杞麓湖表层沉积物有机氯农药的分布、潜在来源及风险评估
Distribution, Potential Sources, and Risk Assessment of Organochlorine Pesticides in Surface Sediments of Qilu Lake
DOI: 10.12677/hjas.2025.1511161, PDF, HTML, XML,    科研立项经费支持
作者: 李沙斗, 奚映然, 贺皎皎, 张 顺, 龚建亮, 文新宇*:玉溪师范学院地理与国土工程学院,云南 玉溪
关键词: 杞麓湖有机氯农药源趋行为潜在威胁Qilu Lake Organochlorine Pesticides Occurrence and Fate Potential Threat
摘要: 作为云南省九大高原湖泊之一,杞麓湖长期遭受人为污染,但其沉积物中有机氯农药(OCPs)的污染特征及生态与健康风险尚不明确。采用气相色谱–质谱法分析22个表层沉积物中OCPs浓度,利用同分异构体比值解析污染物来源,并借助风险熵和USEPA推荐的健康风险评估模型量化生态与健康风险。结果表明,检出OCPs包括α‒HCH、β‒HCH、γ‒HCH、o,p′–DDT和p,p′–DDT,ΣHCHs、ΣDDTs和ΣOCPs平均含量分别为22.07、15.29和37.36 ng/g (干重),整体处于中低污染水平。OCPs空间分布相似,高值区位于红旗河入湖口和湖心区域,东部较低。源解析指示HCHs主要来自历史残留;而DDTs则源于三氯杀螨醇近期输入。生态风险评价显示绝大部分区域处于高风险,对水生态环境有潜在威胁。健康风险结果显示致癌和非致癌风险均低于限值,健康危害可忽略,但儿童暴露敏感性高于成人,需重点关注。研究可为杞麓湖流域OCPs污染控制及农业型湖泊生态治理提供科学依据。
Abstract: As one of the nine largest plateau lakes in Yunnan Province, China, Qilu Lake has long been subjected to significant anthropogenic pollution. However, the pollution characteristics and ecological and health risks of organochlorine pesticides (OCPs) in sediments have not been thoroughly investigated. Gas chromatography–mass spectrometry (GC–MS) was employed to analyze the concentrations of OCPs from 22 surface sediment samples. Isomer ratio analysis was used to identify pollution sources, while the entropy method and health risk assessment model recommended by the USEPA were applied to quantify ecological and health risks. The results indicated that the detected OCPs included α‒HCH, β‒HCH, γ‒HCH, o,p′‒DDT, and p,p′‒DDT. The mean concentrations of ΣHCHs, ΣDDTs, and ΣOCPs were 22.07, 15.29, and 37.36 ng/g (dry weight), respectively, indicating a moderate to low pollution level. The spatial distribution of OCPs was relatively consistent, with higher concentrations observed at the inflow of Hongqi River and the central part of the lake, while lower levels were found in the eastern region. Source apportionment revealed that HCHs were primarily derived from historical residues, whereas DDTs originated from recent input of dicofol. Ecological risk assessment indicated that most areas were subject to high combined ecological risks, posing a potential threat to the aquatic ecosystem. Health risk evaluation demonstrated that both carcinogenic and non‒carcinogenic risks were below safety thresholds, suggesting negligible health impacts; however, children exhibited higher exposure sensitivity than adults, warranting special attention. This study provides a scientific basis for OCP pollution control in the Qilu Lake basin and supports ecological management strategies for agricultural lake ecosystems.
文章引用:李沙斗, 奚映然, 贺皎皎, 张顺, 龚建亮, 文新宇. 杞麓湖表层沉积物有机氯农药的分布、潜在来源及风险评估[J]. 农业科学, 2025, 15(11): 1278-1289. https://doi.org/10.12677/hjas.2025.1511161

1. 引言

有机氯农药(OCPs)是一类典型的持久性有机污染物(POPs),曾广泛用于农林畜牧业病虫害防治[1]。但由于其具有高毒性、持久性、生物富集性、难降解等特性,并能通过大气进行长距离迁移,对生态系统和人体健康构成严重威胁[2] [3],自20世纪70年代起,全球陆续禁用此类农药[4]。然而,近年仍在多种环境介质中检测出高浓度OCPs残留。OCPs可通过农业径流、大气沉降和土壤侵蚀等途径输入地表水体[2],并因其强疏水亲脂性易被悬浮颗粒物吸附,最终富集于沉积物中,成为OCPs的存储库。沉积物中OCPs可经食物链传递和生物放大效应,对人类健康造成潜在危害。研究表明,长期暴露于OCPs可能引发神经损伤、生殖异常及癌症等风险[5] [6]。此外,在生物或水动力扰动下,沉积物中OCPs可再次释放至水体,引发二次污染,直接危害水生生物[7]。因此,系统研究沉积物中OCPs含量、分布及生态与健康风险,对准确评估其污染状况与制定风险防控措施具有重要意义。

