熏蒸MMP-9Dry Eye Disease Hydrogen Saline Ultrasonic Atomization Fumigation MMP-9
摘要: 目的:本研究探讨了每日30分钟连续5天的氢盐水超声雾化熏蒸对干眼症患者眼表炎症和症状的影响。研究方法:在这项随机前瞻性单盲对照试验中,36名干眼症患者被随机分到实验组(氢盐水)和对照组(生理盐水),每组18名患者。两组患者均接受连续5天,每日30分钟的超声雾化熏蒸治疗。在干预前后评估了以下指标:泪液基质金属蛋白酶-9 (MMP-9)水平、眼表疾病指数(OSDI)评分、眼红指数(ORI)、泪河高度(TMH)以及泪膜破裂时间(BUT)。统计分析方法包括Shapiro-Wilk检验、独立样本t检验、Mann-Whitney U检验、Wilcoxon符号秩检验和Fisher精确检验。结果:治疗后,对照组与实验组的组间比较各指标差异无统计学意义(P > 0.05)。组内比较中,实验组的泪液MMP-9水平有显著降低,由70.19 (31.32, 90.96) ng/ml降至32.67 (3.79, 185.63) ng/ml (P = 0.025),OSDI评分由48.61 ± 16.91降至27.78 ± 12.98 (P < 0.001),而实验组治疗前后的ORI、TMH和BUT差异无统计学意义(P > 0.05)。对照组的组内比较中,OSDI评分有所下降,由41.67 (34.38, 46.35)降至25.00 (20.83, 33.85) (P < 0.001),而MMP-9水平、ORI、TMH或BUT差异无统计学意义(P > 0.05)。两组的疗效对比中,实验组的MMP-9与OSDI下降幅度比对照组大,且差异具有统计学意义(P = 0.016),其余指标改变幅度差异无统计学意义(P > 0.05)。结论:与生理盐水相比,氢盐水超声雾化熏蒸更能降低干眼症患者的泪液MMP-9水平,并缓解了主观症状。
Abstract: AIM: This study investigated the effects of ultrasonic atomization fumigation with hydrogen saline (administered for 30 minutes daily over 5 consecutive days) on ocular surface inflammation and symptoms in patients with dry eye disease. METHODS: In this randomized prospective single-blind controlled trial, 36 patients with DED were randomly assigned to either the experimental group (hydrogen saline) or the control group (physiological saline), with 18 patients in each group. Patients in both groups received continuous ultrasonic atomization fumigation therapy for 30 minutes per day over 5 consecutive days. The following indicators were evaluated before and after the intervention: tear matrix metalloproteinase-9 (MMP-9) level, Ocular Surface Disease Index (OSDI) score, Ocular Redness Index (ORI), tear meniscus height (TMH), and tear break-up time (BUT). The statistical analysis methods included the Shapiro-Wilk test, independent samples t-test, Mann-Whitney U test, Wilcoxon signed-rank test, and Fisher’s exact test. RESULTS: After treatment, there was no statistically significant difference in all indicators between the control group and the experimental group (P > 0.05). In the intragroup comparison, the tear MMP-9 level in the experimental group decreased significantly, from 70.19 (31.32, 90.96) ng/ml to 32.67 (3.79, 185.63) ng/ml (P =0.025), and the OSDI score decreased from 48.61 ± 16.91 to 27.78 ± 12.98 (P < 0.001). However, there were no statistically significant differences in ORI, TMH, and BUT in the experimental group before and after treatment (P > 0.05). In the intragroup comparison of the control group, the OSDI score decreased, from 41.67 (34.38, 46.35) to 25.00 (20.83, 33.85) (P < 0.001), while there were no statistically significant differences in MMP-9 level, ORI, TMH, or BUT (P > 0.05). In the comparison of therapeutic effects between the two groups, the decrease amplitudes of MMP-9 and OSDI in the experimental group were larger than those in the control group, with statistically significant differences (P = 0.016), and there were no statistically significant differences in the change amplitudes of the other indicators (P > 0.05). Conclusion: Compared with physiological saline, ultrasonic atomization fumigation with hydrogen saline was more effective in reducing the tear MMP-9 level in patients with DED and alleviating their subjective symptoms, indicating that it has anti-inflammatory benefits and symptom-improving effects.
文章引用:张尧敏, 罗汇慧, 徐莉, 屈昊坤, 林英杰, 梁雪莹, 梁先军. 氢盐水超声雾化熏蒸对干眼症患者眼表炎症和症状的影响[J]. 临床医学进展, 2025, 15(11): 485-495. https://doi.org/10.12677/acm.2025.15113121

1. 引言

干眼症是指因多种原因引起的泪液质量、数量或动力学异常,导致泪膜稳定性下降,并伴有眼部不适,如眼干、烧灼感、异物感、疲劳感和眼痒等症状。干眼症的临床表现包括泪膜不稳定、眼表炎症、渗透压升高以及神经感觉异常等[1]。流行病学研究表明,在中国,干眼症状的发病率约为21%~30% [2],并且随着电子产品使用时间的增加和环境污染的加剧,发病率仍在逐步上升[3]

