基于肠–脑轴探讨气机升降失常在多囊卵巢综合征中的作用
Exploring the Role of Abnormal Qi Movement in Polycystic Ovary Syndrome Based on the Gut-Brain Axis
DOI: 10.12677/acm.2025.15113141, PDF, HTML, XML,   
作者: 高惠莹:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;匡洪影*:黑龙江中医药大学附属第一医院妇科二科 黑龙江 哈尔滨
关键词: 多囊卵巢综合征气机升降肠–脑轴肠道微生物群内分泌失调Polycystic Ovary Syndrome Qi Movement Gut-Brain Axis Gut Microbiota Endocrine Disorder
摘要: 多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)作为一种常见的内分泌疾病,病理机制复杂,严重威胁了女性生殖和代谢健康。近年来,肠道微生物群在PCOS发病机制中的重要作用被揭示,尤其在调节内分泌和代谢方面。肠–脑轴作为连接肠道与中枢神经系统的双向调控通路,成为探究PCOS发病机制的新兴研究方向。本文围绕气机升降失常这一中医理论,系统综述其与肠道菌群失衡、神经内分泌紊乱之间的相互作用机制,揭示了肠–脑轴在PCOS病理中的关键作用。通过整合现代医学与传统中医理论的研究成果,本文为PCOS的诊断和治疗提供了新的理论依据和潜在靶点,推动了该领域的跨学科发展。
Abstract: Polycystic ovary syndrome (PCOS) is a common endocrine disorder with a complex pathogenic mechanism, seriously threatening female reproductive and metabolic health. In recent years, the crucial role of the gut microbiota in the pathogenesis of PCOS has been revealed, especially in regulating endocrine and metabolic functions. The gut-brain axis, as a bidirectional regulatory pathway connecting the gut and the central nervous system, has emerged as a new research direction in exploring the pathogenesis of PCOS. This article systematically reviews the interaction mechanisms among the imbalance of qi movement, gut microbiota dysbiosis, and neuroendocrine disorders based on the theory of qi movement in traditional Chinese medicine, revealing the key role of the gut-brain axis in the pathology of PCOS. By integrating the research achievements of modern medicine and traditional Chinese medicine theories, this article provides a new theoretical basis and potential targets for the diagnosis and treatment of PCOS, promoting the interdisciplinary development in this field.
文章引用:高惠莹, 匡洪影. 基于肠–脑轴探讨气机升降失常在多囊卵巢综合征中的作用[J]. 临床医学进展, 2025, 15(11): 645-653. https://doi.org/10.12677/acm.2025.15113141

1. 前言

多囊卵巢综合征(PCOS)是育龄期女性最常见的内分泌紊乱疾病之一,根据使用美国国立卫生研究院诊断标准的全面筛查程序,据估计,世界上有4%~10%的女性患有PCOS [1]。多囊卵巢综合征的临床特点有高雄激素血症、月经稀发或闭经和多囊卵巢状态[2],影响着女性的代谢功能、生育能力、心理健康。

目前,多囊卵巢综合症的发病机制仍然不完全清楚。以前的研究表明,下丘脑–垂体–卵巢轴、下丘脑–垂体–肾上腺轴参与了PCOS的发生发展[3]。随着现代医学在肠道菌群领域研究的不断深入,人们发现肠道菌群与PCOS的发病机制密切相关。临床中,PCOS患者常表现出肠道菌群紊乱的特征,而这种紊乱又会通过多种机制,进一步影响该病症的发病过程[4]。肠道菌群的紊乱与多囊卵巢综合征相关的各种临床症状密切相关,特别是肥胖和胰岛素抵抗[5] [6]

肠–脑轴是连接胃肠道与中枢神经系统的一个复杂双向通讯网络,其信号传递依赖于神经元活动、肠道激素及免疫因子等多种途径[7]。该系统中,定居于肠道的数万亿微生物——即肠道菌群,发挥着重要调控作用。

PCOS中医病机核心为“肾虚为本,肝郁为标,脾虚为枢”,终以“痰瘀互结、阻滞胞宫”为表现。情志不畅致气机失常,脾失健运,“升清”无权使卵泡发育障碍,“降浊”不力致水湿成痰壅滞胞宫,引发卵巢多囊样改变、肥胖、不孕等,本质是全身气机升降紊乱在女性生殖系统的体现。气机升降调控气血运行,可能通过影响肠道菌群与神经内分泌通路介导PCOS发生发展。中医以调气疏通、扶正祛邪为原则,结合肠道菌群调节作用,为PCOS临床管理提供新思路。本文将从肠–脑轴切入,探讨气机升降失常作用机制,期望为中医药防治PCOS开辟新路径。

