冠状动脉周围脂肪衰减指数(FAI)的临床研究进展
Clinical Research Advances in the Pericoronary Fat Attenuation Index
摘要: 冠状动脉周围脂肪衰减指数(FAI)是基于冠状动脉CT血管成像(CCTA)图像衍生的新型无创影像标志物,能对冠脉炎症进行精准识别。目前有大量的国内外研究对FAI的临床应用进行了探讨,基于此,本文就FAI的临床研究的进展予以综述。
Abstract: The pericoronary fat attenuation index (FAI) is a novel non-invasive imaging biomarker derived from coronary computed tomography angiography images, which enables accurate detection of coronary inflammation. Extensive research, both domestically and internationally, has investigated the clinical applications of FAI. Based on this body of work, this review summarizes the progress in clinical research on FAI.
文章引用:邱玲, 陈林丽. 冠状动脉周围脂肪衰减指数(FAI)的临床研究进展[J]. 临床医学进展, 2025, 15(11): 610-614. https://doi.org/10.12677/acm.2025.15113137

1. 引言

在当今社会,冠状动脉疾病(Coronary Artery Disease, CAD)的发病率居高不下,对人们的生命健康造成严重威胁,CAD的早发现、早治疗尤为重要[1]。目前基于冠状动脉CT血管成像(Coronary Computed Tomography Angiography, CCTA)可以较为准确地评估冠脉狭窄以及斑块成分,然而对于冠脉的炎症状态的识别仍存在困难[2]。研究发现冠状动脉周围脂肪组织(Pericoronary Adipose Tissue, PCAT)存在两重性,生理状态下PCAT发挥血管保护作用,而在邻近血管壁发生炎症时则发生促炎性转化[3]。冠状动脉周围脂肪衰减指数(Fat Attenuation Index, FAI)则是基于此衍生的CCTA新型无创影像标志物,能对冠脉炎症进行精准识别[4],并且可以动态追踪冠脉炎症的治疗效果[5],实现了冠脉风险评估从解剖学到功能学的跨越。鉴于此越来越多的相关临床应用研究涌现,因此本文对FAI的临床研究进展进行综述。

2. 预后评估

FAI在CAD的风险分层与预后评估中展现出重要价值。里程碑式的CRISP-CT研究对来自德国和美国的两大前瞻性队列进行事后分析发现:右冠状动脉(right coronary artery, RCA)与左前降支(left anterior descending, LAD)的FAI与全因死亡率和心脏死亡显著相关,心脏死亡风险在推导队列中HR为9.04 (95% CI 3.35~24.40),验证队列中HR为5.62 (95% CI 2.90~10.88),并确定−70.1 HU为最佳截断值[6]。第一次明确了FAI在冠脉疾病风险分层中的独特价值。随后一项针对293例稳定型CAD患者的单中心研究同样发现,FAI是主要不良心血管事件(major adverse cardiovascular event, MACE)的独立预测因子(HR = 2.01),且与血清炎症标志物呈弱相关,而与冠脉钙化程度无关[7]

然而,FAI在CAD预后评估中仍存在一定的局限。Bengs等[8]研究发现虽然RCA-FAI在单变量分析中与MACE相关,但是其不具有超越单光子发射计算机断层扫描心肌灌注成像与钙化积分的增量预后价值,并且性别对FAI值有显著影响。Tzolos等[9]虽然证实RCA-FAI具独立预测价值(调整后HR = 2.45),并且在斑块负荷指标的基础上还能提供额外的预后信息,但是冠脉FAI的预后价值只在RCA中发现,并且CT机型对FAI值有影响。

研究人员开发了一种新型医疗设备CaRi-Heart®,其联合FAI-Score (经技术、解剖和生物学因素校正的标准化FAI)、临床危险因素及斑块指标对3912例疑似CAD而行CCTA检查的患者进行冠脉风险评估,发现此评估模型能显著提供传统模型的预测效能(净重新分类改善NRI = 0.55) [10]。一项针对无阻塞性CAD患者的大型多中心纵向队列研究同样整合类似因素构建评估模型,结果同样显示模型具有出色的预后价值,并且在临床实践中改变了45%患者的临床管理策略[11]