云贵高原位于中国西南部,是中国四大高原之一。杞麓湖、滇池、阳宗海与抚仙湖等九大高原湖泊共同构成了滇中高原的生态屏障,在维护生态平衡、涵养水源等方面发挥着关键作用。然而,在经济快速发展、人口持续增长及人类活动加剧的共同影响下,这些湖泊面临着日益严重的污染压力。近年来,已有研究对滇中湖泊水体和沉积物中OCPs开展调查,如Chen等揭示了杞麓湖水体中OCPs的时空分布和生态风险[8];一些研究者分析了抚仙湖和阳宗海沉积物中OCPs的赋存特征和源趋行为[9] [10];Guo等追溯了滇池柱状沉积物中DDTs的历史变化及来源[11]。然而,目前对杞麓湖沉积物中OCPs生态和健康风险的量化仍比较匮乏。

杞麓湖流域拥有云南省最大的蔬菜生产基地[12],该区域气候温暖湿润、光照充足,蔬菜可全年种植。农民持续耕作,每茬化肥用量为270~600千克/亩,农药年施用量以300吨递增[13] [14]。杞麓湖因受密集型农业活动的影响,使之成为研究OCPs污染效应的典型代表。基于此,本研究旨在:(1) 评估杞麓湖表层沉积物中OCPs污染水平;(2) 解析其污染来源;(3) 量化生态和健康风险。研究将为杞麓湖流域OCPs风险管理提供理论依据,并为农业型湖泊的循证治理提供科学支撑。

2. 材料与方法

2.1. 研究区概况及采样

杞麓湖(102˚43′49″~102˚49′12″E,24˚08′33″~24˚13′57″N)位于云南省通海县内,是其主要水源地,为典型高原半封闭型湖泊,流域面积359 km2,平均水深4.5 m,蓄水量1.676亿m3。流域地形四周高中间低,农田面积达1.52万公顷,主要入湖河流有红旗河、者湾河、大新河和中河(图1),年径流总量8430万m3,其中红旗河约占50%。每年5月下旬至10月中旬的季风强降水占全年地表径流总量的83% (http://www.tonghai.gov.cn/)。

2022年6月,结合湖泊形态特征及水深分布等,共布设22个采样点(图1),利用彼得森采泥器获取表层沉积物样品(0~2 cm),并保存于预先清洁的具塞棕色玻璃瓶中。每个采样点均平行采集2份样品,以确保样品量满足重复实验需求。所有样品密封、避光、4℃低温条件下运回实验室,在−20℃冰箱中保存,用于后续化学分析。

Figure 1. Qilu Lake and the location distribution of sampling sites

1. 杞麓湖及采样点位置分布

2.2. 标准样品与试剂

标准样品:23种OCPs混和标液(α‒HCH、β‒HCH、γ‒HCH、δ‒HCH、o,p′‒DDT、p,p′‒DDT、p,p′‒DDE、p,p′‒DDD、六氯苯、七氯、艾氏剂、环氧七氯、顺式氯丹、反式氯丹、α‒硫丹、β‒硫丹、狄氏剂、异狄氏剂、异狄氏剂醛、硫丹硫酸酯、异狄氏剂酮、甲氧滴滴涕和灭蚁灵),购自美国AccuStandard公司。内标为五硝基苯,替代标为2,4,5,6‒四氯间二甲苯均购自北京国家标准物质中心。

试剂:丙酮、正己烷、硝酸、乙醚、乙酸乙酯均为农残级,无水硫酸钠为分析纯,均购自国药集团化学试剂有限公司。无水硫酸钠使用前于400℃的马弗炉中活化6 h。实验用水均为超纯水。

2.3. 样品预处理与分析测试

沉积物样品中OCPs的预处理和分析检测程序,均依据国家生态环境部颁布的标准方法进行(HJ835‒2017)。

取10 g经冷冻干燥、研磨并过100目筛子的样品,用无水硫酸钠干燥后进行萃取。将干燥后的样品转移至索氏提取器中,依次加入适量300 mg/L替代物标准液和100 ml丙酮–正己烷(1:1 v/v)混合溶剂,索氏抽提18 h。提取液在旋转蒸发仪上于40℃下浓缩至约2 ml,用少量丙酮–正己烷(1:1 v/v)混合溶剂冲洗蒸发瓶底两次,合并全部浓缩液,再用氮吹浓缩至1 ml。使用硅酸镁层析柱对浓缩后的提取液进行净化,并在层析柱上端加入2 g经硝酸预处理的铜粉,以除去提取液中的硫。具体净化步骤参照国家生态环境部标准(HJ835‒2017)执行。净化后的溶液再次氮吹浓缩,加入适量500 mg/L内标中间液并定容至1.0 ml,混匀后转移至2 ml样品瓶中,待测。

采用气相色谱/质谱联用仪(美国PE Clarus 600)对沉积物中OCPs进行定量分析。色谱柱:HP‒5MS石英毛细管色谱柱30 m × 0.25 mm × 0.25 µm;载气:高纯氦气,流速1.0 ml/min;进样口温度:250℃,不分流;进样量:1 μL。色谱柱程序升温条件:120℃保持2 min;以12℃/min速率升至180℃,保持5 min;再以7℃/min速率升至240℃,保持1 min;再以7℃/min速率升至250℃,保持2 min,后程序升温至280℃,保持2 min。接口温度:280℃;EI电离源:70 eV;EI源温度:230℃;扫描方式:离子扫描。在检测OCPs前,需使用标准品及替代标准溶液绘制校准曲线。