2. 肠道微生物群与PCOS的关系

肠道微生物群是寄居于人体消化道内由细菌、真菌、病毒及古细菌等构成的复杂共生微生态系统[8]。近年来,PCOS的研究逐渐聚焦于肠道菌群的作用,提示微生物失衡可能参与该病的发病机制[9]。研究结果表明,PCOS患者肠道菌群的改变在胰岛素抵抗、高雄激素状态、慢性炎症反应和代谢综合征等多种病理状态中起着关键作用[10] [11]。Tremellen和Pearce进一步指出,高碳水化合物和高脂肪饮食引起的肠道菌群失调,可通过破坏肠屏障功能诱发炎症反应,从而推动上述病理进程[12]。饮食作为影响PCOS发生的重要因素,不仅调控激素水平和胰岛素敏感性,也显著改造肠道菌群组成,进而参与疾病的发生与发展[13]

肠道菌群失调主要表现为三个方面:结构失衡、功能紊乱以及免疫学后果。

结构失衡体现为肠道微生物组成与多样性的改变。α-多样性反映群落内物种丰富度与均匀度,β-多样性则表征个体间微生物构成的差异。Torres等研究发现,PCOS患者α-多样性的下降与雄激素水平呈负相关,高雄激素状态亦伴随β-多样性的显著变化[14]。Insenser等进一步揭示,PCOS女性患者α-和β-多样性降低与代谢和激素异常密切相关,并伴随卡泰尼杆菌属和坎德勒氏菌属丰度上升[15]。Lindheim等对24名PCOS患者及19名健康对照的粪便样本分析发现,PCOS患者存在菌群失调,其特征是微生物多样性降低[16]、厚壁菌门与拟杆菌门比例失衡[17] [18]、特定菌群丰度变化[19] [20]以及代谢产物异常[21] [22]。Li等人进一步指出,PCOS患者肠道中大肠埃希菌/志贺菌属、梭杆菌属和拟杆菌属数量显著升高[16]

功能紊乱则指因结构失衡导致的微生物代谢功能异常。短链脂肪酸(SCFAs)对维持肠道屏障和能量代谢至关重要,有益菌减少造成SCFAs如丁酸、乙酸和丙酸产量下降[23],其缺乏可导致肠道通透性增加,形成“肠漏”现象[24]。该状态促使微生物代谢产物(如脂多糖)进入循环系统,诱发全身性炎症。

免疫学后果指的是肠道屏障功能受损和功能紊乱最终引发了宿主免疫系统的异常反应。

由于肠道内有益细菌的减少和条件致病菌的过度繁殖,引起肠道微生物群的功能和组成失衡,造成肠道菌群失调,从而影响消化道中正常的微生物生态[25]。这导致肠道通透性增加,促使毒素易位入血,激活免疫系统,引发慢性低度炎症,从而加剧PCOS相关的代谢紊乱和肥胖[26]

3. 肠–脑轴在PCOS中的作用

3.1. 肠–脑轴的定义

近期研究提示,PCOS的病理机制可能不仅涉及下丘脑–垂体–卵巢轴功能紊乱,还可能通过肠-脑轴参与调节。肠–脑轴作为胃肠道和中枢神经系统之间的双向通信系统[7],主要通过三种途径实现肠道菌群与大脑的关联:一是肠道细胞间的相互作用及对信号分子的调控,二是迷走神经通路的直接刺激作用,三是SCFAs的生成及对胃肠激素的影响[27] [28]。另一方面,肠道微生物与PCOS的关联机制具有复杂性与多维度特征,其核心驱动因素是肠道菌群失衡[25]。这种菌群失衡会引发一系列病理生理变化,具体表现为SCFAs代谢异常[29]、肠道屏障功能受损与脂多糖渗漏[30]。这些因素共同促进了PCOS症状的发生发展,包括饮食失调、肥胖、应激反应异常、抑郁等。

肠道微生物可通过多种方式影响肠–脑轴功能。例如,它们能与肠道细胞相互作用,可导致肠道激素、神经递质、细胞因子和其他炎症相关因子等多种生物活性物质的分泌[27]。值得注意的是,肠道菌群的一个关键功能是将膳食纤维发酵成SCFAs,主要包括乙酸、丙酸、丁酸和戊酸[31]-[33]。SCFAs作为重要的代谢调节分子,可通过激活G蛋白偶联受体(GPR41和GPR43)以及抑制组蛋白脱乙酰酶(HDACs)来调控全身代谢和激素分泌通路[5]。例如,SCFAs通过GPR41和GPR43刺激肠道内分泌细胞释放胰高血糖素样肽-1 (GLP-1)和肽YY (PYY)等激素[34]

