Good综合征合并免疫介导性内耳病及系统性硬皮病1例并文献复习
Good Syndrome Complicated with Immune-Mediated Inner Ear Disease and Systemic Sclerosis: A Case Report and Literature Review
DOI: 10.12677/acm.2025.15113157, PDF, HTML, XML,    科研立项经费支持
作者: 薛婉莹, 张 青, 陶千山*:安徽医科大学第二附属医院血液内科,安徽 合肥
关键词: Good综合征免疫介导性内耳病系统性硬皮病胸腺瘤Good Syndrome Immune-Mediated Inner Ear Disease Systemic Sclerosis Thymoma
摘要: 回顾性分析该院血液内科收治的1例Good综合征(GS)合并免疫介导性内耳病(IMIED)及系统性硬皮病(SSc)患者的临床资料及治疗措施。患者,男,32岁,因右侧听力下降就诊,既往有胸腺瘤手术史,经检查确诊为Good综合征,结合听力检查及病因排除,考虑合并IMIED,病程中患者出现系统性硬皮病。患者接受药物保守治疗、糖皮质激素冲击及免疫球蛋白补充等综合治疗后,患者感染及免疫缺陷病情较前好转,听力损害未完全恢复,后患者因感染于院外死亡。对于存在免疫缺陷基础的患者,若出现突发性听力下降或皮肤纤维化等症状,需考虑合并IMIED或SSc的可能,为临床提供了一定的借鉴意义。
Abstract: This study retrospectively analyzed the clinical data and treatment of a patient with Good syndrome (GS) complicated with immune-mediated inner ear disease (IMIED) and systemic sclerosis (SSc) admitted to the Department of Hematology of our hospital. A 32-year-old male presented with right-sided hearing loss and had a history of thymoma surgery. The patient was diagnosed with GS after comprehensive examinations. Combined with audiological tests and exclusion of other etiologies, IMIED was considered as a complication. During the disease course, systemic sclerosis developed. The patient received comprehensive treatments including conservative drug therapy, glucocorticoid pulse therapy, and immunoglobulin supplementation, which resulted in improved infection and immunodeficiency conditions; however, hearing impairment was not fully recovered. The patient eventually died of infection outside the hospital. For patients with underlying immunodeficiency, the possibility of concurrent IMIED or SSc should be considered when sudden hearing loss or skin fibrosis occurs. This case provides valuable clinical insights.
文章引用:薛婉莹, 张青, 陶千山. Good综合征合并免疫介导性内耳病及系统性硬皮病1例并文献复习[J]. 临床医学进展, 2025, 15(11): 757-762. https://doi.org/10.12677/acm.2025.15113157

1. 引言

Good综合征(Good’s Syndrome, GS)是罕见的成年发病的原发性免疫缺陷病,其临床特征包括胸腺瘤、低丙种球蛋白血症、CD4+/CD8+ T淋巴细胞比值下降(倒置)、低外周血B细胞和伴有CD4+ T淋巴细胞免疫缺陷[1]。由于其临床表现呈现出多样化特点,并且缺乏具有特异性的症状和体征,因此在临床诊断过程中很容易出现误诊或者漏诊的情况。免疫介导性内耳病(Immune-Mediated Inner Ear Diseases, IMIED)是指因免疫介导引发内耳损伤,进而造成听力下降的疾病。临床常见表现为双耳感音神经性聋,还可伴随耳鸣及前庭症状。其既是针对内耳这一特定器官、原发性的损伤,也能继发于部分自身免疫性疾病。系统性硬皮病(Systemic Scleroderma, SSc)是与遗传及免疫异常相关的全身性结缔组织病,表现为皮肤增厚、纤维化、血管洋葱皮样改变,最终导致血管缺血、皮肤硬化。本文报道1例以突发性耳聋及系统性硬皮病为主要临床表现的Good综合征,报道如下。

2. 临床资料

2.1. 病史及查体

患者男性,32岁,工人,因“右耳突发性耳鸣20天,右侧听力下降10天”于2021年4月12号就诊于本院。患者于2021年3月20号无明显诱因下出现右侧耳突发性耳鸣,未予特殊治疗,10天后出现右耳听力下降,就诊南京医科大学附属医院行听力检查提示:右耳全频极重度感音神经性听力丧失,左耳高频感音神经性听力下降,双鼓室图未见异常,予药物保守治疗后无明显缓解,2021-4-12就诊我院,拟“右侧突发性耳聋”收治入院。既往史:2019年纵膈肿瘤切除病史,病理示胸腺瘤。否认传染病史,否认吸烟史及饮酒史。家族中无类似疾病史。