干眼症是一种常见的眼表疾病,其病因复杂,包括雄激素水平下降、炎症反应、糖尿病、眼部手术后状态以及过度使用电子设备等[4]-[9]。其中,炎症反应是干眼症的核心病理机制之一。炎症可导致泪膜稳定性降低和渗透压变化,进而诱发角膜上皮细胞分泌多种炎症因子,如白介素1 (IL-1)、白介素6 (IL-6)以及肿瘤坏死因子α (TNF-α),同时趋化因子(如CCL3、CCL5)和基质金属蛋白酶(MMPs)等也会被激活。这些炎症因子进一步破坏泪膜稳定性,形成炎症恶性循环[10]-[12]。因此,抗炎治疗是干眼症治疗不可或缺的一部分。

目前,干眼症的治疗主要分为两大类:药物治疗和非药物治疗。药物治疗包括人工泪液、生长因子滴眼液、抗炎滴眼液等,非药物治疗方法则包括物理治疗、强脉冲光治疗、热脉动治疗、泪道栓塞、湿房镜以及治疗性角膜接触镜等[13]。目前最常用的治疗是人工泪液滴眼液,但该治疗手段仅能暂时缓解眼部不适症状,对于干眼的病因根治或源头性干预并无显著作用[14]。这些治疗方法中,物理治疗的应用较为广泛,常见的治疗方式有眼部超声雾化熏蒸、热敷、睑板腺按摩等。

超声雾化熏蒸作为一种物理治疗方法,在一些研究中已经被证明对干眼症有一定的疗效[15]-[17],生理盐水常被用作超声雾化熏蒸的介质。然而,近年来研究表明,氢盐水作为一种新型治疗液体,因其具备抗氧化、抗炎等特性,可能对干眼症病因治疗具有潜在优势。氢盐水是将高浓度氢气溶解在生理盐水中,既能保留氢气的抗氧化作用,又比直接吸入氢气更为便捷、安全[18]

本研究旨在探讨氢盐水超声雾化熏蒸治疗在干眼症患者中的临床效果,并研究氢盐水对患者眼表的影响,特别是其在减轻炎症和改善泪液成分方面的作用,为干眼症的抗炎治疗提供新的临床依据。

2. 研究方法

2.1. 临床资料

2.1.1. 伦理审批

本研究遵循赫尔辛基宣言,并获得佛山爱尔眼科医院伦理委员会的批准(编号:FSAIER2022IRB2)。所有受试者在参与研究前均阅读并签署了知情同意书。

2.1.2. 研究设计与患者选择

本研究为前瞻性观察性临床研究。研究对象为2023年11月至2024年5月期间在佛山爱尔眼科医院被诊断为干眼症的患者,使用随机数表法,分配到实验组和对照组。对照组18例,其中男4例,女14例,平均年龄(54.44 ± 6.74)岁。实验组18例,其中男4例,女14例,平均年龄(50.56 ± 9.52)岁。两组患者一般资料进行比较,差异无统计学意义(P > 0.05)。为确保单盲研究的严谨性,每名患者均不知晓自己所属的分组以及用于超声雾化熏蒸的药物溶液类型。

2.1.3. 诊断标准

依据《中国干眼临床诊疗专家共识(2024年)》[19]中的诊断标准,将干眼症定义为符合以下条件之一者:

(1) FBUT ≤ 5s或在无表面麻醉下Schirmer Ⅰ ≤ 5 mm/5 min,眼部有干燥感、异物感、疲劳感、不适感、视力波动等主观症状之一;

(2) 5s < FBUT ≤ 10s或无表面麻醉下5 mm/5 min < Schirmer Ⅰ ≤ 10 mm/5 min,眼部有干燥感、异物感、疲劳感、不适感、视力波动等主观症状之一,同时角膜和结膜荧光素染色阳性。

2.1.4. 纳入标准

(1) 符合上述干眼症诊断标准;

(2) 在实验开始前三个月内除了玻璃酸钠滴眼液之外,未接受其他干眼相关治疗;

(3) 患者依从性良好,能够按时完成实验相关操作与随访。

2.1.5. 排除标准

(1) 不符合干眼症诊断标准;

(2) 存在活动性眼部感染,如感染性、病毒性、衣原体性或免疫性结膜炎;

(3) 患有可能影响泪膜稳定性的其他眼部或全身疾病(如青光眼等);

(4) 实验前一个月内有佩戴隐形眼镜者;

(5) 在实验开始前三个月内眼部曾使用除了玻璃酸钠滴眼液之外的药物或接受其他物理治疗;

(6) 实验前六个月内进行过眼部手术或遭受眼部外伤;

(7) 对氢盐水过敏者;

(8) 长期服用抗抑郁药、抗组胺等影响泪液分泌的药物;

(9) 无法按时完成随访或依从性差的患者。

2.2. 实验方法

2.2.1. 实验物品

实验中使用的物品包括:

(1) 生理盐水;(2) 海露玻璃酸钠滴眼液(HYCOSAN,0.1% × 10 ml,德国URSAPHARM Arzneimittel GmbH,进口药品注册证号H20150150);(3) 便携式制氢机(广东卡沃罗健康科技有限公司,型号HIM-22 SERIES,氢气流速150 ML/MIN);(4) 超声波雾化器WH-2000 (广东粤华医疗器械厂有限公司);(5) 微量液体采集器(广东盛泽康华生物医药有限公司);(6) MMP-9检测试剂盒(免疫层析法,广东盛泽康华生物医药有限公司)。