2.4. 质量保证/控制

为控制分析质量,对程序空白和基质加标样品进行了分析。本研究使用了含有23种OCPs混合标液,每种化合物浓度均为1 mg/L。

为了控制分析准确性,每批测20个样,包含1个空白、1个平行、2个标准参考、1个基质加标,有效数据15个。试剂空白用于监控潜在污染,所有目标化合物在试剂空白中均未检出。基质加标用于评估基体效应,其加标量为预期含量的3~5倍。本研究使用的全部化学试剂(酸、溶剂、铜粉及无水硫酸钠)在使用前均经过干扰物质和污染情况检测。沉积物中OCPs同系物的加标回收率为75%~109%,满足OCPs痕量分析要求。

2.5. 生态风险评估

本研究采用风险熵(RQ)评估OCPs生态风险,计算公式如下:

RQ= MC PNEC (1)

其中,MC表示OCPs单体实测浓度(ng/g),PNEC为预测无效应浓度(ng/g)。本研究所用PNEC值参考前期研究[15]

对每个采样点,OCPs联合生态风险,即总风险熵(TRQ)按以下公式计算:

TRQ= i=1 n RQ i (2)

生态风险分四等:可忽略风险(RQ < 0.01)、低风险(0.01 ≤ RQ < 0.1)、中等风险(0.1 ≤ RQ < 1)及高风险(RQ ≥ 1) [16]

2.6. 健康风险评估

本研究依据US EPA风险评估模型[17]-[19],通过三种暴露途径——误食(Ing)、皮肤接触(Der)和呼吸(Inh),分别量化儿童与成人群体的致癌与非致癌风险。三种途径摄入OCPs的日均暴露量(ADD)通过下列公式计算:

ADD Ing = C i ×IngR×EF×ED BW×AT × 10 6 (3)

ADD Der = C i ×SA×AF×ABS×EF×ED BW×AT × 10 6 (4)

ADD Inh = C i ×InhR×EF×ED BW×AT × 10 6 (5)

其中,Ci表示OCPs单体浓度,其余参数的定义及取值详见表1

Table 1. Exposure Parameters Used in Health Risk Assessment [16] [20]-[22]

1. 健康风险评估中使用的暴露参数[16] [20]-[22]

参数

意义

单位

儿童

成人

IngR

摄入速率

mg/d

72

50

InhR

吸入速率

m3/d

8.4

15.7

PEF

悬浮颗粒物沉降系数

m3/kg

1.316E + 09

EF

暴露频率

d/a

350

350

ED

暴露持续时间

a

6

24

BW

体重

kg

17.7

60.6

AT

致癌/非致癌效应平均时间

d

25550/ED * 365

SA

暴露皮肤面积

cm2

2448

5075

AF

附着系数

mg/cm2

0.2

0.07

ABS

皮肤吸收系数

0.1

Table 2. Toxicological parameters for OCPs [24] [25]

2. OCPs的毒理学参数[24] [25]

污染物

RfDIng

RfDInh

RfDDer

SFIng

SFInh

SFDer

α–HCH

8.00E−03

8.00E−03

8.00E−03

6.30E + 00

1.80E−03

6.30E + 00

β–HCH

3.00E−04

3.00E−04

3.00E−04

1.80E + 00

5.30E−04

1.80E + 00

γ–HCH

3.00E−04

3.00E−04

3.00E−04

1.10E + 00

3.10E−04

1.10E + 00

o,p′-DDT

5.00E−04

5.00E−04

5.00E−04

2.40E−01

9.70E−05

2.40E−01

p,p′-DDT

5.00E−04

5.00E−04

5.00E−04

3.40E−01

9.70E−05

3.40E−01

采用TCR与THI分别量化联合致癌与非致癌风险,计算公式如下:

TCR= i=1 n ADD i × SF i (6)

THI= i=1 n ADD i RfD i (7)

式中,n代表OCPs种类总数,SF表示致癌斜率系数,kg•d•mg1;RfD污染物某种暴露途径下的参考剂量,mg•(kg•d)1。SF和RfD取值见表2

根据US EPA规定[23],致癌风险按以下标准划分:可忽略风险(TCR < 106)、可接受风险(106 < TCR < 104)和显著风险(TCR > 104)。非致癌风险,THI < 1表示无明显危害[16] [23]

3. 结果与讨论

3.1. OCPs数据概述及污染程度评估

本研究对于低于检测限的浓度均以0值处理,杞麓湖表层沉积物OCPs浓度(干重)的数据统计、变异系数(CV)及富集系数(EF)如图2所示。在23种OCPs中,仅有α–HCH、β–HCH、γ–HCH、o,p′–DDT及p,p′–DD检出,其平均浓度分别为5.72、13.94、2.40、8.99和6.30 ng/g (图2(a))。杞麓湖表层沉积物OCPs组成特征与抚仙湖和阳宗海柱状沉积物中的记录一致[9] [10],表明其具有相似的来源与环境持久性。ΣHCHs (α + β + γ)与ΣDDTs (o,p′ + p,p′)的平均浓度分别为22.07 ng/g和15.29 ng/g,均远低于《土壤环境质量农用地土壤污染风险管控标准(试行)》中规定的100 ng/g这一阈值(GB15618–2018),这表明杞麓湖表层沉积物中HCHs和DDTs处于较低污染水平。此外,与国内外相似研究相比,杞麓湖表层沉积物中ΣOCPs平均浓度为37.36 ng/g,高于白洋淀[26]、阿什塔穆迪湿地[27]与扎因代鲁德河[28],但低于黄河[16]、喀斯特湿地[29]、东湖[30]及抚仙湖[9]的OCPs平均值,这种区域差异性体现了人为压力与工业发展对自然生态系统产生的协同效应。在HCH异构体中,β–HCH的检出率与浓度均占主导地位,表明α–HCH与γ–HCH在环境中转化为较为稳定的β–HCH。DDTs浓度低于HCHs,这与历史上中国HCHs更高的生产和使用量相符[9]

