|
[1]
|
Morris, D.R., Qu, Y., Haas de Mello, A., Jones-Hall, Y.L., Liu, T., Weglarz, M., et al. (2025) Role of Hypoxia-Inducible Factors in Respiratory Syncytial Virus Infection-Associated Lung Disease. International Journal of Molecular Sciences, 26, Article 3182. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wang, S., Yang, D., Yuan, C., Wu, Y., Wang, Q., Wu, Y., et al. (2025) Herbal Formula Yi‐Fei‐Jie‐Du‐Tang Regulates Epithelial‐Mesenchymal Transition and Vasculogenic Mimicry in Lung Cancer via HIF1α‐Mediated Ferroptosis. Advanced Biology, 9, e2400306. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hua, J., Liu, L., He, B., Hu, W., Wu, Y., Han, Y., et al. (2025) Hif-1α Protects Cigarette-Induced Airway Epithelial Cell Apoptosis in COPD by Activating Redd1. International Immunopharmacology, 161, Article 115062. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ashraf, A., Zechmann, B. and Bruce, E.D. (2025) Hypoxia-Inducible Factor 1α Modulates Acrolein-Induced Cellular Damage in Bronchial Epithelial Cells. Toxicology, 515, Article 154158. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shukla, S.D., Walters, E.H., Simpson, J.L., Keely, S., Wark, P.A.B., O’Toole, R.F., et al. (2020) Hypoxia‐Inducible Factor and Bacterial Infections in Chronic Obstructive Pulmonary Disease. Respirology, 25, 53-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, R., Zhong, Y., Liu, Q., Zhang, M., Wang, D., Li, S., et al. (2025) CGRP Alleviates Lipopolysaccharide-Induced ARDS Inflammation via the HIF-1α Signaling Pathway. Clinical Science, 139, 373-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yin, L., Li, S. and Pan, L. (2025) A Study on the Influencing Factors of Early Clinical Stability in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease Complicated by Pneumonia. Journal of Thoracic Disease, 17, 6837-6849. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhou, W., Qu, J., Xie, S., Sun, Y. and Yao, H. (2021) Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5188306. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Atalay, N.A., Yormaz, B., Şahin, A., Sonmez, G., Colkesen, S.S., Vatansev, H., et al. (2025) Elevated HIF-1α as a Diagnostic Biomarker in COPD: Correlations with EPO, Emphysema Index, and Pulmonary Function. Respiratory Medicine, 245, Article 108184. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, K., Zhou, F., Zhu, C., Yuan, L., Li, D., Wang, J., et al. (2025) Role of Digoxin in Preventing Cigarette Smoke-Induced COPD via HIF-1α Inhibition in a Mouse Model. International Journal of Chronic Obstructive Pulmonary Disease, 20, 1665-1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, X., Zhou, Y. and Zhang, H. (2025) Clinical Significance of HIF-1α, ET-1, and NO as Biomarkers in Chronic Obstructive Pulmonary Disease Patients with Pulmonary Hypertension. Biomolecules and Biomedicine, 25, 1389-1395. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhou, L., Zhang, H., Liu, L., Zhang, F., Wang, L., Zheng, P., et al. (2025) Intermittent Hypoxia Aggravates Asthma Inflammation via NLRP3/IL-1β-Dependent Pyroptosis Mediated by HIF-1α Signalling Pathway. Chinese Medical Journal, 138, 1714-1729. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wan, M., Yu, Q., Xu, F., You, L.X., Liang, X., kang Ren, K., et al. (2024) Novel Hypoxia-Induced HIF-1α Activation in Asthma Pathogenesis. Respiratory Research, 25, Article No. 287. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nguyen, V., Zhang, Q., Pan, F., Jin, Q., Sun, M., Tangthianchaichana, J., et al. (2023) Zi-Su-Zi Decoction Improves Airway Hyperresponsiveness in Cough-Variant Asthma Rat Model through PI3K/Akt1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB Signaling Pathways. Journal of Ethnopharmacology, 314, Article 116637. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Salama, A., El-Fadaly, A.A. and Elgohary, R. (2024) Effect of Atorvastatin on Lipopolysaccharide-Induced Lung Inflammation and Hypoxia in Mice; Modulation of HIF-1α, CINC and MIP-2. Immunopharmacology and Immunotoxicology, 47, 85-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
王晓格, 杨林, 冯姝华. 血清UCP2、HIF-1α水平对新生儿肺炎病情、疾病转归的预测效能[J]. 临床医学, 2024, 44(12): 4-7.