此外,SCFAs还可通过调节GLP-1与PYY,间接参与大脑对食欲及能量平衡的控制[26]。并且,大脑可以通过刺激迷走神经通路接收来自肠道细菌的信息。消化道中的复杂信息通过肠肌间神经丛中形成的突触连接,经传出神经末梢与神经节后神经元传递至中枢[35]。由此可见,肠道微生物通过激素与神经递质等多种活性分子,持续向大脑传递信息并参与生理反馈调节,构成了肠与脑之间复杂的互动基础。

3.2. 肠–脑轴对神经内分泌的影响

根据世界卫生组织报告,抑郁症在2008年被列为全球第三大疾病负担原因,并预计到2030年将上升至首位[36] [37]。PCOS患者中,抑郁症状显著增加,其患病率达25.7%,约为对照女性群体的三至八倍[38]-[40]。Lee等研究进一步表明,肠道菌群与抑郁症之间存在关联,且不受PCOS状态影响,但PCOS可调节二者之间的联系[41]。神经内分泌不稳定在PCOS中较为常见,而这一现象可能由肠–脑轴参与介导[42]。肠–脑轴通路中的菌群失调可能诱发神经内分泌改变,进而引起PCOS患者常见的焦虑、抑郁等心理症状。反过来,这些心理障碍又可能反馈影响卵巢功能,扰乱激素平衡,从而加剧PCOS病情[43]

丁酸作为重要的短链脂肪酸之一,不仅为肠道上皮细胞提供能量,还具有显著的抗炎作用[44]。研究显示,血清中短链脂肪酸水平与促炎因子TNF-α呈负相关[45]。如果肠道菌群失调导致丁酸减少或全身炎症加剧,可能进一步影响大脑的炎症状态及神经内分泌功能[26]。大部分短链脂肪酸在结肠内被上皮细胞利用,但仍有一部分进入循环系统,参与调控炎症反应,调节食欲和能量代谢,并影响大脑功能。SCFAs还可改变肠道通透性,并通过肠神经系统–迷走神经通路或体循环途径调节神经活动[46]

值得关注的是,短链脂肪酸能够穿越血脑屏障,直接参与脑功能调节[47]。在已患有抑郁症和焦虑症的患者中检测到肠道中产生SFCAs的细菌数量通常减少[48],粪便中相关短链脂肪酸谱亦发生改变,尤其女性抑郁患者的短链脂肪酸水平普遍偏低[49]

饮食是影响PCOS发生的重要因素之一,它不仅调节激素水平与胰岛素敏感性,还显著塑造肠道菌群结构,从而参与疾病进程[13]。胃饥饿素作为一种由肠道释放的“饥饿激素”,能刺激食欲、影响代谢,并控制睡眠、压力、焦虑和疼痛。该激素通过作用于下丘脑神经元,促进NPY、AgRP与GnRH释放,从而减轻焦虑和抑郁样行为[50]。有趣的是,患有PCOS的女性循环胃饥饿素水平较低[51],这可能导致焦虑状态加重。此外,在患有PCOS的绝经后妇女中,促肾上腺皮质激素释放激素试验导致胃饥饿素水平升高,提示压力或焦虑可能诱发此类患者的饥饿感[52]

神经肽Y (NPY)作为肠–脑轴中广泛分布的关键神经肽。其生理功能多样,可对免疫应答、疼痛感知及应激反应进行调控,同时也是参与情绪调节与生殖功能调节的重要物质。研究表明,NPY及其受体在大脑中多个关键区域高表达,尤其在缓解焦虑、维持情绪稳定、改善认知及调节应激恢复能力方面具有重要作用[53]。同时,NPY也被认为是下丘脑中最强的食欲刺激因子[54]。在临床研究中发现,抑郁症患者体内NPY水平显著降低,而抗抑郁药物治疗可提高脑脊液中NPY含量;动物实验进一步证实,向小鼠海马区注射NPY可产生抗抑郁效应[55] [56]。在PCOS女性中,全身NPY水平下降,且胃饥饿素对NPY释放的刺激作用减弱[57]。动物实验还表明,激活正常小鼠弓状核NPY/AgRP神经元可显著抑制促性腺激素释放激素(GnRH)/黄体生成素(LH)的脉冲分泌[58],这些结果为理解NPY在PCOS发病机制中的作用提供了依据。