CV值用以反映污染物的空间异质性及人为影响程度[31]。OCPs单体的CV均大于30% (图2(a)),不仅表明其空间分布异质性更强,也暗示出其受人为影响更为突出,这与OCPs是人工合成的有机卤代烃化合物,完全来源于人类活动的实际情况相符合。

Figure 2. Concentrations, coefficient of variation (CV), and enrichment factor (EF) of OCPs

2. OCPs的浓度、变异系数(CV)和富集因子(EF)

EF用来评价污染物的污染程度及人为影响强度,可量化污染物的相对累积程度[32]。其计算方法为污染物实测浓度与背景值之比,是区分自然源和人为源的关键指标[33]。EF < 0.5表明污染物主要来自自然源,人为影响微弱[34];EF > 1.5则代表以人为来源为主,自然输入可忽略[35]。本研究中,OCPs各单体EF值均远低于0.5 (图2(b)),这可能与采用《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600‒2018)中规定的建设用地背景值有关。

3.2. OCPs来源解析

在HCHs各异构体中,β‒HCH检出率(95.5%)最高,且平均浓度(13.9 ± 4.6 ng/g)也最高(图3(a)),这主要是由于β‒HCH结构比其它异构体稳定,是环境中最稳定和最难降解的异构体之一。同时,其它异构体亦可转化成β‒HCH以达到稳定状态[36]。这表明杞麓湖表层沉积物中HCHs来源于历史残留。一般而言,若沉积物中γ–HCH占绝对优势,则指示有新HCHs输入[37]。本研究中,γ–HCH仅在7个采样点检出,且浓度较低(图3(a)),表明沉积物中无HCHs近期输入。现场调查也证实,研究区已禁用HCHs和DDTs类农药,未发现新增污染源。

工业HCH和林丹输入是环境中HCHs的两大主要来源[38],因此,α–/β–HCH常被用来判断HCHs来源。较高的α–/β–HCH表示周围环境存在工业HCH的近期输入;而低值则提示为历史残留[39]。根据图3(b)可知,在22个沉积物样品中,17个采样点同时检出α‒HCH和β‒HCH,且α–/β–HCH介于0.30~1.10之间,平均值为0.54,远低于工业品HCHs (5~14),据此推断HCHs主要源于历史残留。此外,β–/(α + γ)–HCH可进一步证实环境中是否有新HCHs输入,若β–/(α + γ)–HCH < 0.5预示近期输入(如林丹使用或大气沉降);如果β–/(α + γ)–HCH > 0.5则暗示历史污染[40]。本研究中,18个采样点的β–/(α + γ)–HCH > 0.5,且β–HCH与∑HCHs呈显著正相关(R2 = 0.579, P < 0.01),表明杞麓湖表层沉积物中HCHs主要源于历史残留,这与α–HCH和γ–HCH随时间降解为β–HCH的研究结论一致[41],同时也反映出我国禁止生产和使用HCHs的政策已取得显著成效[42]。目前,我国大部分地区HCHs主要来源于早期农药残留的缓慢释放与迁移[43]

Figure 3. Concentrations of OCPs and their corresponding molecular ratios at each sampling site

3. 各采样点位OCPs浓度及相应分子比率

自然环境中DDTs在有氧和无氧条件下降解为DDE和DDD [29],但本研究未检出DDE和DDD,且p,p′–DDT和o,p′–DDT的检出率分别为50%和72.7%,含量较低(图3(a)),暗示杞麓湖表层沉积物中DDTs源于近期输入。工业DDT和三氯杀螨醇是我国DDTs污染的主要来源,因此利用o,p′–/p,p′–DDT可判断DDTs来源[44]。o,p′–/p,p′–DDT为0.3~9.2或更高,表示有三氯杀螨醇输入;若该比值为0.2~0.3,则指示工业DDT输入[45]。本研究中,10个采样点同时检出o,p′–DDT和p,p′–DDT,且o,p′–/p,p′–DDT介于0.41~2.25,其均值为1.03;1个采样点仅未检出o,p′–DDT;5个采样点同时未检出o,p′–DDT和p,p′–DDT;6个点仅未检出p,p′–DDT (图3(b))。这表明杞麓湖表层沉积物中DDTs主要源于三氯杀螨醇,这符合工业DDT禁用后,三氯杀螨醇是环境中“新”DDTs的主要来源[46]

