|
[1]
|
El Hayek, S., Bitar, L., Hamdar, L.H., Mirza, F.G. and Daoud, G. (2016) Poly Cystic Ovarian Syndrome: An Updated Overview. Frontiers in Physiology, 7, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
王凡, 张正红, 肖开转, 等. 下丘脑-垂体-肾上腺轴和下丘脑-垂体-卵巢轴在多囊卵巢综合征神经内分泌功能紊乱中的作用[J]. 中国医学科学院学报, 2017, 39(5): 699-704.
|
|
[4]
|
Hallajzadeh, J., Khoramdad, M., Karamzad, N., Almasi-Hashiani, A., Janati, A., Ayubi, E., et al. (2018) Metabolic Syndrome and Its Components among Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Journal of Cardiovascular and Thoracic Research, 10, 56-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, F.F. and Li, Y.M. (2020) Role of Gut Microbiota in the Development of Insulin Resistance and the Mechanism Underlying Polycystic Ovary Syndrome: A Review. Journal of Ovarian Research, 13, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Corrie, L., Awasthi, A., Kaur, J., Vishwas, S., Gulati, M., Kaur, I.P., et al. (2023) Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 16, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hosie, S., Abo-Shaban, T., Lee, C.Y.Q., Matta, S.M., Shindler, A., Gore, R., et al. (2022) The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders. In: Spencer, N.J., et al., Eds., The Enteric Nervous System II, Springer International Publishing, 141-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., et al. (2017) Strains, Functions and Dynamics in the Expanded Human Microbiome Project. Nature, 550, 61-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Giampaolino, P., Foreste, V., Di Filippo, C., Gallo, A., Mercorio, A., Serafino, P., et al. (2021) Microbiome and PCOS: State-of-Art and Future Aspects. International Journal of Molecular Sciences, 22, Article No. 2048. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gu, Y., Zhou, G., Zhou, F., Li, Y., Wu, Q., He, H., et al. (2022) Gut and Vaginal Microbiomes in PCOS: Implications for Women’s Health. Frontiers in Endocrinology (Lausanne), 13, Article ID: 808508. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yurtdaş, G. and Akdevelioğlu, Y. (2019) A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. Journal of the American College of Nutrition, 39, 371-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dahan, T., Nassar, S., Yajuk, O., Steinberg, E., Benny, O., Abudi, N., et al. (2022) Chronic Intermittent Hypoxia during Sleep Causes Browning of Interscapular Adipose Tissue Accompanied by Local Insulin Resistance in Mice. International Journal of Molecular Sciences, 23, Article No. 15462. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rodriguez Paris, V., Wong, X.Y.D., Solon-Biet, S.M., Edwards, M.C., Aflatounian, A., Gilchrist, R.B., et al. (2022) The Interplay between PCOS Pathology and Diet on Gut Microbiota in a Mouse Model. Gut Microbes, 14, Article ID: 2085961. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Torres, P.J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A.J., Kelley, S.T., et al. (2018) Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism, 103, 1502-1511. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Insenser, M., Murri, M., del Campo, R., Martínez-García, M.Á., Fernández-Durán, E. and Escobar-Morreale, H.F. (2018) Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. The Journal of Clinical Endocrinology & Metabolism, 103, 2552-2562. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, P., Shuai, P., Shen, S., Zheng, H., Sun, P., Zhang, R., et al. (2023) Perturbations in Gut Microbiota Composition in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. BMC Medicine, 21, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lindheim, L., Bashir, M., Münzker, J., Trummer, C., Zachhuber, V., Leber, B., et al. (2017) Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLOS ONE, 12, e0168390. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, R., Zhang, C., Shi, Y., et al. (2017) Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, Article No. 324.