入院查体:T 36.7℃,P 100次/min,R 20次/min,BP 118/67 mmHg,神清,精神可,浅表淋巴结无肿大,右耳听力丧失,左耳听力下降,双侧外耳道无异常分泌物,皮肤黏膜及巩膜无黄染,双肺呼吸音粗,未闻及干湿性啰音,心律齐,腹软,无压痛及反跳痛,神经系统查体阴性。

2.2. 辅助检查及诊断

血常规:白细胞3.80 × 109/L,中性粒细胞绝对值2.59 × 109/L,淋巴细胞0.75 × 109/L,血红蛋白143g/L,血小板226 × 109/L。肝功能:谷丙转氨酶202 U/L↑,谷草转氨酶174 U/L↑,总蛋白:51.5 g/L↑,球蛋白17.7 g/L↓,乳酸脱氢酶583 U/L↑,白蛋白:33.8 g/L↑。免疫球蛋白:免疫球蛋白(IgG) 4.19 g/L↓,免疫球蛋白(IgA) 0.43 g/L↓,免疫球蛋白(IgM) 0.08 g/L↓。血K-LC,λβ2微球蛋白30.00 mg/L↓,λ链601.00 mg/L↓,κ/λ 3.34↓,尿κ-LC、λ链36.00 mg/L,λ链3.00 mg/L,κ/λ 12.00。细胞免疫功能:总T淋巴细胞百分比93.50%↑,辅助/诱导T淋巴细胞百分比37.80%,抑制/细胞毒T淋巴细胞百分比52.50%个,B淋巴细胞百分比0.00%↓,NK细胞百分比6.30%↑,辅助/抑制T淋巴细胞比值0.72,总T淋巴细胞计数1123.00/ul↓,辅助/诱导T淋巴细胞计数454.00/ul,抑制/细胞毒T淋巴细胞计数630.00/ul,B淋巴细胞计数0.00/ul↓,NK细胞计数65.00/ul↓,CD4+ CD25+ CD127hi细胞/CD4+ T4.54%,CD4+ CD25+ CD127low细胞/CD4+ T3.44%↓,Treg细胞/CD4+ CD25+ CD127hi细胞0.76↓。

骨髓免疫分型:有核红细胞约占全部有核细胞的4.5%;淋巴细胞约为20.0%,其中T淋巴细胞约为18.0%,CD4/CD8比值为0.52;NK细胞约为1.30%,NKT细胞约为1.80%;未检出成熟B细胞;粒细胞约为63%、CD64指数弱阳性。骨髓细胞形态学:粒、红细胞减低。血涂片:中性杆状核粒细胞4%,中性分叶核粒细胞60%,淋巴细胞12%,嗜酸性粒细胞10%,单核细胞14%。染色体检查:46,XY [15]。血尿免疫固定电泳:未见明显异常单克隆条带。骨髓病理:此次造血细胞增生明显,容量小于43 vol%,脂肪组织增生,粒红比稍低、粒、红两系增生,幼红细胞比例稍高,巨核细胞未见明显异常;淋巴细胞比例减低;B淋巴细胞个别极少。遗传病全外显子基因测序分析报告:基因变异位点,AP3B1、CD79B、CTCI、CUBN、F5、FANCI、FGA、GFI1、HPS5、IFNGR1、IFNGR1、IL17F、NLRP12、NOD2、PSTPLP1、ROBO1、RUNX1、TBXA2R、TRAF3、MYO7A以上基因均存在变异。中耳乳突CT:双侧前庭导水管可疑扩大。头颅、内耳道MRI:未见明显异常。

2019-11-05 (纵隔肿物)胸腺瘤病理(AB型):肿块大小11.0 cm × 9.0 cm × 4.8 cm;免疫组化结果:CK14 (+),CK5/6 (部分+),CK20 (+),CD3 (+),TdT (+),CD1a (+),CK7 (−),EMA (−),Ki-67 (+) (见图1)。

外院听力检查提示:右耳全频极重度感音神经性听力丧失,左耳高频感音神经性听力下降(500 hz 30 db, 1 khz 50 db, 2 khz 65 db, 4 khz 75 db),双鼓室图未见异常。