3.3. OCPs空间分布

采用反距离加权法对杞麓湖表层沉积物OCPs的空间差异进行分析(图4)。ΣHCHs、ΣDDTs和ΣOCPs的空间分布基本相似,最高浓度主要出现在红旗河入湖区及湖心区域,而东部区域浓度最低。这种空间分布特征主要源于历史输入量、农药特性、沉积模式及局部环境条件的综合影响。杞麓湖周边农田在蔬菜种植过程中曾广泛施用DDTs与HCHs类农药,同时未经处理的城乡生活污水通过红旗河输入湖泊。此外,旅游业与渔业活动的扩张可能导致来源于防污漆中p,p′‒DDT残留释放。生物扰动及频繁的渔业活动易引起沉积物再悬浮与迁移,并促进污染物在湖心区域沉降。

Figure 4. Spatial distribution patterns of OCPs

4. OCPs空间分布

3.4. OCPs生态风险

Figure 5. Individual ecological risk, combined ecological risk, and spatial distribution of OCPs

5. OCPs单体的生态风险、联合生态风险及其空间分布

沉积物中OCPs在一定条件下通过再悬浮作用再次进入上覆水体,导致二次污染并对水生生物构成威胁,因此评估OCPs所带来的生态风险至关重要。采用RQ衡量OCPs生态风险水平,但由于其检出率较低,多数箱线图未完整呈现(图5(a))。5种OCPs的RQ值均小于1,按γ–HCH > p,p′–DDT > o,p′–DDT > α–HCH > β–HCH顺序递减。尽管β–HCH检出率最高,但γ–HCH和p,p′–DDT表现出相对较高风险,是沉积物生态毒理风险的主要驱动因子。γ–HCH在31.82%样品中呈高风险(RQ > 1),o,p′–DDT在72.3%样品中呈中风险(0.1 < RQ < 1),而α–HCH与β–HCH的贡献极小,表现为低或可忽略风险。这些结果表明,杞麓湖表层沉积物中OCPs单体存在中高风险。然而,污染物在环境中常以共存形式存在,具有相似结构和毒理效应机制的OCPs同系物可能产生累积生态毒理效应,即使在低浓度下也会增加对生态系统的风险[47] [48]。因此,采用ΣRQ来量化共存OCPs同系物所产生的综合生态风险,并采用反距离加权法对其空间分布进行分析(图5(b))。杞麓湖普遍存在高风险(RQ > 1),主要来源于人为活动,尤其是集约化农业和农药施用量的增加。值得注意的是,γ–HCH (44.84%)、p,p′–DDT (37.88%)和o,p′–DDT (16.21%)合计贡献率达98.93%,是生态风险的主要贡献因子。植物叶面和土壤中的农药残留经降雨冲刷和地表径流进入水循环,最终汇入杞麓湖水体,导致多数区域(特别是地势低平和排污口邻近区域)出现OCPs显著累积现象。

3.5. OCPs健康风险

由于OCPs具有明确毒性,人类长期暴露于OCPs中可以诱发多种疾病,甚至癌症[49]。因此,本研究评估了当地居民的非致癌与致癌风险,尤其关注儿童和成人群体。

儿童通过三种暴露途径所致的非致癌风险,α‒HCH、β‒HCH、γ‒HCH、o,p′‒DDT和p,p′‒DDT的THI平均值分别为4.69 × 106、3.05 × 104、5.25 × 105、1.18 × 104和8.26 × 105;成人的则依次为9.68 × 107、5.37 × 105、9.26 × 106、2.43 × 105和1.71 × 105。引起儿童和成人THI值由高到低依次是:β‒HCH > o,p′‒DDT > p,p′‒DDT > γ‒HCH > α‒HCH (图6(a)),表明β‒HCH是沉积物中最优先污染物。根据USEPA规定,THI > 1时,会对人体健康产生危害[16] [23]。本研究中,儿童和成人的THI都小于1,表明OCPs对人体所产生的非致癌危害可忽略。

儿童通过三种暴露途径所致的致癌风险,α‒HCH、β‒HCH、γ‒HCH、o,p′‒DDT和p,p′‒DDT的TCR平均值分别为2.06 × 108、1.41 × 108、1.49 × 109、1.21 × 109和1.20 × 109;成人的则依次为1.67 × 108、1.16 × 108、1.23 × 109、1.00 × 109和9.94 × 1010。引起儿童和成人的TCR值由高到低依次是:α‒HCH > β‒HCH > γ‒HCH > o,p′‒DDT > p,p′‒DDT (图6(b)),这可能是由α‒HCH较高的致癌斜率所致。US EPA指出TCR < 106时,癌症风险可忽略[23]。5种OCPs的TCR均低于106,表明OCPs对人体无致癌风险。

Figure 6. Health risk assessment for children and adults: (a) non‒carcinogenic risk and (b) carcinogenic risk

6. 儿童和成年人的健康风险评价:非致癌风险(a)和致癌风险(b)

儿童的健康风险高于成人(图6),这主要是由于儿童对污染物更为敏感,更易受到污染物的伤害[50]。此外,儿童的生理特征、发育阶段频繁的手口接触行为及较长的暴露时间等因素,使其受到较高OCPs威胁[51]

在多种污染物共存情况下,可能对人体产生累积性健康风险。从ΣOCPs来看,无论是成人还是儿童,OCPs对其致癌和非致癌风险处于较低水平,未显示出明显的健康威胁(图6)。