菌群失调所致肠–脑通讯异常可干扰GnRH、LH和卵泡刺激素(FSH)的释放,从而扰乱正常卵巢周期,诱发或加重PCOS症状[59]。GnRH 控制着黄体生成素和卵泡刺激素的释放,这两种激素对于排卵至关重要。肠道菌群的改变会影响神经激素,如kisspeptin和神经激肽B,导致PCOS中常见的GnRH脉冲频率持续快速升高[60] [61],进而引发月经紊乱与高雄激素血症。此外,受肠道菌群调节的神经递质,如γ-氨基丁酸、谷氨酸、血清素、多巴胺和乙酰胆碱,也可能影响GnRH的分泌,在PCOS的发病机制中发挥作用[62]

4. 气机升降失常与肠-脑轴在PCOS中的交互作用

气机升降理论是中医理论体系的核心内容之一。《黄帝内经》首次提出脾胃升降理论,指出脾胃是人体气机升降之枢纽。强调中医的脾胃不只是解剖学的器官,更是一个功能系统,负责推动清气上升与浊气下降的生理过程。具体表现为接收食物后,转化为能量(精微),并向上输送(升清);同时将糟粕向下传导、排出(降浊)。金代医家李东垣在《脾胃论》中提出相关理论:“盖胃为水谷之海,饮食入胃,……为传化糟粕转味而出,乃浊阴为地者也。”指出脾主升清,将水谷精微上输至心肺头目,濡养上窍,从而维持神志清明;胃主降浊,推动食物残渣下传大肠,形成糟粕排出体外,并带动全身气机流动。至清代,医家吴达在《医学求是》中指出:“中气为升降之源,脾胃为升降之枢轴”,明确了脾胃作为气机运转轴心的地位。

《素问·阴阳应象大论》中有云:“清阳出上窍,浊阴出下窍”,并指出“清气在下,则生飧泄;浊气在上,则生䐜胀”。从中医角度看,脾主升清,负责将水谷精微等营养物质上输于脑,以维持精神充沛、思维清晰。若脾虚不升,则可能出现头晕、乏力、思维迟钝等“脑雾”表现。在现代医学中,肠道被视为“第二大脑”,是拥有独立于中枢神经系统的肠神经系统[63]。除了负责消化吸收,同时也是体内最大的内分泌器官和免疫器官。

更重要的是,肠道通过“肠–脑轴”与大脑进行密集的双向通信,与中医“脾胃为枢”的认识高度契合。具体而言,肠道吸收的短链脂肪酸(如丁酸盐)、维生素B12等关键营养物质,对大脑功能与情绪稳定至关重要,可视为“升清”物质基础的一部分。同时,肠道菌群产生多种神经活性物质,包括神经递质(如γ-氨基丁酸、去甲肾上腺素、血清素、多巴胺)以及其他代谢产物(如短链脂肪酸、次级胆汁酸)。这些物质可进入门静脉循环,或直接作用于肠神经细胞与迷走神经传入通路,进而影响大脑功能,即中医的“升清”[64]。迷走神经作为“升清”的关键物理通道,可将肠道内的良性信号(如特定益生菌的作用)上传至大脑,产生抗焦虑、抗抑郁的效果。

另一方面,胃的“降浊”功能与现代医学中大脑对肠道运动的调节及代谢废物的排出机制相对应,其功能正常,避免“浊气”上扰神明(大脑)。顺畅的排便有助于及时清除肠道有害代谢产物。若便秘,毒素如脂多糖可进入血液,引发全身性轻度炎症,并通过肠–脑轴反馈至大脑,加重焦虑、抑郁甚至神经退行性疾病的风险[46]。当我们感到压力时,下丘脑–垂体–肾上腺轴被激活,释放皮质醇,这会直接影响肠道蠕动、分泌和通透性,导致便秘或腹泻,即中医的降浊失常。

中医认为气机失常常引起肠道功能紊乱,如气滞、气逆等,与现代医学中肠道屏障破坏及肠道环境改变密切相关。肠道屏障功能受损可导致“肠漏”,使病原体及代谢产物如LPS进入循环,激活系统性炎症,形成慢性低度炎症状态,这一机制在PCOS等内分泌代谢疾病中尤为突出。

另一方面,中医理论中情志因素与肝脏的疏泄功能亦有关联性。在中医理论体系中,“肝主疏泄,调畅气机,怡情志”,其核心作用体现为对全身气机的调控与畅达,并在此基础上实现对情志活动的调节与平衡,维系机体情志状态的稳定。当机体长期处于“压力、焦虑、抑郁、恼怒”等负性情绪状态时,此类情绪在中医理论范畴中被统一归为“情志不遂”。现代中医病理研究表明,“情志不遂”是导致肝脏疏泄功能受损的直接诱因,其作用机制表现为负性情绪信号通过机体情志调节通路,直接干扰肝脏对气机的正常疏泄过程。