氢盐水的制备方法:将便携式制氢机产生的氢气通过纳米气泡石导入超声波雾化器的水腔中,参考相关研究的氢盐水制备方法[20] [21],持续导入30分钟,生成氢盐水。雾化器接通电源后,连接熏蒸专用眼罩,嘱患者佩戴眼罩即可开始进行超声雾化熏蒸治疗。

2.2.2. 实验流程

(1) 眼别确定:角膜荧光染色评分较重的为试验眼,染色评分相同时右眼为试验眼。

(2) 基线测试:在雾化熏蒸前,患者填写OSDI问卷;由同一名检查者使用眼表综合分析仪(OCULUS Keratograph)对患者进行眼表分析,记录ORI、TMH、BUT数据;随后使用微量液体采集器在患者试验眼外眦采集泪液2.2 μL,并加样到试剂卡中,滴入MMP-9检测试剂,将试剂卡插入分析仪卡槽中,等待15分钟获取MMP-9数值。

(3) 分组与干预:将患者分为实验组与对照组,实验期间,两组患者双眼均使用玻璃酸钠滴眼液,每次一滴,每天四次。实验组:使用氢盐水进行眼部超声雾化熏蒸;对照组:使用生理盐水进行眼部超声雾化熏蒸。两组均每天雾化熏蒸1次,每次30分钟,连续治疗5天。

(4) 治疗后测试 ± 5天治疗结束后,患者再次填写OSDI问卷;由同一名检查者重复基线测试的流程,记录眼表分析数据,并采集泪液进行MMP-9检测。

2.3. 观察指标与统计学方法

2.3.1. 观察指标

(1) MMP-9数值:泪液中MMP-9含量,数值越高提示干眼症状越严重;

(2) OSDI评分:通过一系列问题来量化患者的眼部不适症状及其对日常生活的影响,是一种用于评估干眼症严重程度的标准化问卷工具。患者在0到4分之间给自己的答案打分,将初始得分乘以25,再除以回答的问题数,得出总分。分数越高提示干眼症状越严重;

(3) ORI:通过特定的图像处理算法,对眼睛的临床图像进行分析,是一种用于客观评估眼表充血程度的量化指标。数值越高提示干眼症状越严重;

(4) TMH:是指位于下眼睑边缘与眼球表面之间泪液积聚的高度,通常在下睑缘中央测量。是评估泪液量和泪液分泌功能的指标。高度越低提示干眼症状越严重;

(5) BUT:是指在一次完全眨眼后,泪膜表面出现第一个干燥斑或破裂的时间间隔。它是评估泪膜稳定性的指标。时间越短提示干眼症状越严重。

2.3.2. 统计学方法

实验数据使用IBM SPSS Statistics 27.0.1软件进行统计学分析:对于连续变量,使用直方图和Shapiro-Wilk检验对计量资料进行正态性评估,符合正态性的数据用 x ¯ ±s 表示,不符合正态性的资料用M (Q1, Q3)表示。两组数据之间的比较,若两组数据均符合正态分布则采用独立样本t检验,效应值为修正后的Cohen d,若不完全符合正态分布则采用Mann-Whitney U检验,效应值为rr的计算公式如下(在配对样本中N为对子数):

r= Z N

效应量的大小:0.2为小效应,0.5为中效应,0.8为大效应。组内比较中,由于两组样本较小(n < 20),使用配对样本t检验进行分析会导致Ⅰ类或Ⅱ类错误率增加、检验效能降低,因此本研究的数据更适合使用非参数检验,即Wilcoxon符号秩检验。而分类变量,由于样本较小,采用Fisher精确检验。所有统计检验均采用双侧检验,并符合假设检验条件,当P值 < 0.05时,认为差异具有统计学意义。

3. 研究结果

3.1. 两组患者的治疗前后组间、组内差异比较

两组患者的治疗前后组间、组内差异比较结果见表1。治疗前,两组患者的各指标基线水平差异无统计学意义。治疗后,两组患者的各指标的组间差异无统计学意义。实验组组内比较中,治疗后的MMP-9数值(P = 0.025)与OSDI评分(P < 0.001)低于治疗前,且差异具有统计学意义,其余指标与治疗前的差异无统计学意义(P > 0.05)。对照组组内比较中,治疗后的OSDI评分低于治疗前,且差异具有统计学意义(P < 0.001),其余指标与治疗前的差异无统计学意义(P > 0.05)。

Table 1. Intergroup and intragroup comparisons of differences before and after treatment between the two groups of patients

1. 两组患者治疗前后的组间、组内差异比较

对照组

实验组

t值或U

P值

MMP-9 (ng/ml)

治疗前

54.22 (34.14, 50.67)

70.19(31.32, 90.96)

U = 209.00

0.143

治疗后

16.93 (8.87, 65.89)

32.67(3.79, 185.63)

U = 143.00

0.548

Z

−0.849

−2.243

P值

0.396

0.025

OSDI

治疗前

41.67 (34.38, 46.35)

48.61 ± 16.91

U = 116.00

0.144

治疗后

25.00 (20.83, 33.85)

