|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jubber, I., Ong, S., Bukavina, L., Black, P.C., Compérat, E., Kamat, A.M., et al. (2023) Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. European Urology, 84, 176-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Martinez-Guryn, K., Leone, V. and Chang, E.B. (2019) Regional Diversity of the Gastrointestinal Microbiome. Cell Host & Microbe, 26, 314-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Oliveira, G. and Wu, C.J. (2023) Dynamics and Specificities of T Cells in Cancer Immunotherapy. Nature Reviews Cancer, 23, 295-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nejman, D., Livyatan, I., Fuks, G., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980.
|
|
[7]
|
He, C., Li, B., Huang, L., et al. (2020) Gut Microbial Composition Changes in Bladder Cancer Patients: A Case-Control Study in Harbin, China. Asia Pacific Journal of Clinical Nutrition, 29, 395-403.
|
|
[8]
|
Miyake, M., Tatsumi, Y., Ohnishi, K., Fujii, T., Nakai, Y., Tanaka, N., et al. (2022) Prostate Diseases and Microbiome in the Prostate, Gut, and Urine. Prostate International, 10, 96-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Curtiss, N., Balachandran, A., Krska, L., Peppiatt-Wildman, C., Wildman, S. and Duckett, J. (2018) Age, Menopausal Status and the Bladder Microbiome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 228, 126-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, J., Wan, S., Li, K., Chen, S. and Yang, L. (2023) Gut and Urinary Microbiota: The Causes and Potential Treatment Measures of Renal Cell Carcinoma. Frontiers in Immunology, 14, Article 1188520. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
D’Antonio, D.L., Marchetti, S., Pignatelli, P., Piattelli, A. and Curia, M.C. (2022) The Oncobiome in Gastroenteric and Genitourinary Cancers. International Journal of Molecular Sciences, 23, Article 9664. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its Fada Adhesin. Cell Host & Microbe, 14, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, Q., Wang, B., Zheng, Q., Li, H., Meng, X., Zhou, F., et al. (2023) A Review of Gut Microbiota‐derived Metabolites in Tumor Progression and Cancer Therapy. Advanced Science, 10, e2207366. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Singh, A., Alexander, S.G. and Martin, S. (2023) Gut Microbiome Homeostasis and the Future of Probiotics in Cancer Immunotherapy. Frontiers in Immunology, 14, Article 1114499. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, Y., Zhang, J., Xia, Y. and Sun, J. (2023) Bacterial Translocation and Barrier Dysfunction Enhance Colonic Tumorigenesis. Neoplasia, 35, Article ID: 100847. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Multhoff, G., Molls, M. and Radons, J. (2012) Chronic Inflammation in Cancer Development. Frontiers in Immunology, 2, Article 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yang, H.J., Kim, D.S., Lee, K.W. and Kim, Y.H. (2022) The Urinary Microbiome; Axis Crosstalk and Short-Chain Fatty Acid. Diagnostics, 12, Article 3119. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., et al. (2018) Extensive Impact of Non-Antibiotic Drugs on Human Gut Bacteria. Nature, 555, 623-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yuan, S., Fang, C., Leng, W., Wu, L., Li, B., Wang, X., et al. (2021) Oral Microbiota in the Oral-Genitourinary Axis: Identifying Periodontitis as a Potential Risk of Genitourinary Cancers. Military Medical Research, 8, Article No. 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Michaud, D.S., Liu, Y., Meyer, M., Giovannucci, E. and Joshipura, K. (2008) Periodontal Disease, Tooth Loss, and Cancer Risk in Male Health Professionals: A Prospective Cohort Study. The Lancet Oncology, 9, 550-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fouts, D.E., Pieper, R., Szpakowski, S., Pohl, H., Knoblach, S., Suh, M., et al. (2012) Integrated Next-Generation Sequencing of 16S rDNA and Metaproteomics Differentiate the Healthy Urine Microbiome from Asymptomatic Bacteriuria in Neuropathic Bladder Associated with Spinal Cord Injury. Journal of Translational Medicine, 10, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Siddiqui, H., Nederbragt, A.J., Lagesen, K., Jeansson, S.L. and Jakobsen, K.S. (2011) Assessing Diversity of the Female Urine Microbiota by High Throughput Sequencing of 16S rDNA Amplicons. BMC Microbiology, 11, Article No. 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lewis, D.A., Brown, R., Williams, J., White, P., Jacobson, S.K., Marchesi, J.R., et al. (2013) The Human Urinary Microbiome; Bacterial DNA in Voided Urine of Asymptomatic Adults. Frontiers in Cellular and Infection Microbiology, 3, Article 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zünd, J.N., Plüss, S., Mujezinovic, D., Menzi, C., von Bieberstein, P.R., de Wouters, T., et al. (2024) A Flexible High-Throughput Cultivation Protocol to Assess the Response of Individuals’ Gut Microbiota to Diet-, Drug-, and Host-Related Factors. ISME Communications, 4, ycae035. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Knowles, M.A. and Hurst, C.D. (2014) Molecular Biology of Bladder Cancer: New Insights into Pathogenesis and Clinical Diversity. Nature Reviews Cancer, 15, 25-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Honeycutt, J., Hammam, O., Fu, C. and Hsieh, M.H. (2014) Controversies and Challenges in Research on Urogenital Schistosomiasis-Associated Bladder Cancer. Trends in Parasitology, 30, 324-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xu, W., Yang, L., Lee, P., et al. (2014) Mini-Review: Perspective of the Microbiome in the Pathogenesis of Urothelial Carcinoma. American Journal of Clinical and Experimental Urology, 2, 57-61.
|
|
[28]
|
Wu, C.E., Lin, Y.C., Hong, J.H., et al. (2013) Prognostic Value of Complete Response in Patients with Muscle-Invasive Bladder Cancer Undergoing Concurrent Chemoradiotherapy. Anticancer Research, 33, 2605-2610.