中医的“肝郁气滞”可视为HPA轴功能动态失衡的系统体现。其病理演变始于情志不遂,相当于现代医学中边缘系统过度激活,进而引发肠–脑轴功能亢进,持续的高皮质醇状态恰是“肝郁化火”烦躁、失眠等症的生物学基础。肝郁气滞的本质,正是人体神经内分泌系统对慢性压力从适应性亢进到适应性不良全过程的精辟概括,二者共同勾勒出从“气”的功能紊乱到“轴”的器质失调的病理过程。

总之,“肠–脑轴”是气机升降在微观层面的具体通信路径,而“气机升降”则是肠–脑轴在宏观整体层面的功能体现。调理肝脾胃气机,恢复升降,就相当于同时改善了肠道局部和大脑全身的状态。

5. 展望与不足

基于本文构建的“气机升降失常–肠–脑轴”理论模型,我们提出三个可验证的科学假说:益气健脾中药通过提升SCFAs与NPY表达改善PCOS情绪认知;疏肝理气中药通过调节肠–脑轴与GnRH脉冲改善排卵与情绪;和胃降浊中药通过抑制LPS-TLR4通路改善代谢与卵巢功能。未来研究可据此开展临床与动物实验,进一步揭示中医气机理论与肠—脑轴在PCOS中的整合机制。

尽管已有研究表明,肠道菌群可借助肠-脑轴与大脑中枢建立广泛关联,通过影响机体代谢及性激素水平参与多囊卵巢综合征(PCOS)的发病过程,但二者相互作用的具体靶点及信号通路尚未完全阐明。未来研究需进一步挖掘肠–脑轴在PCOS发病机制中的关键证据,明确PCOS与肠道菌群、中枢神经系统、脑肠肽及内分泌代谢系统间的交互关系,这将为PCOS的预防与治疗开辟新的有效路径。