3. 斑块分析

在稳定型冠心病患者中,FAI能有效区分斑块类型、识别斑块进展。Kwiecinski等[12]发现PET-CT高摄取的高危斑块周围的FAI显著高于无摄取者(−73 HU vs. −86 HU, P < 0.001),确实证明了FAI对高危斑块活性的判别作用。Lee等[13]则是在1476个病变分析中证实了FAI值升高与总斑块体积进展显著相关(P = 0.047),并且只与斑块纤维成分进展有关,与钙化斑块无关。目前国内的一些研究结果也佐证了FAI对斑块成分的区分能力[14] [15]

FAI也能良好区分急性冠脉综合征患者中的危险病变。Nakajima等[16]研究结果显示斑块破裂组的FAI值在罪犯斑块、罪犯血管及全冠脉水平均显著高于斑块侵蚀组(均P < 0.05),斑块破裂是FAI升高的独立预测因素。Sun等[17]发现FAI值与高危斑块特征、炎症因子水平显著相关,有力证明了FAI与斑块局部免疫炎症激活的关联。

通过FAI值对斑块进行分析是可行的,基于斑块的FAI值测量具有良好的可靠性及重复性[18]。但是这种分析需为斑块周围FAI值,若为常规近端血管FAI则未能发现病变特异性[19]

4. 血流评价

研究证实,FAI与直径狭窄率、总斑块体积共同构成缺血性狭窄的独立预测因子,三者联合诊断效能(AUC = 0.821)与CT-FFR (AUC = 0.850)无显著差异[20]。单冬凯等[21]同样研究发现直径指标与FAI联合模型的预测价值等同于CT血流储备分数(CT fractional flow reserve, CT-FFR)。另有研究明确,将FAI整合至CCTA后,诊断缺血性狭窄的AUC从0.569显著提升至0.869,大幅改善了传统CCTA的诊断性能[22]

在传统评估手段受限的特殊场景中,FAI的优势更为凸显。研究发现,FAI能有效辅助CT-FFR克服钙化对冠脉狭窄诊断的干扰,两者联合后诊断AUC从0.740显著提升至0.919 [23]。FAI也能有效区分患者是否具有冠脉微循环功能障碍,冠脉血流储备降低的患者的FAI值显著更高(−75.5 HU vs. −77.1 HU) [24]

5. 手术预测

FAI对心血管微创手术患者也有良好的预后价值。Yamamoto等[25]的研究表明病变特异性的FAI不仅是经皮冠状动脉介入(percutaneous coronary intervention, PCI)术后发生围术期心肌损伤的独立预测因子(AUC = 0.73),并具有临床与斑块特征预测模型的增量预后价值。在更为复杂的慢性完全闭塞病变的PCI术中,低FAI值(≤−77.50 HU)被证实是手术失败的强预测指标[26] [27]

在心血管外科术后长期预后方面,FAI同样具有重要价值。Huang等[28]发现RCA-FAI值是冠状动脉搭桥术后移植物闭塞的独立预测因子(HR = 5.205),加入临床模型后AUC从0.677提升至0.784。对于心脏移植患者,Moser等[29]验证了FAI测量的可行性及血管间一致性,并显示基线FAI平均值 ≥ −71 HU可显著区分心脏死亡或再移植的复合终点风险。

6. 影像因素

FAI值受许多因素的影响,应有不同的参考阈值。现有研究提示,在无斑块人群中,管电压、冠状动脉位置与性别均对FAI值有显著影响[30]。在已知或疑似CAD患者中同样观察到不同的冠脉位置与性别存在FAI值差异,并进一步明确RCA狭窄为FAI值升高的独立预测因素(OR = 1.687, P = 0.028) [31] CT扫描方式及相关参数亦显著影响FAI值测量结果。辛娟等[32]的研究表明CCTA测得的FAI值显著高于平扫CT所测值。陈丽虹等[33]进一步指出,CT图像重建参数(包括卷积核、迭代算法及层厚)对FAI具有显著影响。

