|
[1]
|
Mirny, L. and Dekker, J. (2022) Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harbor Perspectives in Biology, 14, a040147. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhou, Q., Cheng, S., Zheng, S., Wang, Z., Guan, P., Zhu, Z., et al. (2023) Chromloops: A Comprehensive Database for Specific Protein-Mediated Chromatin Loops in Diverse Organisms. Nucleic Acids Research, 51, D57-D69. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ahn, J.H., Davis, E.S., Daugird, T.A., Zhao, S., Quiroga, I.Y., Uryu, H., et al. (2021) Phase Separation Drives Aberrant Chromatin Looping and Cancer Development. Nature, 595, 591-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Misteli, T. (2020) The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell, 183, 28-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., et al. (2015) CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/promoter Function. Cell, 162, 900-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., et al. (2012) Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions. Nature, 485, 376-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hildebrand, E.M. and Dekker, J. (2020) Mechanisms and Functions of Chromosome Compartmentalization. Trends in Biochemical Sciences, 45, 385-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sehgal, N., Fritz, A.J., Morris, K., Torres, I., Chen, Z., Xu, J., et al. (2014) Gene Density and Chromosome Territory Shape. Chromosoma, 123, 499-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rosin, L.F., Crocker, O., Isenhart, R.L., Nguyen, S.C., Xu, Z. and Joyce, E.F. (2019) Chromosome Territory Formation Attenuates the Translocation Potential of Cells. eLife, 8, e49553 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hosea, R., Hillary, S., Naqvi, S., Wu, S. and Kasim, V. (2024) The Two Sides of Chromosomal Instability: Drivers and Brakes in Cancer. Signal Transduction and Targeted Therapy, 9, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gridina, M. and Fishman, V. (2022) Multilevel View on Chromatin Architecture Alterations in Cancer. Frontiers in Genetics, 13, Article 1059617. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
肖亦舒, 杜乐, 任立成. 染色体构象捕获技术及其衍生高通量技术发展与展望[J]. 基因组学与应用生物学, 2022, 41(Z2): 2271-2281.
|
|
[13]
|
杨琬婷, 杨磊, 王世强. 三维基因组测序技术发展[J]. 生命科学, 2019, 31(1): 1-8.
|
|
[14]
|
王舜泽, 江丰, 朱东丽, 等. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294.
|
|
[15]
|
Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., et al. (2013) Single-Cell Hi-C Reveals Cell-to-Cell Variability in Chromosome Structure. Nature, 502, 59-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., et al. (2015) Mapping Long-Range Promoter Contacts in Human Cells with High-Resolution Capture Hi-C. Nature Genetics, 47, 598-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hsieh, T.S., Fudenberg, G., Goloborodko, A. and Rando, O.J. (2016) Micro-C XL: Assaying Chromosome Conformation from the Nucleosome to the Entire Genome. Nature Methods, 13, 1009-1011. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hong, P., Jiang, H., Xu, W., Lin, D., Xu, Q., Cao, G., et al. (2020) The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis. Genes, 11, Article 289. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., et al. (2009) An Oestrogen-Receptor-α-Bound Human Chromatin Interactome. Nature, 462, 58-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., et al. (2016) HiChIP: Efficient and Sensitive Analysis of Protein-Directed Genome Architecture. Nature Methods, 13, 919-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liang, D., Li, X., Bai, S., et al. (2024) Clinical Outcome of Induction Treatment in the Era of Novel Agents and the Impact of the Number of High-Risk Cytogenetic Abnormalities (HRA) on Prognosis of Patients with Newly Diagnosed Multiple Myeloma (NDMM): Insights from a Multicenter Study. Cancer Medicine, 13, e70270.
|
|
[22]
|
Swan, D., Madduri, D. and Hocking, J. (2024) CAR-T Cell Therapy in Multiple Myeloma: Current Status and Future Challenges. Blood Cancer Journal, 14, Article No. 206. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
郝牧, 邱录贵. 多发性骨髓瘤肿瘤生物学研究进展[J]. 中国细胞生物学学报, 2022, 44(1): 111-119.
|
|
[24]
|
吴春晓, 曾招, 王琴荣, 等. 伴有染色体碎裂化异常的多发性骨髓瘤3例[J]. 中华血液学杂志, 2022, 43(12): 1034-1038
|
|
[25]
|
中国抗癌协会血液肿瘤专业委员会骨髓瘤与浆细胞疾病学组, 中国临床肿瘤学会多发性骨髓瘤专家委员会, 邱录贵, 等. 高危多发性骨髓瘤诊断与治疗中国专家共识(2024年版) [J]. 中华血液学杂志, 2024, 45(5): 430-435
|
|
[26]
|
Liu, X., Jia, S., Chu, Y., Tian, B., Gao, Y., Zhang, C., et al. (2022) Chromosome 1q21 Gain Is an Adverse Prognostic Factor for Newly Diagnosed Multiple Myeloma Patients Treated with Bortezomib-Based Regimens. Frontiers in Oncology, 12, Article 938550. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Schavgoulidze, A., Talbot, A., Perrot, A., Cazaubiel, T., Leleu, X., Manier, S., et al. (2023) Biallelic Deletion of 1p32 Defines Ultra-High-Risk Myeloma, but Monoallelic Del(1p32) Remains a Strong Prognostic Factor. Blood, 141, 1308-1315. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Avet-Loiseau, H., Davies, F.E., Samur, M.K., et al. (2025) International Myeloma Society/International Myeloma Working Group Consensus Recommendations on the Definition of High-Risk Multiple Myeloma. Journal of Clinical Oncology, 2025, JCO2401893.
