|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cancer Today. https://gco.iarc.fr/today/home
|
|
[3]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shallu, and Mehra, R. (2018) Breast Cancer Histology Images Classification: Training from Scratch or Transfer Learning? ICT Express, 4, 247-254. [Google Scholar] [CrossRef]
|
|
[5]
|
Ledley, R.S., Jacobsen, J. and Belson, M. (1966) BUGSYS: A Programming System for Picture Processing-Not for Debugging. Communications of the ACM, 9, 79-84. [Google Scholar] [CrossRef]
|
|
[6]
|
Winsberg, F., Elkin, M., Macy, J., Bordaz, V. and Weymouth, W. (1967) Detection of Radiographic Abnormalities in Mammograms by Means of Optical Scanning and Computer Analysis. Radiology, 89, 211-215. [Google Scholar] [CrossRef]
|
|
[7]
|
Mahmood, T., Li, J., Pei, Y., Akhtar, F., Imran, A. and Rehman, K.U. (2020) A Brief Survey on Breast Cancer Diagnostic with Deep Learning Schemes Using Multi-Image Modalities. IEEE Access, 8, 165779-165809. [Google Scholar] [CrossRef]
|
|
[8]
|
Pramanik, P.K.D., Solanki, A., Debnath, A., Nayyar, A., El-Sappagh, S. and Kwak, K. (2020) Advancing Modern Healthcare with Nanotechnology, Nanobiosensors, and Internet of Nano Things: Taxonomies, Applications, Architecture, and Challenges. IEEE Access, 8, 65230-65266. [Google Scholar] [CrossRef]
|
|
[9]
|
Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M.A., Damaševičius, R., et al. (2021) Cloud Computing-Based Framework for Breast Cancer Diagnosis Using Extreme Learning Machine. Diagnostics, 11, Article 241. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Khalid, S., Khalil, T. and Nasreen, S. (2014) A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning. 2014 Science and Information Conference, London, 27-29 August 2014, 372-378. [Google Scholar] [CrossRef]
|
|
[11]
|
Jalalian, A., Mashohor, S., Mahmud, R., et al. (2017) Foundation and Methodologies in Computer-Aided Diagnosis Systems for Breast Cancer Detection. EXCLI Journal, 16, 113-117.
|
|
[12]
|
Yassin, N.I.R., Omran, S., El Houby, E.M.F. and Allam, H. (2019) Machine Learning Techniques for Breast Cancer Computer Aided Diagnosis Using Different Image Modalities: A Systematic Review. Computer Methods and Programs in Biomedicine, 156, 25-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yu, X., Zhou, Q., Wang, S. and Zhang, Y. (2022) A Systematic Survey of Deep Learning in Breast Cancer. International Journal of Intelligent Systems, 37, 152-216. [Google Scholar] [CrossRef]
|
|
[14]
|
Sultan, H.H., Salem, N.M. and Al-Atabany, W. (2019) Multi-Classification of Brain Tumor Images Using Deep Neural Network. IEEE Access, 7, 69215-69225. [Google Scholar] [CrossRef]
|
|
[15]
|
Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al. (2017) Classification of Breast Cancer Histology Images Using Convolutional Neural Networks. PLOS ONE, 12, e0177544. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., et al. (2019) BACH: Grand Challenge on Breast Cancer Histology Images. Medical Image Analysis, 56, 122-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016) A Dataset for Breast Cancer Histopathological Image Classification. IEEE Transactions on Biomedical Engineering, 63, 1455-1462. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bandi, P., Geessink, O., Manson, Q., Van Dijk, M., Balkenhol, M., Hermsen, M., et al. (2019) From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical Imaging, 38, 550-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., et al. (2016) Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images. IEEE Transactions on Medical Imaging, 35, 119-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Wu, J. and Wu, Q. (2019) Classification of Breast Cancer Histology Images Using Multi-Size and Discriminative Patches Based on Deep Learning. IEEE Access, 7, 21400-21408. [Google Scholar] [CrossRef]
|
|
[21]
|
Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y., et al. (2020) Breast Cancer Histopathological Image Classification Using a Hybrid Deep Neural Network. Methods, 173, 52-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Alom, M.Z., Yakopcic, C., Nasrin, M.S., Taha, T.M. and Asari, V.K. (2019) Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network. Journal of Digital Imaging, 32, 605-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kassani, S.H., Kassani, P.H., Wesolowski, M.J., Schneider, K.A. and Deters, R. (2019) Breast Cancer Diagnosis with Transfer Learning and Global Pooling. 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 16-18 October 2019, 519-524. [Google Scholar] [CrossRef]
|
|
[24]
|