4. 结论

(1) 杞麓湖表层沉积物中仅检出5种OCPs,包括α‒HCH、β‒HCH、γ‒HCH、o,p′–DDT和p,p′–DDT,其它均未检出。ΣHCHs、ΣDDTs和ΣOCPs平均浓度分别为22.07、15.29和37.36 ng/g,表明该区域沉积物中OCPs污染处于中低水平。

(2) ΣHCHs、ΣDDTs和ΣOCPs空间分布基本相似,最高浓度出现在红旗河入湖区及湖心地带,而东部湖区则最低。该空间分异特征主要与历史输入量、农药特性、沉积模式及局部环境条件等因素有关。

(3) OCPs源解析显示:HCHs源于历史残留、工业HCH降解、大气长距离传输;而DDT来源于三氯杀螨醇近期输入。

(4) 生态风险评价表明:β‒HCH处于无风险水平,α‒HCH为低风险,o,p′‒DDT中风险,p,p′‒DDT中低风险,γ‒HCH中高风险。整体上看,5种OCPs在杞麓湖绝大部分区域呈高联合风险,可能对水生态环境构成潜在威胁。

(5) 采用USEPA健康风险模型进行评估,结果显示:OCPs所引起的非致癌风险和致癌效应均远低于USEPA建议限值,目前不会对人体健康造成显著危害,但儿童由于暴露时间、行为模式和生理特性更易受到污染物影响,其对OCPs的暴露敏感性高于成人,需引起特别关注。

