|
[1]
|
Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版) [J]. 中华肝脏病杂志, 2024, 32(5): 418-434.
|
|
[3]
|
Wang, S., Liu, Z., Geng, J., Li, L. and Feng, X. (2022) An Overview of Ferroptosis in Non-Alcoholic Fatty Liver Disease. Biomedicine & Pharmacotherapy, 153, Article 113374. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, J., Li, X., Ge, C., Min, J. and Wang, F. (2022) The Multifaceted Role of Ferroptosis in Liver Disease. Cell Death & Differentiation, 29, 467-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, X., Liu, Z., Wang, M., Guo, Y., Wang, X., Luo, K., et al. (2023) Mechanisms and Regulations of Ferroptosis. Frontiers in Immunology, 14, Article ID: 1269451. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xie, Y., Zhou, Y., Wang, J., Du, L., Ren, Y. and Liu, F. (2023) Ferroptosis, Autophagy, Tumor and Immunity. Heliyon, 9, e19799. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liang, D., Minikes, A.M. and Jiang, X. (2022) Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Molecular Cell, 82, 2215-2227. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24, Article 449. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liu, Y. and Gu, W. (2022) P53 in Ferroptosis Regulation: The New Weapon for the Old Guardian. Cell Death & Differentiation, 29, 895-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yan, R., Lin, B., Jin, W., Tang, L., Hu, S. and Cai, R. (2023) NRF2, a Superstar of Ferroptosis. Antioxidants, 12, Article 1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nishizawa, H., Yamanaka, M. and Igarashi, K. (2023) Ferroptosis: Regulation by Competition between NRF2 and BACH1 and Propagation of the Death Signal. The FEBS Journal, 290, 1688-1704. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ryter, S.W. (2021) Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells, 10, Article 515. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, H., Zhang, E. and Hu, H. (2021) Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines, 9, Article 1660. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Salomao, M.A. (2021) Pathology of Hepatic Iron Overload. Clinical Liver Disease, 17, 232-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Low, G., Ferguson, C., Locas, S., Tu, W., Manolea, F., Sam, M., et al. (2023) Multiparametric MR Assessment of Liver Fat, Iron, and Fibrosis: A Concise Overview of the Liver “Triple Screen”. Abdominal Radiology, 48, 2060-2073. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Blas-García, A. and Apostolova, N. (2023) Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants, 12, Article 1567. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tsurusaki, S., Tsuchiya, Y., Koumura, T., Nakasone, M., Sakamoto, T., Matsuoka, M., et al. (2019) Hepatic Ferroptosis Plays an Important Role as the Trigger for Initiating Inflammation in Nonalcoholic Steatohepatitis. Cell Death & Disease, 10, Article No. 449. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cheng, Z., Chu, H., Zhu, Q. and Yang, L. (2023) Ferroptosis in Non-Alcoholic Liver Disease: Molecular Mechanisms and Therapeutic Implications. Frontiers in Nutrition, 10, Article ID: 1090338. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sui, Y., Geng, X., Wang, Z., Zhang, J., Yang, Y. and Meng, Z. (2024) Targeting the Regulation of Iron Homeostasis as a Potential Therapeutic Strategy for Nonalcoholic Fatty Liver Disease. Metabolism, 157, Article 155953. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, N., Que, H., Luo, Q., Zheng, W., Li, H., Wang, Q., et al. (2024) Mechanisms of Ferroptosis in Nonalcoholic Fatty Liver Disease and Therapeutic Effects of Traditional Chinese Medicine: A Review. Frontiers in Medicine, 11, Article ID: 1356225. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhao, S., Guo, Y. and Yin, X. (2023) Lipid Peroxidation in Ferroptosis and Association with Nonalcoholic Fatty Liver Disease. Frontiers in Bioscience-Landmark, 28, Article ID: 332. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tang, D., Chen, X., Kang, R. and Kroemer, G. (2021) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gan, B. (2021) Mitochondrial Regulation of Ferroptosis. Journal of Cell Biology, 220, e202105043. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, Y., Fang, Z., Yi, X., Wei, X. and Jiang, D. (2023) The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death & Disease, 14, Article No. 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, L., Fu, J., Liu, D., Sun, J., Hou, Y., Chen, C., et al. (2020) Hepatocyte-Specific NRF2 Deficiency Mitigates High-Fat Diet-Induced Hepatic Steatosis: Involvement of Reduced PPARγ Expression. Redox Biology, 30, Article 101412. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
张莉, 季光. 非酒精性脂肪性肝病中医诊疗专家共识(2023) [J]. 中国中西医结合消化杂志, 2024, 32(1): 1-7.
|
|
[33]
|
陈佳, 赵林华, 黄一珊, 等. 仝小林院士辨治代谢相关脂肪性肝病经验撷菁[J]. 中西医结合肝病杂志, 2021, 31(12): 1066-1068, 1072.
|
|
[34]
|
张欢, 赵玉清, 马丽娜·阿新拜, 等. 基于铁死亡探讨“健脾疏肝”法治疗代谢相关脂肪性肝病的新思路[J]. 中医药学报, 2024, 52(1): 58-63.
|
|
[35]
|
吕明龙, 张春玲. 中医药治疗非酒精性脂肪肝的研究与探讨[J]. 中医临床研究, 2022, 14(21): 80-83.
|
|
[36]
|
张新, 陈文娜, 宋囡, 等. 丹蒌片通过铁死亡途径减轻非酒精性脂肪性肝病模型小鼠肝脏氧化损伤[J]. 中国病理生理杂志, 2021, 37(12): 2180-2188.
|
|
[37]
|
马贵萍, 于忠杨, 卿立金, 等. 加味二至丸通过抑制铁死亡减轻高脂血症小鼠肝脏脂质沉积[J]. 中国病理生理杂志, 2022, 38(2): 259-266.
|
|
[38]
|
吴瑶, 宋囡, 贾连群, 等. 化瘀祛痰方对载脂蛋白E基因敲除小鼠肝脏脂质过氧化及p53、GPX4、xCT表达的影响[J]. 中医杂志, 2020, 61(18): 1633-1638.
|
|
[39]
|
李二稳, 高改, 王梦瑶, 等. 泽泻汤抑制肝细胞铁死亡改善非酒精性脂肪性肝病的作用机制[J]. 中医学报, 2022, 37(6): 1243-1253.
|
|
[40]
|
张新, 陈文娜, 宋囡, 等. 黄芪甲苷对棕榈酸诱导的小鼠RAW264.7细胞铁死亡的调控作用[J]. 中国病理生理杂志, 2022, 38(6): 1105-1112.
|
|
[41]
|
Ye, Q., Jiang, Y., Wu, D., Cai, J., Jiang, Z., Zhou, Z., et al. (2023) Atractylodin Alleviates Nonalcoholic Fatty Liver Disease by Regulating Nrf2-Mediated Ferroptosis. Heliyon, 9, e18321. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, L., Dai, X., Wang, L., Cai, J., Shen, J., Shen, Y., et al. (2022) Iron Overload Accelerated Lipid Metabolism Disorder and Liver Injury in Rats with Non-Alcoholic Fatty Liver Disease. Frontiers in Nutrition, 9, Article ID: 961892. [Google Scholar] [CrossRef] [PubMed]
|