|
|
[17]
|
Wang, M., Guo, Y., Liu, Y., Ma, S., Zhang, J., Li, Y., et al. (2025) UBXD8 Promotes Lung Cancer Progression and Activates the HIF-1α Pathway. Biochemical Pharmacology, 240, Article 117078. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, Y., Yang, G., Li, Q., Zhang, Y., Zhang, S., Zhou, T., et al. (2025) Guiqi Baizhu Decoction Enhances Radiosensitivity in Non-Small Cell Lung Cancer by Inhibiting the HIF-1α/DNA-PKCS Axis-Mediated DNA Repair. Phytomedicine, 140, Article 156591. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liang, J., Ran, Y., Hu, C., Zhou, J., Ye, L., Su, W., et al. (2025) Inhibition of HIF-1α Ameliorates Pulmonary Fibrosis by Suppressing M2 Macrophage Polarization through PRMT1/STAT6 Signals. International Immunopharmacology, 146, Article 113931. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, H., Zhang, Z., Song, Y., Hu, Q., Jin, D., Liu, S., et al. (2025) Unraveling the Therapeutic Mechanisms of Bufei Yiqi Decoction in Pulmonary Fibrosis: Modulation of Autophagy and Glycolysis Pathways. International Immunopharmacology, 162, Article 115030. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Luan, X., Zhu, D., Hao, Y., Xie, J., Wang, X., Li, Y., et al. (2025) Qibai Pingfei Capsule Ameliorated Inflammation in Chronic Obstructive Pulmonary Disease (COPD) via HIF-1 Α/Glycolysis Pathway Mediated of Bmal1. International Immunopharmacology, 144, Article 113636. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, Q., Yin, D., Wang, H., et al. (2024) Uncovering the Action Mechanism of Shenqi Tiaoshen Formula in the Treatment of Chronic Obstructive Pulmonary Disease through Network Pharmacology, Molecular Docking, and Experimental Verification. Journal of Traditional Chinese Medicine, 44, 770-783.
|
|
[23]
|
罗斌, 陈雨燕, 邱秀芳, 等. 清金化痰汤抑制IL-6/STAT3/HIF-1α通路介导的细胞凋亡和炎症治疗慢性阻塞性肺疾病机制研究[J]. 陕西中医, 2025, 46(4): 462-466.
|
|
[24]
|
范晓璇, 张庆祥, 颜培正, 等. 基于mTOR/HIF-1α通路探讨温阳化饮方对哮喘寒饮蕴肺证大鼠气道炎症细胞自噬的机制研究[J]. 时珍国医国药, 2024, 35(8): 1886-1890.
|
|
[25]
|
Fang, Y., Qiu, J., Xu, Y., Wu, Q., Huo, X. and Liu, S. (2025) Ophiopogonin D Alleviates Sepsis-Induced Acute Lung Injury through Improving Microvascular Endothelial Barrier Dysfunction via Inhibition of HIF-1α-VEGF Pathway. Cell Biochemistry and Biophysics, 83, 2519-2531. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pan, T., Wu, J., Qiu, X., Zhu, D., Wang, J., Li, T., et al. (2024) Identification of Potential Mechanisms of Schisandrin B in the Treatment of Idiopathic Pulmonary Fibrosis by Integrating Network Pharmacology and Experimental Validation. Naunyn-Schmiedeberg’s Archives of Pharmacology, 398, 5389-5403. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hu, Y., Fan, Q., Qiao, B., Xu, O., Lv, B., Han, N., et al. (2024) Alleviatory Role of panax Notoginseng Saponins in Modulating Inflammation and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease: Mechanisms and Implications. COPD: Journal of Chronic Obstructive Pulmonary Disease, 21, Article 2329282. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ding, C., Guo, Z., Liao, Q., Zuo, R., He, J., Ye, Z., et al. (2024) Network Pharmacology and Machine Learning Reveal Salidroside’s Mechanisms in Idiopathic Pulmonary Fibrosis Treatment. Journal of Inflammation Research, 17, 9453-9467. [Google Scholar] [CrossRef] [PubMed]
|