基金项目

云南省大学生创新训练计划项目(S202311390026)。

NOTES

*通讯作者。

参考文献

[1] 席北斗, 虞敏达, 张媛, 等. 华北典型污灌区有机氯农药残留特征及健康风险评价[J]. 生态毒理学报, 2016, 11(2): 453-464.
[2] 邹彬, 张涵, 王芝麟, 等. 黄土高原北洛河表层沉积物中有机氯农药的分布、来源及生态风险评[J]. 地球与环境, 2023, 51(6): 641-653.
[3] Wang, D., Wang, Y., Singh, V.P., Zhu, J., Jiang, L., Zeng, D., et al. (2018) Ecological and Health Risk Assessment of PAHs, OCPs, and PCBs in Taihu Lake Basin. Ecological Indicators, 92, 171-180. [Google Scholar] [CrossRef
[4] 蒋煜峰, 王学彤, 孙阳昭, 等. 上海市城区土壤中有机氯农药残留研究[J]. 环境科学, 2010, 31(2): 409-414.
[5] Keswani, C., Dilnashin, H., Birla, H., Roy, P., Tyagi, R.K., Singh, D., et al. (2022) Global Footprints of Organochlorine Pesticides: A Pan-Global Survey. Environmental Geochemistry and Health, 44, 149-177. [Google Scholar] [CrossRef] [PubMed]
[6] Yu, L., Zhang, S., He, X., Hu, J., Zhao, Z., Xia, A., et al. (2023) Determination of Five Organochlorine Pesticides Based on GC–MS Coupled with Deep Eutectic Solvent-Modified Magnetic Graphene Oxide-Improved Quechers in Vegetables. Chromatographia, 86, 511-522. [Google Scholar] [CrossRef
[7] Li, Y., Wang, X. and Gong, P. (2021) Combined Risk Assessment Method Based on Spatial Interaction: A Case for Polycyclic Aromatic Hydrocarbons and Heavy Metals in Taihu Lake Sediments. Journal of Cleaner Production, 328, Article 129590. [Google Scholar] [CrossRef
[8] Chen, C., Luo, J., Shu, X., Dai, W., Guan, M. and Ma, L. (2022) Spatio-Temporal Variations and Ecological Risks of Organochlorine Pesticides in Surface Waters of a Plateau Lake in China. Chemosphere, 303, Article 135029. [Google Scholar] [CrossRef] [PubMed]
[9] Hu, C. and Tao, Y. (2022) Spatial-Temporal Occurrence and Sources of Organochlorine Pesticides in the Sediments of the Largest Deep Lake (Lake Fuxian) in China. Environmental Science and Pollution Research, 29, 12345-12356.
[10] Yuan, H., Liu, E., Zhang, E., Luo, W., Chen, L., Wang, C., et al. (2017) Historical Records and Sources of Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorine Pesticides (OCPs) in Sediment from a Representative Plateau Lake, China. Chemosphere, 173, 78-88. [Google Scholar] [CrossRef] [PubMed]
[11] Guo, J., Wu, F., Liao, H., Zhao, X., Li, W., Wang, J., et al. (2013) Sedimentary Record of Polycyclic Aromatic Hydrocarbons and DDTs in Dianchi Lake, an Urban Lake in Southwest China. Environmental Science and Pollution Research, 20, 5471-5480. [Google Scholar] [CrossRef] [PubMed]
[12] Klamt, A., Qian, F., Hu, K., Wang, J., Huang, L., Li, R., et al. (2021) The Rise and Fall of Primary Producers and Consumers in a Multiply-Stressed Shallow Lake (Lake Qilu, China) over the Last 200 Years. Ecological Indicators, 129, Article 107891. [Google Scholar] [CrossRef
[13] 许杰玉, 赵晓飞, 吕春英, 等. 高原湖泊流域水环境特征与污染防治综合整治研究[J]. 环境科学与管理, 2015, 40(3): 49-52.
[14] 张军莉, 赵磊, 赵琳娜, 等. 杞麓湖湖滨带农田排涝区农田排水入湖污染负荷研究[J]. 环境科学导刊, 2013, 32(1): 33-34.
[15] Lei, B., Wang, X., Wang, L., Kang, Y., Wan, T., Li, W., et al. (2024) Combining Chemical Analysis and Toxicological Methods to Access the Ecological Risk of Complex Contamination in Daye Lake. Science of The Total Environment, 944, Article 173690. [Google Scholar] [CrossRef] [PubMed]
[16] Yuan, L., Wu, Y., Shi, L., Song, J. and Jiang, Y. (2024) Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments of the Lanzhou Reach of Yellow River (China): Spatial Distribution, Sources and Risk Assessment. Marine Pollution Bulletin, 208, Article 116962. [Google Scholar] [CrossRef] [PubMed]
[17] US EPA (1993) Reference Dose (RFD): Description and Use in Health Risk Assessments; Background Document 1A; Integrated Risk Information System (IRIS). US EPA.
[18] US EPA (1989) Risk Assessment Guidance for Superfund; Volume I. Human Health Evaluation Manual (Part A). US EPA.
[19] US EPA (1986) Superfund Public Health Evaluation Manual. US EPA.
[20] 赵秀阁, 段小丽. 中国人群暴露参数手册[M]. 北京: 中国环境出版社, 2014.
[21] US EPA (2002) Risk-Based Concentration Table. US EPA.
[22] US EPA (2011) Exposure Factors Handbook. Final Edition, US EPA.
[23] US EPA (2005) Characterizing Risk and Hazard. In: US EPA, Ed., Human Health Risk Assessment Protocol, US EPA, 343-357.
[24] US EPA. (2010) Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table.
[25] USDOE (2011) The Risk Assessment Information System (RAIS). U.S. Department of Energy.
[26] Dai, G., Liu, X., Liang, G., Han, X., Shi, L., Cheng, D., et al. (2011) Distribution of Organochlorine Pesticides (OCPs) and Poly Chlorinated Biphenyls (PCBs) in Surface Water and Sediments from Baiyangdian Lake in North China. Journal of Environmental Sciences, 23, 1640-1649. [Google Scholar] [CrossRef] [PubMed]
[27] Sreedevi, M.A. and Harikumar, P.S. (2023) Occurrence, Distribution, and Ecological Risk of Heavy Metals and Persistent Organic Pollutants (OCPs, PCBs, and PAHs) in Surface Sediments of the Ashtamudi Wetland, South-West Coast of India. Regional Studies in Marine Science, 64, Article 103044. [Google Scholar] [CrossRef
[28] Varnosfaderany, M.N., Soffianian, A., Mirghaffari, N., Gu, Z. and Chu, G. (2020) Occurrence and Depositional History of Organochlorine Pesticides in the Sediments of the Zayandehrud River in the Arid Region of Central Iran. Chemosphere, 255, Article 126847. [Google Scholar] [CrossRef] [PubMed]
[29] Hu, Q., Liang, Y., Zeng, H., Huang, H., Chen, W., Qin, L., et al. (2024) Organochlorine Pesticides in Water and Sediment at a Typical Karst Wetland in Southwest China. Journal of Geochemical Exploration, 264, Article 107519. [Google Scholar] [CrossRef