|
|
[19]
|
Zhou, L., Ni, Z., Cheng, W., Yu, J., Sun, S., Zhai, D., et al. (2020) Characteristic Gut Microbiota and Predicted Metabolic Functions in Women with PCOS. Endocrine Connections, 9, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, L., Ni, Z., Yu, J., Cheng, W., Cai, Z. and Yu, C. (2020) Correlation between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome. Frontiers in Endocrinology (Lausanne), 11, Article No. 628. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zeng, B., Lai, Z., Sun, L., Zhang, Z., Yang, J., Li, Z., et al. (2019) Structural and Functional Profiles of the Gut Microbial Community in Polycystic Ovary Syndrome with Insulin Resistance (IR-PCOS): A Pilot Study. Research in Microbiology, 170, 43-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., et al. (2019) Gut Microbiota-Bile Acid-Interleukin-22 Axis Orchestrates Polycystic Ovary Syndrome. Nature Medicine, 25, 1225-1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dedrick, S., Sundaresh, B., Huang, Q., Brady, C., Yoo, T., Cronin, C., et al. (2020) The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Frontiers in Endocrinology, 11, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Camilleri, M. (2019) Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut, 68, 1516-1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
DeGruttola, A.K., Low, D., Mizoguchi, A. and Mizoguchi, E. (2016) Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 22, 1137-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kukaev, E., Kirillova, E., Tokareva, A., Rimskaya, E., Starodubtseva, N., Chernukha, G., et al. (2024) Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. International Journal of Molecular Sciences, 25, Article No. 10636. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Begum, N., Mandhare, A., Tryphena, K.P., Srivastava, S., Shaikh, M.F., Singh, S.B., et al. (2022) Epigenetics in Depression and Gut-Brain Axis: A Molecular Crosstalk. Frontiers in Aging Neuroscience, 14, Article ID: 1048333. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tan, C., Yan, Q., Ma, Y., Fang, J. and Yang, Y. (2022) Recognizing the Role of the Vagus Nerve in Depression from Microbiota-Gut Brain Axis. Frontiers in Neurology, 13, Article ID: 1015175. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bolognini, D., Tobin, A.B., Milligan, G. and Hodge, D. (2016) The Pharmacology and Function of Receptors for Short-Chain Fatty Acids. Molecular Pharmacology, 89, 388-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lam, Y.Y., Ha, C.W.Y., Campbell, C.R., Mitchell, A.J., Dinudom, A., Oscarsson, J., et al. (2012) Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice. PLOS ONE, 7, e34233. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chadchan, S.B., Singh, V. and Kommagani, R. (2022) Female Reproductive Dysfunctions and the Gut Microbiota. Journal of Molecular Endocrinology, 69, R81-R94. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., et al. (2019) Corrigendum: Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T.H., et al. (2015) Short-Chain Fatty Acids Protect against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch from Lipogenesis to Fat Oxidation. Diabetes, 64, 2398-2408. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Eguchi, A., Yang, Y., Chang, L., Wan, X., Shan, J., et al. (2023) Key Role of the Gut-Microbiota-Brain Axis via the Subdiaphragmatic Vagus Nerve in De-Myelination of the Cuprizone-Treated Mouse Brain. Neurobiology of Disease, 176, Article ID: 105951.
|
|
[36]
|
GBD 2019 Mental Disorders Collaborators (2022) Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 9, 137-150.
|
|
[37]
|
Malhi, G.S. and Mann, J.J. (2018) Depression. The Lancet (London, England), 392, 2299-2312. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Cooney, L.G., Lee, I., Sammel, M.D. and Dokras, A. (2017) High Prevalence of Moderate and Severe Depressive and Anxiety Symptoms in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Human Reproduction, 32, 1075-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kolhe, J.V., Chhipa, A.S., Butani, S., Chavda, V. and Patel, S.S. (2021) PCOS and Depression: Common Links and Potential Targets. Reproductive Sciences, 29, 3106-3123. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gunkaya, O.S., Tekin, A.B., Bestel, A., Arslan, O., Şahin, F., Taymur, B.D., et al. (2024) Is Polycystic Ovary Syndrome a Risk Factor for Depression and Anxiety? A Cross-Sectional Study. Revista da Associação Médica Brasileira, 70, e20230918. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lee, S., Tejesvi, M.V., Hurskainen, E., Aasmets, O., Plaza-Díaz, J., Franks, S., et al. (2024) Gut Bacteriome and Mood Disorders in Women with PCOS. Human Reproduction, 39, 1291-1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Carabotti, M., Scirocco, A., Maselli, M.A. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
|
|
[43]
|
Liu, X., Chen, X., Wang, C., Song, J., Xu, J., Gao, Z., et al. (2024) Mechanisms of Probiotic Modulation of Ovarian Sex Hormone Production and Metabolism: A Review. Food & Function, 15, 2860-2878. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Acharya, A., Shetty, S.S. and Kumari N, S. (2024) Role of Gut Microbiota Derived Short Chain Fatty Acid Metabolites in Modulating Female Reproductive Health. Human Nutrition & Metabolism, 36, Article ID: 200256. [Google Scholar] [CrossRef]
|
|
[45]
|
Xiong, R., Zhou, D., Wu, S., Huang, S., Saimaiti, A., Yang, Z., et al. (2022) Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11, Article No. 2863. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Arffman, R.K., Folch, B.A., Leonés-Baños, I. and Altmäe, S. (2025) Gut Feelings—The Gut Microbiome as a Regulator of Mental Health in Polycystic Ovary Syndrome. Fertil Steril, 124, 931-947.