Figure 1. Thymoma pathology

1. 胸腺瘤病理

2.3. 诊疗经过

患者听力短期内持续下降至耳聋,低免疫球蛋白血症、B淋巴细胞减少、既往纵隔肿瘤病理提示胸腺瘤,符合GS及IMIED主要特征。给予定期静脉输注丙种球蛋白替代、激素冲击等治疗,以提高免疫力。2023年于外院行输注间充质干细胞共4次,针对不同时期的感染情况,选用合适的抗感染药物。对于胸腺瘤,因已行手术切除,后续主要进行定期复查,观察有无复发及转移。2022.05患者出现双下肢皮肤对称性硬化伴有色素沉着,伴有关节轻度疼痛,遇冷有发白表现,考虑SSc,在治疗过程中,密切监测患者的各项指标,包括血常规、免疫球蛋白、感染指标等,根据病情调整治疗方案,后患者因感染于外院死亡。

3. 文献复习及讨论

Good综合征(Good’s Syndrome, GS)是一种罕见的与胸腺瘤相关的原发性免疫缺陷病,其特征为体液与细胞免疫的双重障碍[1]-[3],临床表现复杂多样,可伴发感染、自身免疫性疾病及造血系统异常。目前认为,其发病机制可能与胸腺微环境内T细胞发育异常及细胞因子失衡有关。部分研究提示,异常T细胞可通过释放抑制性细胞因子(如TGF-β)或与B细胞直接接触抑制其分化,导致低丙种球蛋白血症及免疫功能缺陷[4] [5]。本例患者虽于2019年行胸腺瘤切除术,但术后仍出现显著免疫缺陷,提示胸腺瘤相关免疫紊乱可能具有持续性或自主性,而非单纯由肿瘤压迫或刺激引起。

既往文献中,GS合并免疫介导性内耳病(Immune-Mediated Inner Ear Disease, IMIED)及系统性硬皮病(Systemic Sclerosis, SSc)者极为罕见。本例患者在低免疫球蛋白血症和B淋巴细胞缺失的免疫背景下出现感音神经性听力丧失,结合临床排除感染及其他继发性因素,诊断IMIED。IMIED是一类由异常免疫反应导致的可干预性感音神经性听力损失,研究认为其病理机制包括Th1/Th17免疫通路激活及自身抗内耳抗体形成,导致毛细胞和螺旋神经节损伤[6] [7]。本例中,GS所致的免疫调控失衡很可能触发了内耳自身免疫反应,是IMIED发生的重要机制。

患者随后出现双下肢对称性皮肤硬化、色素沉着及冷敏现象,符合SSc的表现。SSc是一种由免疫异常引发的全身性结缔组织病,其核心机制为血管损伤和成纤维细胞过度活化[8]。有研究指出,胸腺异常及T细胞亚群比例失衡可诱发Th17细胞增生及TGF-β信号增强,从而促进胶原沉积和纤维化形成[9] [10]。因此,本病例揭示出一个连续的免疫病理过程:胸腺瘤相关免疫失衡→体液免疫缺陷及自身免疫激活→内耳及皮肤受累,形成GS合并IMIED及SSc的临床谱系。这一发现为理解GS的系统性免疫异常提供了新的临床证据。

全外显子测序进一步揭示了本例患者的遗传易感背景。检测显示存在IFNGR1、TRAF3、NOD2、IL17F等多种免疫相关基因变异,其中IFNGR1和TRAF3参与干扰素-γ及NF-κB信号调控[11]-[13],NOD2调节固有免疫反应[14],IL17F则介导Th17炎症通路[15]。这些变异可能导致免疫信号传导障碍与慢性炎症持续存在,从而促进IMIED及SSc的发生。此外,患者的MYO7A基因变异与感音神经性耳聋相关,提示其听力损害可能具有遗传易感基础。这一分子层面的证据为GS患者免疫紊乱及并发多系统自身免疫损伤提供了新的病因学解释。