27.78 ± 12.98

U = 156.00

0.848

Z

−3.731

−3.728

P值

<0.001

<0.001

ORI

治疗前

1.21 ± 0.38

1.31 ± 0.39

t = −0.824

0.416

治疗后

1.22 ± 0.50

1.20 ± 0.34

t = 0.117

0.908

Z

−0.372

−1.406

P值

0.710

0.160

TMH (mm)

治疗前

0.20 ± 0.06

0.21 ± 0.03

t = −0.873

0.391

治疗后

0.22 ± 0.07

0.22 ± 0.05

T < 0.001

1.000

Z

−1.243

−0.633

P值

0.214

0.526

BUT (s)

治疗前

8.00 (2.30, 15.40)

8.61 ± 5.28

U = 162.00

1.000

治疗后

5.63 (2.90, 12.95)

8.32 (5.92, 11.73)

U = 125.50

0.248

Z

−0.370

−1.254

P值

0.711

0.210

3.2. 两组患者治疗前后差异的组间比较

用治疗前的数据减去治疗后的数据,分别计算两组患者各指标治疗前后的差值进行比较,结果见表2。实验组MMP-9显著下降,降幅为36.13 (−2.19, 86.82),对照组MMP-9部分患者有轻度上升,其余患者下降幅度不大,总降幅为−0.45 (−3.64, 6.43),二者间的差异具有统计学意义(P = 0.016),提示实验组患者MMP-9的改善程度大于对照组。实验组OSDI降幅20.83 ± 6.70,对照组降幅14.12 ± 6.53,二者间的差异具有统计学意义(P = 0.005),提示实验组患者OSDI评分下降程度大于对照组。其他指标两组之间差异无统计学意义(P > 0.05)。效应量分析中,两组MMP-9的r = −0.567,为中效应,OSDI的Cohen d = −0.991,为大效应,ORI的r = −0.162,为小效应,TMH的Cohen d = 0.223,为小效应,BUT的Cohen d = −0.313,为小效应,说明氢盐水雾化熏蒸对干眼患者MMP-9和OSDI的改善较为明显,而对ORI、TMH、BUT的影响不显著。

Table 2. Intergroup comparison of differences before and after treatment between the two groups of patients

2. 两组患者治疗前后差异的组间比较

对照组

实验组

t值或U

P值

效应值

MMP-9 (ng/ml)

−0.45 (−3.64, 6.43)

36.13 (−2.19, 86.82)

U = 86.00

0.016

r = −0.567

OSDI

14.12 ± 6.53

20.83 ± 6.70

t = −3.042

0.005

Cohen d = −0.991

ORI

0.01 (−0.15, 0.20)

0.11 ± 0.32

U = 140.50

0.491

r = −0.162

TMH (mm)

−0.02 ± 0.08

−0.01 ± 0.05

t = 0.686

0.498

Cohen d = 0.223

BUT (s)

1.31 ± 10.41

−1.30 ± 4.87

t = −0.959

0.347

Cohen d = −0.313

3.3. 副作用

未观察到或报告有实验对象因氢盐水超声雾化熏蒸而出现副作用。

4. 讨论

本实验旨在探究氢盐水对干眼症的抗炎作用,实验结果显示,与生理盐水相比,氢盐水雾化熏蒸可以显著降低干眼患者泪液中MMP-9水平,此发现进一步证实了分子氢的抗炎疗效。

4.1. 分子氢的抗炎与抗氧化作用

近年来,分子氢(H2)作为一种天然的抗氧化剂和抗炎物质,得到了广泛研究。H2是一种无色无味、分子量低且扩散能力强的气体。Ohsawa等[22]在2007年首次发现,H₂能够选择性清除活性氧(ROS)中最具毒性的羟基自由基(∙OH),而不干扰正常的细胞信号传导与氧化还原反应。与NO、CO或硫化氢等其他治疗气体不同,即使在高浓度下,H2也不会引起任何毒性[23],因此被认为是一种安全且副作用极小的抗氧化剂。

氧化应激,是细胞内过量的自由基或ROS导致的损伤[24],是干眼症炎症反应的重要诱因。过量的ROS不仅会氧化DNA和脂质,造成细胞损伤,还会激发炎症反应,通过激活炎症转录因子(如MMP-9)进一步加重氧化应激,形成炎症恶性循环[25]-[28]。H2已被证明可以通过抑制氧化应激反应和阻断炎症信号通路,从而减少炎症因子的分泌(如IL-1、IL-6、TNF-α和MMP-9) [29]。H2在多种炎症相关疾病中均表现出明确的治疗效果,例如眼部疾病[30]-[36]、神经系统疾病[37]、心血管疾病[38]和糖尿病[39]等。同时,目前尚无关于H2治疗引起严重不良反应的报道[40]

4.2. 氢盐水超声雾化熏蒸抗炎的疗效分析

本研究中,与对照组相比,实验组接受氢盐水超声雾化熏蒸后,泪液中MMP-9水平显著下降。MMP-9是一种重要的基质金属蛋白酶,在炎症和组织重塑过程中起关键作用,其在干眼症患者泪液中的水平常常升高,与疾病的严重程度密切相关[41] [42]。MMP-9的过度表达会破坏角膜上皮屏障,诱发或加重眼表炎症反应[43]。本研究结果显示,氢盐水雾化熏蒸能够有效降低MMP-9水平,提示其可能通过抗氧化和抗炎机制改善干眼症状。这一结论与Kubota等[44]的研究一致,他们在小鼠角膜碱烧伤模型中发现,H2溶液能够显著减少氧化应激引起的血管新生,证明H2在眼表抗氧化和抗炎治疗中的潜在价值。