7. 小结与展望

FAI作为无创评估冠状动脉炎症的新型影像学标志物,为CCTA增添了重要的功能学评估维度。现有证据确立了其在风险分层、优化治疗决策等方面的临床价值,同时研究也提出其目前临床应用中尚存在的问题。展望未来,随着自动化分析工具的完善和多中心研究的推进,FAI有望在心血管疾病的精准风险分层、个体化治疗决策及疗效评估中发挥更核心的作用,推动冠状动脉疾病诊疗水平迈向新的高度。

NOTES

*通讯作者。

参考文献

[1] Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1736-1788. [Google Scholar] [CrossRef] [PubMed]
[2] Nurmohamed, N.S., van Rosendael, A.R., Danad, I., Ngo-Metzger, Q., Taub, P.R., Ray, K.K., et al. (2024) Atherosclerosis Evaluation and Cardiovascular Risk Estimation Using Coronary Computed Tomography Angiography. European Heart Journal, 45, 1783-1800. [Google Scholar] [CrossRef] [PubMed]
[3] Tan, N., Dey, D., Marwick, T.H. and Nerlekar, N. (2023) Pericoronary Adipose Tissue as a Marker of Cardiovascular Risk. Journal of the American College of Cardiology, 81, 913-923. [Google Scholar] [CrossRef] [PubMed]
[4] Antonopoulos, A.S., Sanna, F., Sabharwal, N., Thomas, S., Oikonomou, E.K., Herdman, L., et al. (2017) Detecting Human Coronary Inflammation by Imaging Perivascular Fat. Science Translational Medicine, 9, eaal2658. [Google Scholar] [CrossRef] [PubMed]
[5] Elnabawi, Y.A., Oikonomou, E.K., Dey, A.K., Mancio, J., Rodante, J.A., Aksentijevich, M., et al. (2019) Association of Biologic Therapy with Coronary Inflammation in Patients with Psoriasis as Assessed by Perivascular Fat Attenuation Index. JAMA Cardiology, 4, 885-891. [Google Scholar] [CrossRef] [PubMed]
[6] Oikonomou, E.K., Marwan, M., Desai, M.Y., Mancio, J., Alashi, A., Hutt Centeno, E., et al. (2018) Non-Invasive Detection of Coronary Inflammation Using Computed Tomography and Prediction of Residual Cardiovascular Risk (the CRISP CT Study): A Post-Hoc Analysis of Prospective Outcome Data. The Lancet, 392, 929-939. [Google Scholar] [CrossRef] [PubMed]
[7] Goeller, M., Achenbach, S., Herrmann, N., Bittner, D.O., Kilian, T., Dey, D., et al. (2021) Pericoronary Adipose Tissue CT Attenuation and Its Association with Serum Levels of Atherosclerosis-Relevant Inflammatory Mediators, Coronary Calcification and Major Adverse Cardiac Events. Journal of Cardiovascular Computed Tomography, 15, 449-454. [Google Scholar] [CrossRef] [PubMed]
[8] Bengs, S., Haider, A., Warnock, G.I., Fiechter, M., Pargaetzi, Y., Rampidis, G., et al. (2020) Quantification of Perivascular Inflammation Does Not Provide Incremental Prognostic Value over Myocardial Perfusion Imaging and Calcium Scoring. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1806-1812. [Google Scholar] [CrossRef] [PubMed]
[9] Tzolos, E., Williams, M.C., McElhinney, P., Lin, A., Grodecki, K., Flores Tomasino, G., et al. (2022) Pericoronary Adipose Tissue Attenuation, Low-Attenuation Plaque Burden, and 5-Year Risk of Myocardial Infarction. JACC: Cardiovascular Imaging, 15, 1078-1088. [Google Scholar] [CrossRef] [PubMed]
[10] Oikonomou, E.K., Antonopoulos, A.S., Schottlander, D., Marwan, M., Mathers, C., Tomlins, P., et al. (2021) Standardized Measurement of Coronary Inflammation Using Cardiovascular Computed Tomography: Integration in Clinical Care as a Prognostic Medical Device. Cardiovascular Research, 117, cvab286. [Google Scholar] [CrossRef] [PubMed]