治疗方面,患者在常规免疫球蛋白替代及糖皮质激素冲击基础上,于外院接受间充质干细胞(Mesenchymal Stem Cell, MSC)静脉输注4次,主要目的是改善长期免疫功能低下及系统性硬化表现。该治疗采用脐带来源MSC制剂,每次输注剂量约为1 × 106/kg,间隔4周进行[16] [17]。治疗过程中患者耐受良好,无急性输注相关反应。MSC作为一种多向分化的干细胞,具有调节T细胞活化、抑制炎症细胞因子释放、促进组织修复及抗纤维化等作用,近年来被尝试用于系统性硬皮病、红斑狼疮等难治性自身免疫性疾病[18]-[20]

本例患者在MSC治疗后,感染控制情况较前改善,皮肤硬化进展趋缓,炎症指标(CRP、白细胞计数)有所下降,但听力未见恢复,且免疫球蛋白水平仍显著低下。治疗结束数月后,患者因继发肺部感染于外院死亡。该结果提示,在原发性免疫缺陷(如GS)背景下,MSC可能在短期内改善局部炎症和组织纤维化,但难以逆转全身免疫失衡。其潜在原因包括受者免疫微环境极度缺乏B细胞及抗体支持,MSC难以持续存活或发挥免疫重建作用。此外,部分文献提示,在免疫抑制状态下使用MSC可能增加感染风险[21] [22]。因此,MSC在GS合并SSc患者中的应用仍属探索性尝试,可作为辅助治疗选择,但应严格筛选适应证,联合免疫球蛋白替代与系统性抗感染措施,并进行动态免疫监测。未来需要更多病例积累及长期随访数据,以明确MSC在原发性免疫缺陷性疾病中的安全性与有效性。

综上所述,Good综合征的免疫缺陷不仅导致感染易感,还可能诱发免疫介导性器官损伤。本例GS合并IMIED及SSc的罕见病例提示,胸腺瘤术后患者如出现突发性听力下降、皮肤硬化等非特异性表现,应高度警惕潜在免疫缺陷,并尽早进行免疫学评估。本病例显示,基因易感性、免疫稳态破坏及治疗反应性不足共同决定了其复杂的临床演变。加强胸腺瘤患者术后免疫监测与多学科随访,有助于早期识别合并免疫介导性疾病、优化干预策略并改善预后。

伦理声明

本病例研究已获得患者及其家属的知情同意。

基金项目

安徽省转化医学研究院科研基金项目(编号:2022zhyx-C51);安徽省转化医学研究院科研基金项目(编号:2023zhyx-C86);安徽省卫生健康科研项目(编号:AHWJ2023BAa20085)。