此外,氢盐水的制备方式也显示了一定优势。在本研究中,使用便携式制氢机通过电解产生氢气,并将其持续导入超声波雾化器。这保证了氢盐水的高浓度和新鲜度,相较于以往采用储存氢盐水的装置[45],更能够保持疗效的稳定性。这种改进为氢盐水的临床推广和应用提供了更便捷的方案。

4.3. 氢盐水对干眼症的主观症状改善

在主观症状方面,不论使用氢盐水还是生理盐水,两组患者的OSDI评分均有显著下降。实验组的改善幅度更大,提示氢盐水超声雾化熏蒸可能通过抑制炎症和提高泪膜稳定性,更有效地缓解干眼症状。这一发现与Kubota等[46]和Kawashima等[47]的研究一致,他们发现摄入产H2补充剂或含H2的牛奶能够促进泪液分泌、提高FBUT,从而改善干眼相关症状。然而,本研究中对照组(生理盐水组)患者的OSDI评分也有一定下降,可能是因为雾化湿润效果和热蒸汽作用加快了眼部血液循环,带来了暂时的舒适感。

4.4. ORI、TMH和BUT的结果分析

本研究未观察到两组患者的ORI、TMH和BUT的显著变化,这可能与治疗时间较短或样本量不足有关。与Kubota等[46]关于H2对干眼症改善有效的研究结论不同,他们的研究显示H2对改善干眼症多个相关指标有效,而本研究中的氢盐水超声雾化熏蒸可能需要更长的治疗时间和更大的样本量,才能在客观指标上显示出改善效果。有研究表明,干眼相关指标在H2治疗后7天开始有所改善,治疗14天后才有明显改善[48]。此外,不同的临床指标检测敏感性不同,MMP-9检测的敏感性、精确度较高,而ORI、TMH和BUT检查的影响因素较多,如检查者的主观影响、患者疲劳、保持睁眼时对外界环境耐受程度低等,这些均可能导致这三个指标的测量出现一定的误差,因此扩大样本量对减少实验误差是非常必要的。MMP-9属于炎症分子,处于干眼炎症反应上游,而ORI、TMH和BUT属于眼表结构性变化,处于下游,由于本实验时间较短,可能仅能改善炎症反应的损伤进程,而结构的修复需要更长的时间。以往的研究也表明,使用中药药液进行眼部熏蒸治疗能够改善TMH、BUT和Schirmer I试验结果[49]-[53],这提示了未来的研究可结合中药与H2联合治疗,开展进一步研究。

4.5. 研究局限性

本研究通过引入氢盐水在超声雾化熏蒸治疗中的新应用,填补了氢盐水研究的空白,加速了药物分布和血液循环。此外,我们使用MMP-9试纸进行即时、定量检测,提供了一种简化且高效的方法。这些创新推动了该领域在治疗和诊断方法上的进步。

然而,本研究仍存在一些局限性:

(1) MMP-9水平的检测仅限于氢盐水超声雾化熏蒸后的即时阶段,未对长期效应进行观察。

(2) 样本量相对较小,这可能限制了统计功效。由于时间和资源的限制,样本量较小可能会影响结果的普适性。未来的研究应扩大样本量,以进一步验证这些发现。

(3) 此外,本研究未评估其他的炎症标志物(如IL-1、IL-6和TNF-α)的变化,这可能会阻碍对氢盐水具体抗炎机制的深入探讨。

4.6. 未来展望

未来的研究应扩大样本规模并延长随访期,以评估氢盐水治疗的长期效果。同时,增加炎症标志物的检测范围,有助于深入理解氢盐水的作用机制。此外,通过结合细胞和动物实验,进一步探讨氢盐水的抗炎作用,为其在临床上的广泛应用提供更坚实的科学基础。