[11] Chan, K., Wahome, E., Tsiachristas, A., Antonopoulos, A.S., Patel, P., Lyasheva, M., et al. (2024) Inflammatory Risk and Cardiovascular Events in Patients without Obstructive Coronary Artery Disease: The ORFAN Multicentre, Longitudinal Cohort Study. The Lancet, 403, 2606-2618. [Google Scholar] [CrossRef] [PubMed]
[12] Kwiecinski, J., Dey, D., Cadet, S., Lee, S., Otaki, Y., Huynh, P.T., et al. (2019) Peri-Coronary Adipose Tissue Density Is Associated with 18f-Sodium Fluoride Coronary Uptake in Stable Patients with High-Risk Plaques. JACC: Cardiovascular Imaging, 12, 2000-2010. [Google Scholar] [CrossRef] [PubMed]
[13] Lee, S., Sung, J.M., Andreini, D., Al-Mallah, M.H., Budoff, M.J., Cademartiri, F., et al. (2022) Association between Changes in Perivascular Adipose Tissue Density and Plaque Progression. JACC: Cardiovascular Imaging, 15, 1760-1767. [Google Scholar] [CrossRef] [PubMed]
[14] 景梦园, 孙建清, 周青, 等. 冠状动脉周围脂肪组织在不同斑块类型中的差异[J]. 中国医学影像学杂志, 2023, 31(4): 344-348.
[15] 张润知, 顾慧, 李亚妮, 等. 449例患者冠状动脉周围脂肪衰减指数与CT高危斑块及狭窄程度的关联[J]. 山东大学学报(医学版), 2023, 61(1): 27-31.
[16] Nakajima, A., Sugiyama, T., Araki, M., Seegers, L.M., Dey, D., McNulty, I., et al. (2022) Plaque Rupture, Compared with Plaque Erosion, Is Associated with a Higher Level of Pancoronary Inflammation. JACC: Cardiovascular Imaging, 15, 828-839. [Google Scholar] [CrossRef] [PubMed]
[17] Sun, J.T., Sheng, X.C., Feng, Q., Yin, Y., Li, Z., Ding, S., et al. (2022) Pericoronary Fat Attenuation Index Is Associated with Vulnerable Plaque Components and Local Immune‐Inflammatory Activation in Patients with Non‐ST Elevation Acute Coronary Syndrome. Journal of the American Heart Association, 11, e022879. [Google Scholar] [CrossRef] [PubMed]
[18] Tzolos, E., McElhinney, P., Williams, M.C., Cadet, S., Dweck, M.R., Berman, D.S., et al. (2021) Repeatability of Quantitative Pericoronary Adipose Tissue Attenuation and Coronary Plaque Burden from Coronary CT Angiography. Journal of Cardiovascular Computed Tomography, 15, 81-84. [Google Scholar] [CrossRef] [PubMed]
[19] Ma, R., van Assen, M., Ties, D., Pelgrim, G.J., van Dijk, R., Sidorenkov, G., et al. (2021) Focal Pericoronary Adipose Tissue Attenuation Is Related to Plaque Presence, Plaque Type, and Stenosis Severity in Coronary CTA. European Radiology, 31, 7251-7261. [Google Scholar] [CrossRef] [PubMed]
[20] Yu, M., Dai, X., Deng, J., Lu, Z., Shen, C. and Zhang, J. (2019) Diagnostic Performance of Perivascular Fat Attenuation Index to Predict Hemodynamic Significance of Coronary Stenosis: A Preliminary Coronary Computed Tomography Angiography Study. European Radiology, 30, 673-681. [Google Scholar] [CrossRef] [PubMed]
[21] 单冬凯, 王更新, 王玺, 等. 冠状动脉最大面积狭窄率联合冠周脂肪CT衰减指数可预测冠状动脉血流动力学异常[J]. 南方医科大学学报, 2021, 41(7): 988-994.