NOTES

*通讯作者。

参考文献

[1] El Hayek, S., Bitar, L., Hamdar, L.H., Mirza, F.G. and Daoud, G. (2016) Poly Cystic Ovarian Syndrome: An Updated Overview. Frontiers in Physiology, 7, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
[2] Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284. [Google Scholar] [CrossRef] [PubMed]
[3] 王凡, 张正红, 肖开转, 等. 下丘脑-垂体-肾上腺轴和下丘脑-垂体-卵巢轴在多囊卵巢综合征神经内分泌功能紊乱中的作用[J]. 中国医学科学院学报, 2017, 39(5): 699-704.
[4] Hallajzadeh, J., Khoramdad, M., Karamzad, N., Almasi-Hashiani, A., Janati, A., Ayubi, E., et al. (2018) Metabolic Syndrome and Its Components among Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Journal of Cardiovascular and Thoracic Research, 10, 56-69. [Google Scholar] [CrossRef] [PubMed]
[5] He, F.F. and Li, Y.M. (2020) Role of Gut Microbiota in the Development of Insulin Resistance and the Mechanism Underlying Polycystic Ovary Syndrome: A Review. Journal of Ovarian Research, 13, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
[6] Corrie, L., Awasthi, A., Kaur, J., Vishwas, S., Gulati, M., Kaur, I.P., et al. (2023) Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 16, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
[7] Hosie, S., Abo-Shaban, T., Lee, C.Y.Q., Matta, S.M., Shindler, A., Gore, R., et al. (2022) The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders. In: Spencer, N.J., et al., Eds., The Enteric Nervous System II, Springer International Publishing, 141-156. [Google Scholar] [CrossRef] [PubMed]
[8] Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., et al. (2017) Strains, Functions and Dynamics in the Expanded Human Microbiome Project. Nature, 550, 61-66. [Google Scholar] [CrossRef] [PubMed]
[9] Giampaolino, P., Foreste, V., Di Filippo, C., Gallo, A., Mercorio, A., Serafino, P., et al. (2021) Microbiome and PCOS: State-of-Art and Future Aspects. International Journal of Molecular Sciences, 22, Article No. 2048. [Google Scholar] [CrossRef] [PubMed]
[10] Gu, Y., Zhou, G., Zhou, F., Li, Y., Wu, Q., He, H., et al. (2022) Gut and Vaginal Microbiomes in PCOS: Implications for Women’s Health. Frontiers in Endocrinology (Lausanne), 13, Article ID: 808508. [Google Scholar] [CrossRef] [PubMed]
[11] Yurtdaş, G. and Akdevelioğlu, Y. (2019) A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. Journal of the American College of Nutrition, 39, 371-382. [Google Scholar] [CrossRef] [PubMed]
[12] Dahan, T., Nassar, S., Yajuk, O., Steinberg, E., Benny, O., Abudi, N., et al. (2022) Chronic Intermittent Hypoxia during Sleep Causes Browning of Interscapular Adipose Tissue Accompanied by Local Insulin Resistance in Mice. International Journal of Molecular Sciences, 23, Article No. 15462. [Google Scholar] [CrossRef] [PubMed]
[13] Rodriguez Paris, V., Wong, X.Y.D., Solon-Biet, S.M., Edwards, M.C., Aflatounian, A., Gilchrist, R.B., et al. (2022) The Interplay between PCOS Pathology and Diet on Gut Microbiota in a Mouse Model. Gut Microbes, 14, Article ID: 2085961. [Google Scholar] [CrossRef] [PubMed]
[14] Torres, P.J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A.J., Kelley, S.T., et al. (2018) Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism, 103, 1502-1511. [Google Scholar] [CrossRef] [PubMed]
[15] Insenser, M., Murri, M., del Campo, R., Martínez-García, M.Á., Fernández-Durán, E. and Escobar-Morreale, H.F. (2018) Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. The Journal of Clinical Endocrinology & Metabolism, 103, 2552-2562. [Google Scholar] [CrossRef] [PubMed]
[16] Li, P., Shuai, P., Shen, S., Zheng, H., Sun, P., Zhang, R., et al. (2023) Perturbations in Gut Microbiota Composition in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. BMC Medicine, 21, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
[17] Lindheim, L., Bashir, M., Münzker, J., Trummer, C., Zachhuber, V., Leber, B., et al. (2017) Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLOS ONE, 12, e0168390. [Google Scholar] [CrossRef] [PubMed]
[18] Liu, R., Zhang, C., Shi, Y., et al. (2017) Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, Article No. 324.
[19] Zhou, L., Ni, Z., Cheng, W., Yu, J., Sun, S., Zhai, D., et al. (2020) Characteristic Gut Microbiota and Predicted Metabolic Functions in Women with PCOS. Endocrine Connections, 9, 63-73. [Google Scholar] [CrossRef] [PubMed]
[20] Zhou, L., Ni, Z., Yu, J., Cheng, W., Cai, Z. and Yu, C. (2020) Correlation between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome. Frontiers in Endocrinology (Lausanne), 11, Article No. 628. [Google Scholar] [CrossRef] [PubMed]
[21] Zeng, B., Lai, Z., Sun, L., Zhang, Z., Yang, J., Li, Z., et al. (2019) Structural and Functional Profiles of the Gut Microbial Community in Polycystic Ovary Syndrome with Insulin Resistance (IR-PCOS): A Pilot Study. Research in Microbiology, 170, 43-52. [Google Scholar] [CrossRef] [PubMed]