致 谢

本论文顺利完成,离不开各位师长的支持。

首先衷心感谢导师梁先军主任医师、指导老师罗汇慧副主任医师:从选题定方向,到指导实验操作,再到论文撰写与修改,您们的严谨治学与悉心指导,是本研究完成的关键。

感谢佛山爱尔卓越眼科医院与佛山爱尔眼科医院提供临床样本与检测支持,感谢课题组师兄、师姐协助实验与文献梳理,感谢审稿专家提出的宝贵修改建议。

基金项目

爱尔眼科医院集团科研基金自由探索计划(No.AF2204D02)。

NOTES

*通讯作者。

参考文献

[1] Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283. [Google Scholar] [CrossRef] [PubMed]
[2] 肖西立, 李涓. 杞菊地黄丸治疗干眼症有效性及安全性的Meta分析[J]. 国际眼科杂志, 2020, 20(1): 96-102.
[3] Tsubota, K., Yokoi, N., Watanabe, H., Dogru, M., Kojima, T., Yamada, M., et al. (2020) A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye & Contact Lens: Science & Clinical Practice, 46, S2-S13. [Google Scholar] [CrossRef] [PubMed]
[4] Sheppard, J.D. and Nichols, K.K. (2023) Dry Eye Disease Associated with Meibomian Gland Dysfunction: Focus on Tear Film Characteristics and the Therapeutic Landscape. Ophthalmology and Therapy, 12, 1397-1418. [Google Scholar] [CrossRef] [PubMed]
[5] Tsubota, K., Pflugfelder, S.C., Liu, Z., Baudouin, C., Kim, H.M., Messmer, E.M., et al. (2020) Defining Dry Eye from a Clinical Perspective. International Journal of Molecular Sciences, 21, Article No. 9271. [Google Scholar] [CrossRef] [PubMed]
[6] Yoo, T.K. and Oh, E. (2019) Diabetes Mellitus Is Associated with Dry Eye Syndrome: A Meta-Analysis. International Ophthalmology, 39, 2611-2620. [Google Scholar] [CrossRef] [PubMed]
[7] Sabeti, S., Kheirkhah, A., Yin, J. and Dana, R. (2020) Management of Meibomian Gland Dysfunction: A Review. Survey of Ophthalmology, 65, 205-217. [Google Scholar] [CrossRef] [PubMed]
[8] Naderi, K., Gormley, J. and O’Brart, D. (2020) Cataract Surgery and Dry Eye Disease: A Review. European Journal of Ophthalmology, 30, 840-855. [Google Scholar] [CrossRef] [PubMed]
[9] Perez, V.L., Stern, M.E. and Pflugfelder, S.C. (2020) Inflammatory Basis for Dry Eye Disease Flares. Experimental Eye Research, 201, 108294. [Google Scholar] [CrossRef] [PubMed]
[10] Baudouin, C., Irkeç, M., Messmer, E.M., Benítez‐del‐Castillo, J.M., Bonini, S., Figueiredo, F.C., et al. (2017) Clinical Impact of Inflammation in Dry Eye Disease: Proceedings of the Odissey Group Meeting. Acta Ophthalmologica, 96, 111-119. [Google Scholar] [CrossRef] [PubMed]
[11] Choi, W., Li, Z., Oh, H., Im, S., Lee, S., Park, S., et al. (2011) Expression of CCR5 and Its Ligands CCL3,-4, and-5 in the Tear Film and Ocular Surface of Patients with Dry Eye Disease. Current Eye Research, 37, 12-17. [Google Scholar] [CrossRef] [PubMed]
[12] Rao, S.K., Gokhale, N., Matalia, H. and Mehta, P. (2022) Inflammation and Dry Eye Disease—Where Are We? International Journal of Ophthalmology, 15, 820-827. [Google Scholar] [CrossRef] [PubMed]
[13] Aragona, P., Giannaccare, G., Mencucci, R., Rubino, P., Cantera, E. and Rolando, M. (2020) Modern Approach to the Treatment of Dry Eye, a Complex Multifactorial Disease: A P.I.C.A.S.S.O. Board Review. British Journal of Ophthalmology, 105, 446-453. [Google Scholar] [CrossRef] [PubMed]
[14] Gao, H., Zhao, L., Du, A., Zhang, X., Chai, M., Liu, L., et al. (2024) Comparison of Therapeutic Effects of 0.05% Cyclosporine a versus 0.1% Fluorometholone in Chinese Patients with Mild Dry Eye Unresponsive to Artificial Tears: A Randomized Control Study. BMC Ophthalmology, 24, Article No. 513. [Google Scholar] [CrossRef] [PubMed]
[15] Lu, L., Li, D., Yu, J., Ke, F., Wang, Y., Yang, F. and Liu, Z. (2023) Application Value of Pranoprofen Eye Drops Combined with Ultrasonic Atomization in the Treatment of Diabetic Dry Eye. Pakistan Journal of Pharmaceutical Sciences, 36, 325-329.
[16] Li, Z., Wang, H., Liang, M., Li, Z., Li, Y., Zhou, X., et al. (2022) Hypochlorous Acid Can Be the Novel Option for the Meibomian Gland Dysfunction Dry Eye through Ultrasonic Atomization. Disease Markers, 2022, Article ID: 8631038. [Google Scholar] [CrossRef] [PubMed]
[17] 徐宇秋, 程娟. 超声雾化治疗干眼的研究进展[J]. 中国中医眼科杂志, 2020, 30(5): 367-370.
[18] Botek, M., Sládečková, B., Krejčí, J., Pluháček, F. and Najmanová, E. (2021) Acute Hydrogen-Rich Water Ingestion Stimulates Cardiac Autonomic Activity in Healthy Females. Acta Gymnica, 51, e2021-009. [Google Scholar] [CrossRef
[19] 中华医学会眼科学分会角膜病学组, 中国医师协会眼科医师分会角膜病学组. 中国干眼临床诊疗专家共识(2024年) [J]. 中华眼科杂志, 2024, 60(12): 968-976.