[22] Wen, D., Li, J., Ren, J., Zhao, H., Li, J. and Zheng, M. (2021) Pericoronary Adipose Tissue CT Attenuation and Volume: Diagnostic Performance for Hemodynamically Significant Stenosis in Patients with Suspected Coronary Artery Disease. European Journal of Radiology, 140, Article ID: 109740. [Google Scholar] [CrossRef] [PubMed]
[23] Shan, D., Ding, Y., Wang, X., Liu, Z., Dou, G., Wang, K., et al. (2023) Incremental Diagnostic Value of Perivascular Fat Attenuation Index for Identifying Hemodynamically Significant Ischemia with Severe Calcification. The International Journal of Cardiovascular Imaging, 39, 1323-1332. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, M., Liu, B., Li, X., Li, D. and Fan, L. (2024) Relationship between Peri-Coronary Inflammation and Coronary Vascular Function in Patients with Suspected Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 11, Article ID: 1303529. [Google Scholar] [CrossRef] [PubMed]
[25] Yamamoto, T., Kawamori, H., Toba, T., Sasaki, S., Fujii, H., Hamana, T., et al. (2024) Impact of Pericoronary Adipose Tissue Attenuation on Periprocedural Myocardial Injury in Patients with Chronic Coronary Syndrome. Journal of the American Heart Association, 13, e031209. [Google Scholar] [CrossRef] [PubMed]
[26] Xi, Y., Huang, L., Hao, J., Luo, C., Li, J., Dong, Y., et al. (2022) Predictive Performance of the Perivascular Fat Attenuation Index for Interventional Antegrade Percutaneous Coronary Intervention for Chronic Total Occlusion. European Radiology, 33, 3041-3051. [Google Scholar] [CrossRef] [PubMed]
[27] 杨宝珠, 黄书苑, 于鑫鑫, 等. 基于ccta的血管周围脂肪衰减指数对冠状动脉慢性全闭塞病变再通的预测价值[J]. 山东大学学报(医学版), 2024, 62(10): 98-105.
[28] Huang, S., Yu, X., Yang, B., Xu, T., Gu, H. and Wang, X. (2024) Predictive Value of Pericoronary Fat Attenuation Index for Graft Occlusion after Coronary Artery Bypass Grafting. Japanese Journal of Radiology, 43, 612-621. [Google Scholar] [CrossRef] [PubMed]
[29] Moser, P.T., Schernthaner, R., Loewe, C., Strassl, A., Denzinger, F., Faby, S., et al. (2023) Evaluation of Perivascular Fat Attenuation with Coronary CT Angiography in Cardiac Transplantation Patients: An Imaging Biomarker Candidate for Prediction of Cardiac Mortality and Re-Transplantation. European Radiology, 33, 6299-6307. [Google Scholar] [CrossRef] [PubMed]
[30] Ma, R., Ties, D., van Assen, M., Pelgrim, G.J., Sidorenkov, G., van Ooijen, P.M.A., et al. (2020) Towards Reference Values of Pericoronary Adipose Tissue Attenuation: Impact of Coronary Artery and Tube Voltage in Coronary Computed Tomography Angiography. European Radiology, 30, 6838-6846. [Google Scholar] [CrossRef] [PubMed]
[31] Sugiyama, T., Kanaji, Y., Hoshino, M., Yamaguchi, M., Hada, M., Ohya, H., et al. (2020) Determinants of Pericoronary Adipose Tissue Attenuation on Computed Tomography Angiography in Coronary Artery Disease. Journal of the American Heart Association, 9, e016202. [Google Scholar] [CrossRef] [PubMed]
[32] 辛娟, 齐海成, 伊力亚∙阿洪江, 等. CT非对比增强扫描测量冠脉周围脂肪衰减的可行性研究[J]. 中国医学计算机成像杂志, 2022, 28(3): 266-270.
[33] 陈丽虹, 陈功婷, 樊钢练, 等. 冠状动脉周围脂肪衰减指数与CT图像重建参数的相关性研究[J]. 西安交通大学学报(医学版), 2024, 45(4): 547-551.