[30] Yun, X., Yang, Y., Liu, M. and Wang, J. (2014) Distribution and Ecological Risk Assessment of Organochlorine Pesticides in Surface Sediments from the East Lake, China. Environmental Science and Pollution Research, 21, 10368-Article 10376. [Google Scholar] [CrossRef] [PubMed]
[31] Wang, C., Hu, J., Zhang, Y., Di, Y. and Wu, X. (2025) Spatial Distribution Characteristic, Source Apportionment, and Risk Assessment of Heavy Metals in the Soil of an Urban Riparian Zone. Ecotoxicology and Environmental Safety, 298, Article 118271. [Google Scholar] [CrossRef] [PubMed]
[32] Chen, H., Teng, Y., Lu, S., Wang, Y. and Wang, J. (2015) Contamination Features and Health Risk of Soil Heavy Metals in China. Science of The Total Environment, 512, 143-153. [Google Scholar] [CrossRef] [PubMed]
[33] Gu, Y., Wang, Z., Lu, S., Jiang, S., Mu, D. and Shu, Y. (2012) Multivariate Statistical and GIS-Based Approach to Identify Source of Anthropogenic Impacts on Metallic Elements in Sediments from the Mid Guangdong Coasts, China. Environmental Pollution, 163, 248-255. [Google Scholar] [CrossRef] [PubMed]
[34] Cai, L., Wang, Q., Luo, J., Chen, L., Zhu, R., Wang, S., et al. (2019) Heavy Metal Contamination and Health Risk Assessment for Children near a Large Cu-Smelter in Central China. Science of The Total Environment, 650, 725-733. [Google Scholar] [CrossRef] [PubMed]
[35] Peng, J., Chen, Y., Xia, Q., Rong, G. and Zhang, J. (2021) Ecological Risk and Early Warning of Soil Compound Pollutants (HMs, PAHs, PCBs and OCPs) in an Industrial City, Changchun, China. Environmental Pollution, 272, Article 116038. [Google Scholar] [CrossRef] [PubMed]
[36] Tariq, T., Mahmood, A., Majid, M., Nazir, R., Elgorban, A.M., Abid, I., et al. (2024) Screening Levels Spatial Interpolation of Lifetime Carcinogenic Risk by Organochlorine Pesticides across Catchments of River Chenab. Journal of King Saud University-Science, 36, Article 103422. [Google Scholar] [CrossRef
[37] 冯雪, 李剑, 滕彦国, 等. 吉林松花江沿岸土壤中有机氯农药残留特征及健康风险评价[J]. 环境化学, 2011, 30(9): 1604-1610.
[38] Mitra, S., Corsolini, S., Pozo, K., Audy, O., Sarkar, S.K. and Biswas, J.K. (2019) Characterization, Source Identification and Risk Associated with Polyaromatic and Chlorinated Organic Contaminants (PAHs, PCBs, PCBzs and OCPs) in the Surface Sediments of Hooghly Estuary, India. Chemosphere, 221, 154-165. [Google Scholar] [CrossRef] [PubMed]
[39] Tang, D., Liu, X., He, H., Cui, Z., Gan, H. and Xia, Z. (2020) Distribution, Sources and Ecological Risks of Organochlorine Compounds (DDTs, HCHs and PCBs) in Surface Sediments from the Pearl River Estuary, China. Marine Pollution Bulletin, 152, Article 110942. [Google Scholar] [CrossRef] [PubMed]
[40] 苏禹龙, 徐晓萌, 郭志勇, 等. 条子河中多环芳烃和有机氯农药的时空分布及来源解析[J]. 吉林大学学报(理学版), 2014, 52(3): 611-622.
[41] Müller, M.H.B., Polder, A., Brynildsrud, O.B., Karimi, M., Lie, E., Manyilizu, W.B., et al. (2017) Organochlorine Pesticides (OCPs) and Polychlorinated Biphenyls (PCBs) in Human Breast Milk and Associated Health Risks to Nursing Infants in Northern Tanzania. Environmental Research, 154, 425-434. [Google Scholar] [CrossRef] [PubMed]
[42] Cheng, C., Hu, T., Liu, W., Mao, Y., Shi, M., Xu, A., et al. (2021) Modern Lake Sedimentary Record of PAHs and OCPs in a Typical Karst Wetland, South China: Response to Human Activities and Environmental Changes. Environmental Pollution, 291, Article 118173. [Google Scholar] [CrossRef] [PubMed]
[43] 谢利晋, 薛超, 毛锦玉, 等. 淮河(安徽段)表层沉积物中有机氯农药的残留及分布特征[J]. 蚌埠学院学报, 2021, 10(2): 12-18.
[44] Qiu, X. and Zhu, T. (2010) Using the O,p′-DDT/p,p′-DDT Ratio to Identify DDT Sources in China. Chemosphere, 81, 1033-1038. [Google Scholar] [CrossRef] [PubMed]
[45] Li, C., Huo, S., Yu, Z., Xi, B., Yeager, K.M., He, Z., et al. (2017) National Investigation of Semi-Volatile Organic Compounds (PAHs, OCPs, and PCBs) in Lake Sediments of China: Occurrence, Spatial Variation and Risk Assessment. Science of The Total Environment, 579, 325-336. [Google Scholar] [CrossRef] [PubMed]
[46] Hoai, P.M., Ngoc, N.T., Minh, N.H., Viet, P.H., Berg, M., Alder, A.C., et al. (2010) Recent Levels of Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments of the Sewer System in Hanoi, Vietnam. Environmental Pollution, 158, 913-920. [Google Scholar] [CrossRef] [PubMed]
[47] Lu, X., Zhang, Z., Xiao, M., Meng, B., Kolodeznikov, V.E., Petrova, N.N., et al. (2024) Screening and Quantification of Pesticides in Wetland Water, Ice, Sediment and Soil: Occurrence, Transport and Risk Assessment. Environmental Research, 263, Article 120143. [Google Scholar] [CrossRef] [PubMed]
[48] Kalyabina, V.P., Esimbekova, E.N., Kopylova, K.V. and Kratasyuk, V.A. (2021) Pesticides: Formulants, Distribution Pathways and Effects on Human Health—A Review. Toxicology Reports, 8, 1179-1192. [Google Scholar] [CrossRef] [PubMed]
[49] Ansari, I., El-Kady, M.M., El Din Mahmoud, A., Arora, C., Verma, A., Rajarathinam, R., et al. (2024) Persistent Pesticides: Accumulation, Health Risk Assessment, Management and Remediation: An Overview. Desalination and Water Treatment, 317, Article 100274. [Google Scholar] [CrossRef
[50] 刘佳, 丁洋, 祁士华, 等. 韩江流域土壤中有机氯农药的特征分布[J]. 环境科学, 2018, 39(11): 5127-5134.
[51] Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., et al. (2021) Quantitative Source Apportionment, Risk Assessment and Distribution of Heavy Metals in Agricultural Soils from Southern Shandong Peninsula of China. Science of The Total Environment, 767, Article 144879. [Google Scholar] [CrossRef] [PubMed]