Sanyal, R., Kar, D. and Sarkar, R. (2022) Carcinoma Type Classification from High-Resolution Breast Microscopy Images Using a Hybrid Ensemble of Deep Convolutional Features and Gradient Boosting Trees Classifiers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19, 2124-2136. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Elmannai, H., Hamdi, M. and AlGarni, A. (2021) Deep Learning Models Combining for Breast Cancer Histopathology Image Classification. International Journal of Computational Intelligence Systems, 14, 1003-1013. [Google Scholar] [CrossRef]
|
|
[26]
|
Kausar, T., Wang, M., Idrees, M. and Lu, Y. (2019) HWDCNN: Multi-Class Recognition in Breast Histopathology with Haar Wavelet Decomposed Image Based Convolution Neural Network. Biocybernetics and Biomedical Engineering, 39, 967-982. [Google Scholar] [CrossRef]
|
|
[27]
|
Jiang, Y., Chen, L., Zhang, H. and Xiao, X. (2019) Breast Cancer Histopathological Image Classification Using Convolutional Neural Networks with Small Se-Resnet Module. PLOS ONE, 14, e0214587. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Budak, Ü., Cömert, Z., Rashid, Z.N., Şengür, A. and Çıbuk, M. (2019) Computer-Aided Diagnosis System Combining FCN and Bi-LSTM Model for Efficient Breast Cancer Detection from Histopathological Images. Applied Soft Computing, 85, Article 105765. [Google Scholar] [CrossRef]
|
|
[29]
|
Xie, J., Liu, R., Luttrell, J. and Zhang, C. (2019) Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Frontiers in Genetics, 10, Article ID: 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Matos, J.D., Britto, A.D.S., Oliveira, L.E.S. and Koerich, A.L. (2019) Double Transfer Learning for Breast Cancer Histopathologic Image Classification. 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, 14-19 July 2019, 1-8. [Google Scholar] [CrossRef]
|
|
[31]
|
Sudharshan, P.J., Petitjean, C., Spanhol, F., Oliveira, L.E., Heutte, L. and Honeine, P. (2019) Multiple Instance Learning for Histopathological Breast Cancer Image Classification. Expert Systems with Applications, 117, 103-111. [Google Scholar] [CrossRef]
|
|
[32]
|
Lin, C. and Jeng, S. (2020) Optimization of Deep Learning Network Parameters Using Uniform Experimental Design for Breast Cancer Histopathological Image Classification. Diagnostics, 10, Article 662. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Toğaçar, M., Özkurt, K.B., Ergen, B. and Cömert, Z. (2020) Breastnet: A Novel Convolutional Neural Network Model through Histopathological Images for the Diagnosis of Breast Cancer. Physica A: Statistical Mechanics and its Applications, 545, Article 123592. [Google Scholar] [CrossRef]
|
|
[34]
|
Murtaza, G., Shuib, L., Mujtaba, G. and Raza, G. (2020) Breast Cancer Multi-Classification through Deep Neural Network and Hierarchical Classification Approach. Multimedia Tools and Applications, 79, 15481-15511. [Google Scholar] [CrossRef]
|
|
[35]
|
Hou, Y. (2020) Breast Cancer Pathological Image Classification Based on Deep Learning. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 28, 727-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yari, Y., Nguyen, T.V. and Nguyen, H.T. (2020) Deep Learning Applied for Histological Diagnosis of Breast Cancer. IEEE Access, 8, 162432-162448. [Google Scholar] [CrossRef]
|
|
[37]
|
Alkassar, S., Jebur, B.A., Abdullah, M.A.M., Al‐Khalidy, J.H. and Chambers, J.A. (2021) Going Deeper: Magnification‐invariant Approach for Breast Cancer Classification Using Histopathological Images. IET Computer Vision, 15, 151-164. [Google Scholar] [CrossRef]
|
|
[38]
|
Bera, A., Bhattacharjee, D. and Krejcar, O. (2024) PND-Net: Plant Nutrition Deficiency and Disease Classification Using Graph Convolutional Networks. Scientific Reports, 14, Article Number 15537. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, X., Li, H., Cui, W., Cai, Z. and Jia, M. (2021) Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels. Mathematical Problems in Engineering, 2021, Article ID: 8403025. [Google Scholar] [CrossRef]
|
|
[40]
|
Maleki, A., Raahemi, M. and Nasiri, H. (2023) Breast Cancer Diagnosis from Histopathology Images Using Deep Neural Network and XGBoost. Biomedical Signal Processing and Control, 86, Article 105152. [Google Scholar] [CrossRef]
|
|
[41]
|
Alkhathlan, L. and Saudagar, A.K.J. (2022) Predicting and Classifying Breast Cancer Using Machine Learning. Journal of Computational Biology, 29, 497-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sui, D., Liu, W., Chen, J., Zhao, C., Ma, X., Guo, M., et al. (2021) A Pyramid Architecture-Based Deep Learning Framework for Breast Cancer Detection. BioMed Research International, 2021, Article ID: 2567202. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zeiser, F.A., da Costa, C.A., Ramos, G.D.O., Bohn, H.C., Santos, I. and Roehe, A.V. (2021) Deepbatch: A Hybrid Deep Learning Model for Interpretable Diagnosis of Breast Cancer in Whole-Slide Images. Expert Systems with Applications, 185, Article 115586. [Google Scholar] [CrossRef]