NOTES

*通讯作者。

参考文献

[1] Kabir, A., Alizadehfar, R. and Tsoukas, C.M. (2022) Good’s Syndrome: Time to Move on from Reviewing the Past. Frontiers in Immunology, 12, Article ID: 815710. [Google Scholar] [CrossRef] [PubMed]
[2] Dong, J., Gao, W., Teng, G., Tian, Y. and Wang, H. (2017) Characteristics of Good’s Syndrome in China: A Systematic Review. Chinese Medical Journal, 130, 1604-1609. [Google Scholar] [CrossRef] [PubMed]
[3] Kelesidis, T. and Yang, O. (2010) Good’s Syndrome Remains a Mystery after 55 Years: A Systematic Review of the Scientific Evidence. Clinical Immunology, 135, 347-363. [Google Scholar] [CrossRef] [PubMed]
[4] Hanafusa, T., Umegaki, N., Yamaguchi, Y. and Katayama, I. (2010) Good’s Syndrome (Hypogammaglobulinemia with Thymoma) Presenting Intractable Opportunistic Infections and Hyperkeratotic Lichen Planus. The Journal of Dermatology, 37, 171-174. [Google Scholar] [CrossRef] [PubMed]
[5] Liu, K. and Cowlishaw, J.L. (2013) Beware of the Patient with Thymectomy: Good’s Syndrome in a Patient Presenting with Diarrhea. ACG Case Reports Journal, 1, 33-35. [Google Scholar] [CrossRef] [PubMed]
[6] Wang, M., Zhang, P., Li, Q. and Kong, C. (2025) Investigating the Process of Autoimmune Inner Ear Disease: Unveiling the Intricacies of Pathogenesis and Therapeutic Strategies. International Journal of Medical Sciences, 22, 179-187. [Google Scholar] [CrossRef] [PubMed]
[7] Miwa, T. and Okano, T. (2022) Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Frontiers in Neurology, 13, Article ID: 861992. [Google Scholar] [CrossRef] [PubMed]
[8] Jimenez, S.A., Mendoza, F.A. and Piera-Velazquez, S. (2025) A Review of Recent Studies on the Pathogenesis of Systemic Sclerosis: Focus on Fibrosis Pathways. Frontiers in Immunology, 16, Article ID: 1551911. [Google Scholar] [CrossRef] [PubMed]
[9] Engesser, J., Wang, H., Kapffer, S., Kaffke, A., Peters, A., Paust, H., et al. (2024) S1PR1 Mediates Th17 Cell Migration from the Thymus to the Skin in Health and Disease. Frontiers in Immunology, 15, Article ID: 1473130. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, S., Gang, X., Yang, S., Cui, M., Sun, L., Li, Z., et al. (2021) The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Frontiers in Immunology, 12, Article ID: 678355. [Google Scholar] [CrossRef] [PubMed]
[11] Stinson, W.A., Miner, C.A., Zhao, F.R., Lundgren, A.J., Poddar, S. and Miner, J.J. (2022) The IFN-γ Receptor Promotes Immune Dysregulation and Disease in STING Gain-of-Function Mice. JCI Insight, 7, e155250. [Google Scholar] [CrossRef] [PubMed]
[12] Lin, M., Ji, X., Lv, Y., Cui, D. and Xie, J. (2023) The Roles of TRAF3 in Immune Responses. Disease Markers, 2023, Article ID: 7787803. [Google Scholar] [CrossRef] [PubMed]
[13] Fochi, S., Bergamo, E., Serena, M., Mutascio, S., Journo, C., Mahieux, R., et al. (2019) TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Frontiers in Microbiology, 10, Article No. 1302. [Google Scholar] [CrossRef] [PubMed]
[14] Strober, W. and Watanabe, T. (2011) NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunology, 4, 484-495. [Google Scholar] [CrossRef] [PubMed]
[15] Huangfu, L., Li, R., Huang, Y. and Wang, S. (2023) The IL-17 Family in Diseases: From Bench to Bedside. Signal Transduction and Targeted Therapy, 8, Article No. 402. [Google Scholar] [CrossRef] [PubMed]
[16] Mebarki, M., Abadie, C., Larghero, J. and Cras, A. (2021) Human Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells: A Promising Candidate for the Development of Advanced Therapy Medicinal Products. Stem Cell Research & Therapy, 12, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
[17] Yao, X.Y., Xie, L., Cai, Y., et al. (2022) Human Umbilical Cord Mesenchymal Stem Cells to Treat Neuromyelitis Optica Spectrum Disorder (hUC-MSC-NMOSD): A Study Protocol for a Prospective, Multicenter, Randomized, Placebo-Controlled Clinical Trial. Frontiers in Neurology, 13, Article ID: 860083.
[18] Han, X., Liao, R., Li, X., Zhang, C., Huo, S., Qin, L., et al. (2025) Mesenchymal Stem Cells in Treating Human Diseases: Molecular Mechanisms and Clinical Studies. Signal Transduction and Targeted Therapy, 10, Article No. 262. [Google Scholar] [CrossRef] [PubMed]
[19] Zaripova, L.N., Midgley, A., Christmas, S.E., Beresford, M.W., Pain, C., Baildam, E.M., et al. (2023) Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. International Journal of Molecular Sciences, 24, Article No. 16040. [Google Scholar] [CrossRef] [PubMed]
[20] Chen, B., Chen, Z., He, M., Zhang, L., Yang, L. and Wei, L. (2024) Recent Advances in the Role of Mesenchymal Stem Cells as Modulators in Autoinflammatory Diseases. Frontiers in Immunology, 15, Article ID: 1525380. [Google Scholar] [CrossRef] [PubMed]
[21] Gao, Y., Ji, Z., Zhao, J. and Gu, J. (2025) Therapeutic Potential of Mesenchymal Stem Cells for Fungal Infections: Mechanisms, Applications, and Challenges. Frontiers in Microbiology, 16, Article ID: 1554917. [Google Scholar] [CrossRef] [PubMed]
[22] Baranovskii, D.S., Klabukov, I.D., Arguchinskaya, N.V., Yakimova, A.O., Kisel, A.A., Yatsenko, E.M., et al. (2022) Adverse Events, Side Effects and Complications in Mesenchymal Stromal Cell-Based Therapies. Stem Cell Investigation, 9, 7. [Google Scholar] [CrossRef] [PubMed]