|
|
[29]
|
Kim, S.J., Shin, H., Lee, H., Kim, N.K.D., Yun, J.W., Hwang, J.H., et al. (2016) Recurrent Mutations of MAPK Pathway Genes in Multiple Myeloma but Not in Amyloid Light-Chain Amyloidosis. Oncotarget, 7, 68350-68359. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, N., Lin, P., Zuo, Z., You, M.J., Shuai, W., Orlowski, R., et al. (2023) Plasma Cell Myeloma with RAS/BRAF Mutations Is Frequently Associated with a Complex Karyotype, Advanced Stage Disease, and Poorer Prognosis. Cancer Medicine, 12, 14293-14304. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rustad, E.H., Yellapantula, V., Leongamornlert, D., Bolli, N., Ledergor, G., Nadeu, F., et al. (2020) Timing the Initiation of Multiple Myeloma. Nature Communications, 11, Article No. 1917. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Maura, F., Rajanna, A.R., Ziccheddu, B., Poos, A.M., Derkach, A., Maclachlan, K., et al. (2024) Genomic Classification and Individualized Prognosis in Multiple Myeloma. Journal of Clinical Oncology, 42, 1229-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Alberge, J., Dutta, A.K., Poletti, A., Coorens, T.H.H., Lightbody, E.D., Toenges, R., et al. (2025) Genomic Landscape of Multiple Myeloma and Its Precursor Conditions. Nature Genetics, 57, 1493-1503. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
邵青, 付蓉. 长链非编码RNA在多发性骨髓瘤中的作用研究进展[J]. 中华血液学杂志, 2018, 39(7): 609-611.
|
|
[35]
|
Statello, L., Guo, C., Chen, L. and Huarte, M. (2020) Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nature Reviews Molecular Cell Biology, 22, 96-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
贺玉钦, 高文, 陈文明. 长链非编码RNA在多发性骨髓瘤发生发展中的作用[J]. 中国肿瘤临床, 2019, 46(12): 640-644.
|
|
[37]
|
Corre, J., Munshi, N. and Avet-Loiseau, H. (2015) Genetics of Multiple Myeloma: Another Heterogeneity Level? Blood, 125, 1870-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
王轶, 安刚, 邱录贵. 多发性骨髓瘤克隆演变研究进展[J]. 中华血液学杂志, 2021, 42(7): 611-615.
|
|
[39]
|
Yan, Y., Qin, X., Liu, J., Fan, H., Yan, W., Liu, L., et al. (2022) Clonal Phylogeny and Evolution of Critical Cytogenetic Aberrations in Multiple Myeloma at Single-Cell Level by QM-FISH. Blood Advances, 6, 441-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
许婧钰, 王轶, 邱录贵, 等. 多发性骨髓瘤遗传学异常和克隆演变[J]. 中国细胞生物学学报, 2022, 44(1): 145-152.
|
|
[41]
|
Salomon-Perzyński, A., Jamroziak, K. and Głodkowska-Mrówka, E. (2021) Clonal Evolution of Multiple Myeloma—Clinical and Diagnostic Implications. Diagnostics, 11, Article 1534. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
何旎涵, 周文. 多发性骨髓瘤细胞与骨髓微环境互作机制研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 475-481.
|
|
[43]
|
Boulogeorgou, K., Papaioannou, M., Chatzileontiadou, S., Georgiou, E., Fola, A., Tzorakoleftheraki, S., et al. (2025) Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review. Cancers, 17, Article 1081. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sonugür, F.G. and Akbulut, H. (2019) The Role of Tumor Microenvironment in Genomic Instability of Malignant Tumors. Frontiers in Genetics, 10, Article 1063. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mo, C.K., Liu, J., Chen, S., Storrs, E., Targino da Costa, A.L.N., Houston, A., et al. (2024) Tumour Evolution and Microenvironment Interactions in 2D and 3D Space. Nature, 634, 1178-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Binder, M., Szalat, R.E., Talluri, S., Fulciniti, M., Avet-Loiseau, H., Parmigiani, G., et al. (2024) Bone Marrow Stromal Cells Induce Chromatin Remodeling in Multiple Myeloma Cells Leading to Transcriptional Changes. Nature Communications, 15, Article No. 4139. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wu, P., Li, T., Li, R., Jia, L., Zhu, P., Liu, Y., et al. (2017) 3D Genome of Multiple Myeloma Reveals Spatial Genome Disorganization Associated with Copy Number Variations. Nature Communications, 8, Article No. 1937. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, K., Chen, M., Chen, M., Wang, Y., Liu, H., Li, Y., et al. (2025) The 3D Genome of Plasma Cells in Multiple Myeloma. Scientific Reports, 15, Article No. 19331. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
王悦, 陈孟斯, 陈明, 等. 两例不同核型多发性骨髓瘤标本的三维基因组特征分析[J]. 中国输血杂志, 2024, 37(11): 1247-1255+1263.
|
|
[50]
|
Xiong, S., Zhou, J., Tan, T.K., Chung, T., Tan, T.Z., Toh, S.H., et al. (2024) Super Enhancer Acquisition Drives Expression of Oncogenic PPP1R15B That Regulates Protein Homeostasis in Multiple Myeloma. Nature Communications, 15, Article No. 6810. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wall, B.P.G., Nguyen, M., Harrell, J.C. and Dozmorov, M.G. (2025) Machine and Deep Learning Methods for Predicting 3D Genome Organization. In: Methods in Molecular Biology, Springer, 357-400. [Google Scholar] [CrossRef] [PubMed]
|