[20] Bulut, M., Çelebi Sezer, Y., Ceylan, M.M., Alwazeer, D. and Koyuncu, M. (2022) Hydrogen-Rich Water Can Reduce the Formation of Biogenic Amines in Butter. Food Chemistry, 384, Article ID: 132613. [Google Scholar] [CrossRef] [PubMed]
[21] Lian, N., Shen, M., Zhang, K., Pan, J., Jiang, Y., Yu, Y., et al. (2021) Drinking Hydrogen-Rich Water Alleviates Chemotherapy-Induced Neuropathic Pain through the Regulation of Gut Microbiota. Journal of Pain Research, 14, 681-691. [Google Scholar] [CrossRef] [PubMed]
[22] Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K., et al. (2007) Hydrogen Acts as a Therapeutic Antioxidant by Selectively Reducing Cytotoxic Oxygen Radicals. Nature Medicine, 13, 688-694. [Google Scholar] [CrossRef] [PubMed]
[23] Ohta, S. (2011) Recent Progress toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Current Pharmaceutical Design, 17, 2241-2252. [Google Scholar] [CrossRef] [PubMed]
[24] Mandelker, L. (2011) Oxidative Stress, Free Radicals, and Cellular Damage. In: Oxidative Stress in Applied Basic Research and Clinical Practice, Humana Press, 1-17. [Google Scholar] [CrossRef
[25] Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., et al. (2023) Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Frontiers in Chemistry, 11, Article ID: 1158198. [Google Scholar] [CrossRef] [PubMed]
[26] Ung, L., Pattamatta, U., Carnt, N., Wilkinson-Berka, J.L., Liew, G. and White, A.J.R. (2017) Oxidative Stress and Reactive Oxygen Species: A Review of Their Role in Ocular Disease. Clinical Science, 131, 2865-2883. [Google Scholar] [CrossRef] [PubMed]
[27] Luo, L., Li, D., Doshi, A., Farley, W., Corrales, R.M. and Pflugfelder, S.C. (2004) Experimental Dry Eye Stimulates Production of Inflammatory Cytokines and MMP-9 and Activates MAPK Signaling Pathways on the Ocular Surface. Investigative Opthalmology & Visual Science, 45, 4293-4301. [Google Scholar] [CrossRef] [PubMed]
[28] Li, D., Luo, L., Chen, Z., Kim, H., Song, X.J. and Pflugfelder, S.C. (2006) JNK and ERK MAP Kinases Mediate Induction of IL-1beta, TNF-alpha and IL-8 Following Hyperosmolar Stress in Human Limbal Epithelial Cells. Experimental Eye Research, 82, 588-596. [Google Scholar] [CrossRef] [PubMed]
[29] Li, S., Xue, R., Wu, H., Pu, N., Wei, D., Zhao, N., et al. (2023) Novel Role of Molecular Hydrogen: The End of Ophthalmic Diseases? Pharmaceuticals, 16, Article No. 1567. [Google Scholar] [CrossRef] [PubMed]
[30] Igarashi, T., Ohsawa, I., Kobayashi, M., Igarashi, T., Suzuki, H., Iketani, M., et al. (2016) Hydrogen Prevents Corneal Endothelial Damage in Phacoemulsification Cataract Surgery. Scientific Reports, 6, Article No. 31190. [Google Scholar] [CrossRef] [PubMed]
[31] Igarashi, T., Ohsawa, I., Kobayashi, M., Umemoto, Y., Arima, T., Suzuki, H., et al. (2019) Effects of Hydrogen in Prevention of Corneal Endothelial Damage during Phacoemulsification: A Prospective Randomized Clinical Trial. American Journal of Ophthalmology, 207, 10-17. [Google Scholar] [CrossRef] [PubMed]
[32] Yan, W., Chen, T., Long, P., Zhang, Z., Liu, Q., Wang, X., et al. (2018) Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats. Medical Science Monitor, 24, 3840-3847. [Google Scholar] [CrossRef] [PubMed]
[33] An, J., Zhang, Z., Yan, W., Zhang, L., Chen, T., Zhao, G., et al. (2017) Effects of Hydrogen-Rich Saline on Endotoxin-Induced Uveitis. Medical Gas Research, 7, 9-18. [Google Scholar] [CrossRef] [PubMed]
[34] Campochiaro, P.A. and Mir, T.A. (2018) The Mechanism of Cone Cell Death in Retinitis Pigmentosa. Progress in Retinal and Eye Research, 62, 24-37. [Google Scholar] [CrossRef] [PubMed]
[35] Igarashi, T., Ohsawa, I., Kobayashi, M., Miyazaki, K., Igarashi, T., Kameya, S., et al. (2022) Drinking Hydrogen Water Improves Photoreceptor Structure and Function in Retinal Degeneration 6 Mice. Scientific Reports, 12, Article No. 13610. [Google Scholar] [CrossRef] [PubMed]
[36] Feng, Y., Wang, R., Xu, J., Sun, J., Xu, T., Gu, Q., et al. (2012) Hydrogen-Rich Saline Prevents Early Neurovascular Dysfunction Resulting from Inhibition of Oxidative Stress in STZ-Diabetic Rats. Current Eye Research, 38, 396-404. [Google Scholar] [CrossRef] [PubMed]
[37] Ono, H., Nishijima, Y., Ohta, S., Sakamoto, M., Kinone, K., Horikosi, T., et al. (2017) Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection. Journal of Stroke and Cerebrovascular Diseases, 26, 2587-2594. [Google Scholar] [CrossRef] [PubMed]