|
|
[29]
|
Bučević Popović, V., Šitum, M., Chow, C.T., Chan, L.S., Roje, B. and Terzić, J. (2018) The Urinary Microbiome Associated with Bladder Cancer. Scientific Reports, 8, Article No. 12157. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Morales, A., Eidinger, D. and Bruce, A.W. (2017) Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors. Journal of Urology, 197, S142-s145. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Babjuk, M., Burger, M., Compérat, E.M., Gontero, P., Mostafid, A.H., Palou, J., et al. (2019) European Association of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (TAT1 and Carcinoma in Situ)—2019 Update. European Urology, 76, 639-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Del Giudice, F., Barchetti, G., De Berardinis, E., Pecoraro, M., Salvo, V., Simone, G., et al. (2020) Prospective Assessment of Vesical Imaging Reporting and Data System (VI-RADS) and Its Clinical Impact on the Management of High-Risk Non-Muscle-Invasive Bladder Cancer Patients Candidate for Repeated Transurethral Resection. European Urology, 77, 101-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bellmunt, J., de Wit, R., Vaughn, D.J., Fradet, Y., Lee, J., Fong, L., et al. (2017) Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine, 376, 1015-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Song, D., Powles, T., Shi, L., Zhang, L., Ingersoll, M.A. and Lu, Y. (2019) Bladder Cancer, a Unique Model to Understand Cancer Immunity and Develop Immunotherapy Approaches. The Journal of Pathology, 249, 151-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kim, S.K. and Cho, S.W. (2022) The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology, 13, Article 868695. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dizdar, O., Hayran, M., Guven, D.C., Yılmaz, T.B., Taheri, S., Akman, A.C., et al. (2017) Increased Cancer Risk in Patients with Periodontitis. Current Medical Research and Opinion, 33, 2195-2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cheng, C., Chang, S., Lee, B., Lin, K. and Huang, Y. (2006) Vitamin B6 Supplementation Increases Immune Responses in Critically Ill Patients. European Journal of Clinical Nutrition, 60, 1207-1213. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bargiela, D., Cunha, P.P., Veliça, P., Foskolou, I.P., Barbieri, L., Rundqvist, H., et al. (2022) Vitamin B6 Metabolism Determines T Cell Anti-Tumor Responses. Frontiers in Immunology, 13, Article 837669. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mager, L.F., Burkhard, R., Pett, N., Cooke, N.C.A., Brown, K., Ramay, H., et al. (2020) Microbiome-Derived Inosine Modulates Response to Checkpoint Inhibitor Immunotherapy. Science, 369, 1481-1489. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Schluter, J., Peled, J.U., Taylor, B.P., Markey, K.A., Smith, M., Taur, Y., et al. (2020) The Gut Microbiota Is Associated with Immune Cell Dynamics in Humans. Nature, 588, 303-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Andrews, M.C., Duong, C.P.M., Gopalakrishnan, V., Iebba, V., Chen, W., Derosa, L., et al. (2021) Gut Microbiota Signatures Are Associated with Toxicity to Combined CTLA-4 and PD-1 Blockade. Nature Medicine, 27, 1432-1441. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Frankel, A.E., Coughlin, L.A., Kim, J., Froehlich, T.W., Xie, Y., Frenkel, E.P., et al. (2017) Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia, 19, 848-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, X., Zhang, J., Ruan, W., Huang, M., Wang, C., Wang, H., et al. (2020) Urine DNA Methylation Assay Enables Early Detection and Recurrence Monitoring for Bladder Cancer. Journal of Clinical Investigation, 130, 6278-6289. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lou, K., Chi, J., Wu, J., Ma, J., Liu, S. and Cui, Y. (2024) Research Progress on the Microbiota in Bladder Cancer Tumors. Frontiers in Cellular and Infection Microbiology, 14, Article 1374944. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Helmink, B.A., Khan, M.A.W., Hermann, A., Gopalakrishnan, V. and Wargo, J.A. (2019) The Microbiome, Cancer, and Cancer Therapy. Nature Medicine, 25, 377-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Derosa, L., Routy, B., Fidelle, M., Iebba, V., Alla, L., Pasolli, E., et al. (2020) Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. European Urology, 78, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ninkov, M., Schmerk, C.L., Moradizadeh, M., Parvathy, S.N., Figueredo, R., Burton, J.P., et al. (2022) Improved MAIT Cell Functions Following Fecal Microbiota Transplantation for Metastatic Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 72, 1247-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kim, C., Yoon, L., Michels, K., Tranfield, W., Jacobs, J. and May, F. (2022) The Impact of Prebiotic, Probiotic, and Synbiotic Supplements and Yogurt Consumption on the Risk of Colorectal Neoplasia among Adults: A Systematic Review. Nutrients, 14, Article 4937. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tomita, Y., Ikeda, T., Sakata, S., Saruwatari, K., Sato, R., Iyama, S., et al. (2020) Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research, 8, 1236-1242. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Hagihara, M., Kuroki, Y., Ariyoshi, T., Higashi, S., Fukuda, K., Yamashita, R., et al. (2020) Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience, 23, Article ID: 100772. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Dadgar-Zankbar, L., Mokhtaryan, M., Bafandeh, E., Javanmard, Z., Asadollahi, P., Darbandi, T., et al. (2024) Microbiome and Bladder Cancer: The Role of Probiotics in Treatment. Future Microbiology, 20, 73-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Feyisetan, O., Tracey, C. and Hellawell, G.O. (2011) Probiotics, Dendritic Cells and Bladder Cancer. BJU International, 109, 1594-1597. [Google Scholar] [CrossRef] [PubMed]
|