[22] Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., et al. (2019) Gut Microbiota-Bile Acid-Interleukin-22 Axis Orchestrates Polycystic Ovary Syndrome. Nature Medicine, 25, 1225-1233. [Google Scholar] [CrossRef] [PubMed]
[23] Dedrick, S., Sundaresh, B., Huang, Q., Brady, C., Yoo, T., Cronin, C., et al. (2020) The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Frontiers in Endocrinology, 11, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
[24] Camilleri, M. (2019) Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut, 68, 1516-1526. [Google Scholar] [CrossRef] [PubMed]
[25] DeGruttola, A.K., Low, D., Mizoguchi, A. and Mizoguchi, E. (2016) Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 22, 1137-1150. [Google Scholar] [CrossRef] [PubMed]
[26] Kukaev, E., Kirillova, E., Tokareva, A., Rimskaya, E., Starodubtseva, N., Chernukha, G., et al. (2024) Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. International Journal of Molecular Sciences, 25, Article No. 10636. [Google Scholar] [CrossRef] [PubMed]
[27] Begum, N., Mandhare, A., Tryphena, K.P., Srivastava, S., Shaikh, M.F., Singh, S.B., et al. (2022) Epigenetics in Depression and Gut-Brain Axis: A Molecular Crosstalk. Frontiers in Aging Neuroscience, 14, Article ID: 1048333. [Google Scholar] [CrossRef] [PubMed]
[28] Tan, C., Yan, Q., Ma, Y., Fang, J. and Yang, Y. (2022) Recognizing the Role of the Vagus Nerve in Depression from Microbiota-Gut Brain Axis. Frontiers in Neurology, 13, Article ID: 1015175. [Google Scholar] [CrossRef] [PubMed]
[29] Bolognini, D., Tobin, A.B., Milligan, G. and Hodge, D. (2016) The Pharmacology and Function of Receptors for Short-Chain Fatty Acids. Molecular Pharmacology, 89, 388-398. [Google Scholar] [CrossRef] [PubMed]
[30] Lam, Y.Y., Ha, C.W.Y., Campbell, C.R., Mitchell, A.J., Dinudom, A., Oscarsson, J., et al. (2012) Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice. PLOS ONE, 7, e34233. [Google Scholar] [CrossRef] [PubMed]
[31] Chadchan, S.B., Singh, V. and Kommagani, R. (2022) Female Reproductive Dysfunctions and the Gut Microbiota. Journal of Molecular Endocrinology, 69, R81-R94. [Google Scholar] [CrossRef] [PubMed]
[32] Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., et al. (2019) Corrigendum: Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
[33] Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210. [Google Scholar] [CrossRef] [PubMed]
[34] den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T.H., et al. (2015) Short-Chain Fatty Acids Protect against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch from Lipogenesis to Fat Oxidation. Diabetes, 64, 2398-2408. [Google Scholar] [CrossRef] [PubMed]
[35] Wang, X., Eguchi, A., Yang, Y., Chang, L., Wan, X., Shan, J., et al. (2023) Key Role of the Gut-Microbiota-Brain Axis via the Subdiaphragmatic Vagus Nerve in De-Myelination of the Cuprizone-Treated Mouse Brain. Neurobiology of Disease, 176, Article ID: 105951.
[36] GBD 2019 Mental Disorders Collaborators (2022) Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9, 137-150.
[37] Malhi, G.S. and Mann, J.J. (2018) Depression. The Lancet (London, England), 392, 2299-2312. [Google Scholar] [CrossRef] [PubMed]
[38] Cooney, L.G., Lee, I., Sammel, M.D. and Dokras, A. (2017) High Prevalence of Moderate and Severe Depressive and Anxiety Symptoms in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Human Reproduction, 32, 1075-1091. [Google Scholar] [CrossRef] [PubMed]
[39] Kolhe, J.V., Chhipa, A.S., Butani, S., Chavda, V. and Patel, S.S. (2021) PCOS and Depression: Common Links and Potential Targets. Reproductive Sciences, 29, 3106-3123. [Google Scholar] [CrossRef] [PubMed]
[40] Gunkaya, O.S., Tekin, A.B., Bestel, A., Arslan, O., Şahin, F., Taymur, B.D., et al. (2024) Is Polycystic Ovary Syndrome a Risk Factor for Depression and Anxiety? A Cross-Sectional Study. Revista da Associação Médica Brasileira, 70, e20230918. [Google Scholar] [CrossRef] [PubMed]
[41] Lee, S., Tejesvi, M.V., Hurskainen, E., Aasmets, O., Plaza-Díaz, J., Franks, S., et al. (2024) Gut Bacteriome and Mood Disorders in Women with PCOS. Human Reproduction, 39, 1291-1302. [Google Scholar] [CrossRef] [PubMed]
[42] Carabotti, M., Scirocco, A., Maselli, M.A. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
[43] Liu, X., Chen, X., Wang, C., Song, J., Xu, J., Gao, Z., et al. (2024) Mechanisms of Probiotic Modulation of Ovarian Sex Hormone Production and Metabolism: A Review. Food & Function, 15, 2860-2878. [Google Scholar] [CrossRef] [PubMed]
[44] Acharya, A., Shetty, S.S. and Kumari N, S. (2024) Role of Gut Microbiota Derived Short Chain Fatty Acid Metabolites in Modulating Female Reproductive Health. Human Nutrition & Metabolism, 36, Article ID: 200256. [Google Scholar] [CrossRef