[38] Tamura, T., Suzuki, M., Hayashida, K., Kobayashi, Y., Yoshizawa, J., Shibusawa, T., et al. (2020) Hydrogen Gas Inhalation Alleviates Oxidative Stress in Patients with Post-Cardiac Arrest Syndrome. Journal of Clinical Biochemistry and Nutrition, 67, 214-221. [Google Scholar] [CrossRef] [PubMed]
[39] Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., et al. (2008) Supplementation of Hydrogen-Rich Water Improves Lipid and Glucose Metabolism in Patients with Type 2 Diabetes or Impaired Glucose Tolerance. Nutrition Research, 28, 137-143. [Google Scholar] [CrossRef] [PubMed]
[40] Ichihara, M., Sobue, S., Ito, M., Ito, M., Hirayama, M. and Ohno, K. (2015) Beneficial Biological Effects and the Underlying Mechanisms of Molecular Hydrogen—Comprehensive Review of 321 Original Articles. Medical Gas Research, 5, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
[41] Choi, M., Park, Y.M. and Ko, B.Y. (2023) Comparative Evaluation of Matrix Metalloproteinase-9 Immunoassay and Tear Osmolarity Measurement for Diagnosing Severity of Dry Eye Disease. Korean Journal of Ophthalmology, 37, 409-416. [Google Scholar] [CrossRef] [PubMed]
[42] Chotikavanich, S., de Paiva, C.S., Li, D.Q., Chen, J.J., Bian, F., Farley, W.J., et al. (2009) Production and Activity of Matrix Metalloproteinase-9 on the Ocular Surface Increase in Dysfunctional Tear Syndrome. Investigative Opthalmology & Visual Science, 50, 3203-3209. [Google Scholar] [CrossRef] [PubMed]
[43] Rajashekhar, G., Shivanna, M., Kompella, U.B., Wang, Y. and Srinivas, S.P. (2014) Role of MMP-9 in the Breakdown of Barrier Integrity of the Corneal Endothelium in Response to TNF-α. Experimental Eye Research, 122, 77-85. [Google Scholar] [CrossRef] [PubMed]
[44] Kubota, M., Shimmura, S., Kubota, S., Miyashita, H., Kato, N., Noda, K., et al. (2011) Hydrogen and n-Acetyl-l-Cysteine Rescue Oxidative Stress-Induced Angiogenesis in a Mouse Cornealalkali-Burn Model. Investigative Opthalmology & Visual Science, 52, 427-433. [Google Scholar] [CrossRef] [PubMed]
[45] 冯树安. 一种富氢水雾化治疗眼镜装置[P]. 中国, 2020210142372. 2021-06-29.
[46] Kubota, M., Kawashima, M., Inoue, S., Imada, T., Nakamura, S., Kubota, S., et al. (2021) Randomized, Crossover Clinical Efficacy Trial in Humans and Mice on Tear Secretion Promotion and Lacrimal Gland Protection by Molecular Hydrogen. Scientific Reports, 11, Article No. 6434. [Google Scholar] [CrossRef] [PubMed]
[47] Kawashima, M., Tsuno, S., Matsumoto, M. and Tsubota, K. (2019) Hydrogen-Producing Milk to Prevent Reduction in Tear Stability in Persons Using Visual Display Terminals. The Ocular Surface, 17, 714-721. [Google Scholar] [CrossRef] [PubMed]
[48] 楚莹莹, 华宁, 茹玉莎, 赵少贞. 富氢盐水对大鼠干眼模型眼表的保护作用[J]. 中华眼科杂志, 2017, 53(5): 363-372.
[49] Liu, Z., Jin, M., Li, Y., Liu, J., Xiao, X., Bi, H., et al. (2020) Efficacy and Safety of Houttuynia Eye Drops Atomization Treatment for Meibomian Gland Dysfunction-Related Dry Eye Disease: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Journal of Clinical Medicine, 9, Article No. 4022. [Google Scholar] [CrossRef] [PubMed]
[50] Wang, D., Mu, L., Wu, X., Zhang, Y. and Liu, X. (2024) Effect of the Traditional Chinese Medicine Fumigation Combined with the Meibomian Gland Squeezer for Treatment of Dry Eye Associated with Meibomian Gland Dysfunction. Integrative Medicine Discovery, 8, e24015. [Google Scholar] [CrossRef
[51] Xu, B., Shen, L.K. and Kou, L.L. (2023) Research Progress on the Clinical Application of Traditional Chinese and West-ern Medicine in the Treatment of Dry Eye after Phacoemulsification Cataract Surgery. Frontiers in Medical Science Research, 5, 89-96.
[52] Hou, X.Y., Qin, Y.L., Deng, T.T. and Jin, M. (2022) Clinical Effect of Chinese Medicine Aerosol Fumigation on Demodex Infection Related Meibomian Gland Dysfunction. Journal of Hainan Medical University, 28, 36-41.
[53] Lin, F., Mao, X., Ma, L. and Liu, H. (2021) An Investigation into the Effects of Ocular Nebulization Combined with Meibomian Gland Massage on Ocular Surface Status and Corneal Higher‐Order Aberrations for the Treatment of Meibomian Gland Dysfunction. Acta Ophthalmologica, 100, e681-e693. [Google Scholar] [CrossRef] [PubMed]