|
|
[47]
|
Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Averina, O.V., Poluektova, E.U., Zorkina, Y.A., Kovtun, A.S. and Danilenko, V.N. (2024) Human Gut Microbiota for Diagnosis and Treatment of Depression. International Journal of Molecular Sciences, 25, Article No. 5782. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Skonieczna-Żydecka, K., Grochans, E., Maciejewska, D., Szkup, M., Schneider-Matyka, D., Jurczak, A., et al. (2018) Faecal Short Chain Fatty Acids Profile Is Changed in Polish Depressive Women. Nutrients, 10, Article No. 1939. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Khan, M.T., Zohair, M., Khan, A., Kashif, A., Mumtaz, S. and Muskan, F. (2025) From Gut to Brain: The Roles of Intestinal Microbiota, Immune System, and Hormones in Intestinal Physiology and Gut-Brain-Axis. Molecular and Cellular Endocrinology, 607, Article ID: 112599. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gao, T., Wu, L., Chang, F. and Cao, G. (2016) Low Circulating Ghrelin Levels in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Endocrine Journal, 63, 93-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Markopoulos, M., Barber, T.M., Bargiota, A., Skevaki, C., Papassotiriou, I., Kumar, S., et al. (2023) Acute Iv CRH Administration Significantly Increases Serum Active Ghrelin in Postmenopausal PCOS Women Compared to Postmenopausal Controls. Endocrine, 81, 613-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Holzer, P., Reichmann, F. and Farzi, A. (2012) Neuropeptide Y, Peptide YY and Pancreatic Polypeptide in the Gut-Brain Axis. Neuropeptides, 46, 261-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chen, W., Shi, Y., Huang, Q., Chen, J., Wang, Z., Lin, S., et al. (2023) Potential for NPY Receptor-Related Therapies for Polycystic Ovary Syndrome: An Updated Review. Hormones, 22, 441-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ishida, H., Shirayama, Y., Iwata, M., Katayama, S., Yamamoto, A., Kawahara, R., et al. (2007) Infusion of Neuropeptide Y into CA3 Region of Hippocampus Produces Antidepressant‐Like Effect via Y1 Receptor. Hippocampus, 17, 271-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Rana, T., Behl, T., Sehgal, A., Singh, S., Sharma, N., Abdeen, A., et al. (2022) Exploring the Role of Neuropeptides in Depression and Anxiety. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 114, Article ID: 110478. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Romualdi, D., De Marinis, L., Campagna, G., Proto, C., Lanzone, A. and Guido, M. (2008) Alteration of Ghrelin-Neuropeptide Y Network in Obese Patients with Polycystic Ovary Syndrome: Role of Hyperinsulinism. Clinical Endocrinology, 69, 562-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Coutinho, E.A., Prescott, M., Hessler, S., Marshall, C.J., Herbison, A.E. and Campbell, R.E. (2019) Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility. Neuroendocrinology, 110, 671-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liao, B., Qiao, J. and Pang, Y. (2021) Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS Pathophysiology. Frontiers in Endocrinology, 12, Article ID: 667422. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sarkisian, K.I., Ho, L., Yang, J., Mandelbaum, R. and Stanczyk, F.Z. (2023) Neuroendocrine, Neurotransmitter, and Gut Microbiota Imbalance Contributing to Potential Psychiatric Disorder Prevalence in Polycystic Ovarian Syndrome. F&S Reports, 4, 337-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Coutinho, E.A. and Kauffman, A.S. (2019) The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Medical Sciences, 7, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Chaudhari, N., Dawalbhakta, M. and Nampoothiri, L. (2018) GnRH Dysregulation in Polycystic Ovarian Syndrome (PCOS) Is a Manifestation of an Altered Neurotransmitter Profile. Reproductive Biology and Endocrinology, 16, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011) Normal Gut Microbiota Modulates Brain Development and Behavior. Proceedings of the National Academy of Sciences, 108, 3047-3052. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Qu, S., Yu, Z., Zhou, Y., Wang, S., Jia, M., Chen, T., et al. (2024) Gut Microbiota Modulates Neurotransmitter and Gut-Brain Signaling. Microbiological Research, 287, Article ID: 127858. [Google Scholar] [CrossRef] [PubMed]
|