|
[1]
|
Kabir, A., Alizadehfar, R. and Tsoukas, C.M. (2022) Good’s Syndrome: Time to Move on from Reviewing the Past. Frontiers in Immunology, 12, Article ID: 815710. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dong, J., Gao, W., Teng, G., Tian, Y. and Wang, H. (2017) Characteristics of Good’s Syndrome in China: A Systematic Review. Chinese Medical Journal, 130, 1604-1609. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kelesidis, T. and Yang, O. (2010) Good’s Syndrome Remains a Mystery after 55 Years: A Systematic Review of the Scientific Evidence. Clinical Immunology, 135, 347-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hanafusa, T., Umegaki, N., Yamaguchi, Y. and Katayama, I. (2010) Good’s Syndrome (Hypogammaglobulinemia with Thymoma) Presenting Intractable Opportunistic Infections and Hyperkeratotic Lichen Planus. The Journal of Dermatology, 37, 171-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, K. and Cowlishaw, J.L. (2013) Beware of the Patient with Thymectomy: Good’s Syndrome in a Patient Presenting with Diarrhea. ACG Case Reports Journal, 1, 33-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, M., Zhang, P., Li, Q. and Kong, C. (2025) Investigating the Process of Autoimmune Inner Ear Disease: Unveiling the Intricacies of Pathogenesis and Therapeutic Strategies. International Journal of Medical Sciences, 22, 179-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Miwa, T. and Okano, T. (2022) Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Frontiers in Neurology, 13, Article ID: 861992. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jimenez, S.A., Mendoza, F.A. and Piera-Velazquez, S. (2025) A Review of Recent Studies on the Pathogenesis of Systemic Sclerosis: Focus on Fibrosis Pathways. Frontiers in Immunology, 16, Article ID: 1551911. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Engesser, J., Wang, H., Kapffer, S., Kaffke, A., Peters, A., Paust, H., et al. (2024) S1PR1 Mediates Th17 Cell Migration from the Thymus to the Skin in Health and Disease. Frontiers in Immunology, 15, Article ID: 1473130. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, S., Gang, X., Yang, S., Cui, M., Sun, L., Li, Z., et al. (2021) The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Frontiers in Immunology, 12, Article ID: 678355. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Stinson, W.A., Miner, C.A., Zhao, F.R., Lundgren, A.J., Poddar, S. and Miner, J.J. (2022) The IFN-γ Receptor Promotes Immune Dysregulation and Disease in STING Gain-of-Function Mice. JCI Insight, 7, e155250. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lin, M., Ji, X., Lv, Y., Cui, D. and Xie, J. (2023) The Roles of TRAF3 in Immune Responses. Disease Markers, 2023, Article ID: 7787803. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fochi, S., Bergamo, E., Serena, M., Mutascio, S., Journo, C., Mahieux, R., et al. (2019) TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Frontiers in Microbiology, 10, Article No. 1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Strober, W. and Watanabe, T. (2011) NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunology, 4, 484-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Huangfu, L., Li, R., Huang, Y. and Wang, S. (2023) The IL-17 Family in Diseases: From Bench to Bedside. Signal Transduction and Targeted Therapy, 8, Article No. 402. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mebarki, M., Abadie, C., Larghero, J. and Cras, A. (2021) Human Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells: A Promising Candidate for the Development of Advanced Therapy Medicinal Products. Stem Cell Research & Therapy, 12, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yao, X.Y., Xie, L., Cai, Y., et al. (2022) Human Umbilical Cord Mesenchymal Stem Cells to Treat Neuromyelitis Optica Spectrum Disorder (hUC-MSC-NMOSD): A Study Protocol for a Prospective, Multicenter, Randomized, Placebo-Controlled Clinical Trial. Frontiers in Neurology, 13, Article ID: 860083.
|
|
[18]
|
Han, X., Liao, R., Li, X., Zhang, C., Huo, S., Qin, L., et al. (2025) Mesenchymal Stem Cells in Treating Human Diseases: Molecular Mechanisms and Clinical Studies. Signal Transduction and Targeted Therapy, 10, Article No. 262. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zaripova, L.N., Midgley, A., Christmas, S.E., Beresford, M.W., Pain, C., Baildam, E.M., et al. (2023) Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. International Journal of Molecular Sciences, 24, Article No. 16040. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, B., Chen, Z., He, M., Zhang, L., Yang, L. and Wei, L. (2024) Recent Advances in the Role of Mesenchymal Stem Cells as Modulators in Autoinflammatory Diseases. Frontiers in Immunology, 15, Article ID: 1525380. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gao, Y., Ji, Z., Zhao, J. and Gu, J. (2025) Therapeutic Potential of Mesenchymal Stem Cells for Fungal Infections: Mechanisms, Applications, and Challenges. Frontiers in Microbiology, 16, Article ID: 1554917. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Baranovskii, D.S., Klabukov, I.D., Arguchinskaya, N.V., Yakimova, A.O., Kisel, A.A., Yatsenko, E.M., et al. (2022) Adverse Events, Side Effects and Complications in Mesenchymal Stromal Cell-Based Therapies. Stem Cell Investigation, 9, 7. [Google Scholar] [CrossRef] [PubMed]
|