|
|
[44]
|
Hirra, I., Ahmad, M., Hussain, A., Ashraf, M.U., Saeed, I.A., Qadri, S.F., et al. (2021) Breast Cancer Classification from Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access, 9, 24273-24287. [Google Scholar] [CrossRef]
|
|
[45]
|
Pradeepa, M., Sharmila, B. and Nirmala, M. (2025) A Hybrid Deep Learning Model EfficientNet with GRU for Breast Cancer Detection from Histopathology Images. Scientific Reports, 15, Article No. 24633. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Matheus, B.N. and Schiabel, H. (2011) Online Mammographic Images Database for Development and Comparison of CAD Schemes. Journal of Digital Imaging, 24, 500-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Saravanan, S., Hailu, M., Gouse, G.M., Lavanya, M. and Vijaysai, R. (2019) Optimized Secure Scan Flip Flop to Thwart Side Channel Attack in Crypto-Chip. International Conference on Advances of Science and Technology, 274, 410-417. [Google Scholar] [CrossRef]
|
|
[48]
|
Lee, R.S., Gimenez, F., Hoogi, A. and Rubin, D. (2016) Curated Breast Imaging Subset of DDSM. The Cancer Imaging Archive, 8.
|
|
[49]
|
Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J. and Cardoso, J.S. (2012) INbreast: Toward a Full-Field Digital Mammographic Database. Academic Radiology, 19, 236-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Saber, A., Sakr, M., Abo-Seida, O.M., Keshk, A. and Chen, H. (2021) A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access, 9, 71194-71209. [Google Scholar] [CrossRef]
|
|
[51]
|
Sha, Z., Hu, L. and Rouyendegh, B.D. (2020) Deep Learning and Optimization Algorithms for Automatic Breast Cancer Detection. International Journal of Imaging Systems and Technology, 30, 495-506. [Google Scholar] [CrossRef]
|
|
[52]
|
Houssein, E.H., Emam, M.M. and Ali, A.A. (2022) An Optimized Deep Learning Architecture for Breast Cancer Diagnosis Based on Improved Marine Predators Algorithm. Neural Computing and Applications, 34, 18015-18033. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kavitha, T., Mathai, P.P., Karthikeyan, C., Ashok, M., Kohar, R., Avanija, J., et al. (2022) Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images. Interdisciplinary Sciences: Computational Life Sciences, 14, 113-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Salama, W.M., Elbagoury, A.M. and Aly, M.H. (2020) Novel Breast Cancer Classification Framework Based on Deep Learning. IET Image Processing, 14, 3254-3259. [Google Scholar] [CrossRef]
|
|
[55]
|
Lotter, W., Diab, A.R., Haslam, B., Kim, J.G., Grisot, G., Wu, E., et al. (2021) Robust Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis Using an Annotation-Efficient Deep Learning Approach. Nature Medicine, 27, 244-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C. and Elmaghraby, A.S. (2021) Connected-UNets: A Deep Learning Architecture for Breast Mass Segmentation. npj Breast Cancer, 7, Article No. 151. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Shu, X., Zhang, L., Wang, Z., Lv, Q. and Yi, Z. (2020) Deep Neural Networks with Region-Based Pooling Structures for Mammographic Image Classification. IEEE Transactions on Medical Imaging, 39, 2246-2255. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Berg, W.A., et al. (2012) Detection of Breast Cancer with Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women with Elevated Breast Cancer Risk. JAMA, 307, 1394-1404. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Al-Dhabyani, W., Gomaa, M., Khaled, H. and Fahmy, A. (2020) Dataset of Breast Ultrasound Images. Data in Brief, 28, Article 104863. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Byra, M. (2021) Breast Mass Classification with Transfer Learning Based on Scaling of Deep Representations. Biomedical Signal Processing and Control, 69, Article 102828. [Google Scholar] [CrossRef]
|
|
[61]
|
Pourasad, Y., Zarouri, E., Salemizadeh Parizi, M. and Salih Mohammed, A. (2021) Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning. Diagnostics, 11, Article 1870. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Balaha, H.M., Saif, M., Tamer, A. and Abdelhay, E.H. (2022) Hybrid Deep Learning and Genetic Algorithms Approach (HMB-DLGAHA) for the Early Ultrasound Diagnoses of Breast Cancer. Neural Computing and Applications, 34, 8671-8695. [Google Scholar] [CrossRef]
|
|
[63]
|
Jabeen, K., Khan, M.A., Alhaisoni, M., Tariq, U., Zhang, Y., Hamza, A., et al. (2022) Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. Sensors, 22, Article 807. [Google Scholar] [CrossRef] [PubMed]
|