[45] Xiong, R., Zhou, D., Wu, S., Huang, S., Saimaiti, A., Yang, Z., et al. (2022) Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11, Article No. 2863. [Google Scholar] [CrossRef] [PubMed]
[46] Arffman, R.K., Folch, B.A., Leonés-Baños, I. and Altmäe, S. (2025) Gut Feelings—The Gut Microbiome as a Regulator of Mental Health in Polycystic Ovary Syndrome. Fertil Steril, 124, 931-947.
[47] Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
[48] Averina, O.V., Poluektova, E.U., Zorkina, Y.A., Kovtun, A.S. and Danilenko, V.N. (2024) Human Gut Microbiota for Diagnosis and Treatment of Depression. International Journal of Molecular Sciences, 25, Article No. 5782. [Google Scholar] [CrossRef] [PubMed]
[49] Skonieczna-Żydecka, K., Grochans, E., Maciejewska, D., Szkup, M., Schneider-Matyka, D., Jurczak, A., et al. (2018) Faecal Short Chain Fatty Acids Profile Is Changed in Polish Depressive Women. Nutrients, 10, Article No. 1939. [Google Scholar] [CrossRef] [PubMed]
[50] Khan, M.T., Zohair, M., Khan, A., Kashif, A., Mumtaz, S. and Muskan, F. (2025) From Gut to Brain: The Roles of Intestinal Microbiota, Immune System, and Hormones in Intestinal Physiology and Gut-Brain-Axis. Molecular and Cellular Endocrinology, 607, Article ID: 112599. [Google Scholar] [CrossRef] [PubMed]
[51] Gao, T., Wu, L., Chang, F. and Cao, G. (2016) Low Circulating Ghrelin Levels in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Endocrine Journal, 63, 93-100. [Google Scholar] [CrossRef] [PubMed]
[52] Markopoulos, M., Barber, T.M., Bargiota, A., Skevaki, C., Papassotiriou, I., Kumar, S., et al. (2023) Acute Iv CRH Administration Significantly Increases Serum Active Ghrelin in Postmenopausal PCOS Women Compared to Postmenopausal Controls. Endocrine, 81, 613-620. [Google Scholar] [CrossRef] [PubMed]
[53] Holzer, P., Reichmann, F. and Farzi, A. (2012) Neuropeptide Y, Peptide YY and Pancreatic Polypeptide in the Gut-Brain Axis. Neuropeptides, 46, 261-274. [Google Scholar] [CrossRef] [PubMed]
[54] Chen, W., Shi, Y., Huang, Q., Chen, J., Wang, Z., Lin, S., et al. (2023) Potential for NPY Receptor-Related Therapies for Polycystic Ovary Syndrome: An Updated Review. Hormones, 22, 441-451. [Google Scholar] [CrossRef] [PubMed]
[55] Ishida, H., Shirayama, Y., Iwata, M., Katayama, S., Yamamoto, A., Kawahara, R., et al. (2007) Infusion of Neuropeptide Y into CA3 Region of Hippocampus Produces Antidepressant‐Like Effect via Y1 Receptor. Hippocampus, 17, 271-280. [Google Scholar] [CrossRef] [PubMed]
[56] Rana, T., Behl, T., Sehgal, A., Singh, S., Sharma, N., Abdeen, A., et al. (2022) Exploring the Role of Neuropeptides in Depression and Anxiety. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 114, Article ID: 110478. [Google Scholar] [CrossRef] [PubMed]
[57] Romualdi, D., De Marinis, L., Campagna, G., Proto, C., Lanzone, A. and Guido, M. (2008) Alteration of Ghrelin-Neuropeptide Y Network in Obese Patients with Polycystic Ovary Syndrome: Role of Hyperinsulinism. Clinical Endocrinology, 69, 562-567. [Google Scholar] [CrossRef] [PubMed]
[58] Coutinho, E.A., Prescott, M., Hessler, S., Marshall, C.J., Herbison, A.E. and Campbell, R.E. (2019) Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility. Neuroendocrinology, 110, 671-687. [Google Scholar] [CrossRef] [PubMed]
[59] Liao, B., Qiao, J. and Pang, Y. (2021) Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS Pathophysiology. Frontiers in Endocrinology, 12, Article ID: 667422. [Google Scholar] [CrossRef] [PubMed]
[60] Sarkisian, K.I., Ho, L., Yang, J., Mandelbaum, R. and Stanczyk, F.Z. (2023) Neuroendocrine, Neurotransmitter, and Gut Microbiota Imbalance Contributing to Potential Psychiatric Disorder Prevalence in Polycystic Ovarian Syndrome. F&S Reports, 4, 337-342. [Google Scholar] [CrossRef] [PubMed]
[61] Coutinho, E.A. and Kauffman, A.S. (2019) The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Medical Sciences, 7, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
[62] Chaudhari, N., Dawalbhakta, M. and Nampoothiri, L. (2018) GnRH Dysregulation in Polycystic Ovarian Syndrome (PCOS) Is a Manifestation of an Altered Neurotransmitter Profile. Reproductive Biology and Endocrinology, 16, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
[63] Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011) Normal Gut Microbiota Modulates Brain Development and Behavior. Proceedings of the National Academy of Sciences, 108, 3047-3052. [Google Scholar] [CrossRef] [PubMed]
[64] Qu, S., Yu, Z., Zhou, Y., Wang, S., Jia, M., Chen, T., et al. (2024) Gut Microbiota Modulates Neurotransmitter and Gut-Brain Signaling. Microbiological Research, 287, Article ID: 127858. [Google Scholar] [CrossRef] [PubMed]