|
[1]
|
Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries. Cell, 85, 159-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Puranik, S., Sahu, P.P., Srivastava, P.S. and Prasad, M. (2012) NAC Proteins: Regulation and Role in Stress Tolerance. Trends in Plant Science, 17, 369-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tran, L.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., et al. (2004) Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsivecis-Element in Theearly Responsive to Dehydration Stress 1promoter[w]. The Plant Cell, 16, 2481-2498. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., et al. (2014) Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton. PLOS ONE, 9, e86895. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, X., Cheng, Z., Zhao, K., et al. (2019) Improved Salt Tolerance in Transgenic Tobacco by Over-Expression of Poplar NAC13 Gene. PeerJ Inc.
|
|
[6]
|
Mazarei, M., Coffey, N., Shipp, S.E.A., Stewart, C.N. and Hewezi, T. (2025) Increased Root Growth and Seed Yield in Transgenic Soybean Overexpressing NAC Genes Gmnac19 and Gmgrab1. Plant Cell Reports, 44, Article No. 154. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pilati, S., Bagagli, G., Sonego, P., Moretto, M., Brazzale, D., Castorina, G., et al. (2017) Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Frontiers in Plant Science, 8, Article ID: 1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zheng, X., Chen, B., Lu, G. and Han, B. (2009) Overexpression of a NAC Transcription Factor Enhances Rice Drought and Salt Tolerance. Biochemical and Biophysical Research Communications, 379, 985-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kato, H., Motomura, T., Komeda, Y., Saito, T. and Kato, A. (2010) Overexpression of the NAC Transcription Factor Family Gene ANAC036 Results in a Dwarf Phenotype in Arabidopsis Thaliana. Journal of Plant Physiology, 167, 571-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, Q., Sun, C., Han, J., Li, L., Wang, K., Wang, Y., et al. (2020) Identification, Characterization and Functional Differentiation of the NAC Gene Family and Its Roles in Response to Cold Stress in Ginseng, Panax Ginseng C.A. Meyer. PLOS ONE, 15, e0234423. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, Y., Qin, J., Wang, Z., Lin, H., Ye, S., Wei, J., et al. (2025) Genome-Wide Identification of 109 NAC Genes and Dynamic Expression Profiles under Cold Stress in Madhuca Longifolia. International Journal of Molecular Sciences, 26, Article 4713. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yang, B., Zhang, C., Yang, J., An, Z. and Liang, M. (2024) Genome-Wide Investigation of NAC Transcription Factors and Their Response to Cold Stress in Rubber Tree (Hevea Brasiliensis). Journal of Plant Growth Regulation, 43, 4085-4098. [Google Scholar] [CrossRef]
|
|
[13]
|
Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q. and Zhou, G. (2010) Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus Trichocarpa. BMC Plant Biology, 10, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme‐Takagi, M., et al. (2004) A Dehydration‐Induced NAC Protein, RD26, Is Involved in a Novel Aba‐Dependent Stress‐Signaling Pathway. The Plant Journal, 39, 863-876. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Meng, D., Yu, X., Ma, L., Hu, J., Liang, Y., Liu, X., et al. (2017) Transcriptomic Response of Chinese Yew (Taxus Chinensis) to Cold Stress. Frontiers in Plant Science, 8, Article ID: 468. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Peng, Z., Lu, Y., Li, L., Zhao, Q., Feng, Q., Gao, Z., et al. (2013) The Draft Genome of the Fast-Growing Non-Timber Forest Species Moso Bamboo (Phyllostachys Heterocycla). Nature Genetics, 45, 456-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, H., Li, P. and Yang, C. (2019) NAC-Like Gene Gibberellin Suppressing FACTOR Regulates the Gibberellin Metabolic Pathway in Response to Cold and Drought Stresses in Arabidopsis. Scientific Reports, 9, Article No. 19226. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Guan, Q., Yue, X., Zeng, H. and Zhu, J. (2014) The Protein Phosphatase RCF2 and Its Interacting Partner NAC019 Are Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis. Plant Cell, 26, 438-453.
|
|
[19]
|
Sun, L., Huang, L., Hong, Y., Zhang, H., Song, F. and Li, D. (2015) Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses. International Journal of Molecular Sciences, 16, 4306-4326. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
杨逢建, 庞海河, 张学科, 等. 南方红豆杉枝叶中药用抗癌活性物质含量[J]. 应用生态学报, 2008, 19(4): 911-914.
|
|
[21]
|
Basyuni, M., Sulistiyono, N., Wati, R., Sumardi, Oku, H., Baba, S., et al. (2018) Predicted Cycloartenol Synthase Protein from Kandelia obovata and Rhizophora stylosa Using Online Software of Phyre2 and Swiss-Model. Journal of Physics: Conference Series, 978, Article 012077. [Google Scholar] [CrossRef]
|
|
[22]
|
章照停, 杨梦璇, 徐方正, 等. 烟草NtJAR1家族基因的鉴定及生物信息学分析[J]. 2025(6): 8-15.
|
|
[23]
|
康国章, 孙谷畴, 王正询. 植物冷响应基因调控和冷信号转导[J]. 植物生理学通讯, 2003, 39(6): 711-714.
|
|
[24]
|
Dorjee, T., Cui, Y., Zhang, Y., Liu, Q., Li, X., Sumbur, B., et al. (2024) Characterization of NAC Gene Family in Ammopiptanthus Mongolicus and Functional Analysis of Amnac24, an Osmotic and Cold-Stress-Induced NAC Gene. Biomolecules, 14, Article 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, H., Zhou, H., Ye, H., Li, M., Ma, J., Xi, R., et al. (2025) Integrated Multi‐Omics Analyses Provide New Insights into Genomic Variation Landscape and Regulatory Network Candidate Genes Associated with Walnut Endocarp. The Plant Journal, 122, e70113. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
王萌, 任丽彤, 凌悦铭, 等. 小黑麦NAC转录因子基因TwNAC01克隆及生物信息学分析[J]. 石河子大学学报(自然科学版), 2020, 38(3): 291-298.
|
|
[27]
|
Fendrych, M., Van Hautegem, T., Van Durme, M., Olvera-Carrillo, Y., Huysmans, M., Karimi, M., et al. (2014) Programmed Cell Death Controlled by ANAC033/SOMBRERO Determines Root Cap Organ Size in Arabidopsis. Current Biology, 24, 931-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yang, Z., Mei, W., Wang, H., Zeng, J., Dai, H. and Ding, X. (2023) Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of Asnac019 and Asnac098 in Aquilaria Sinensis. International Journal of Molecular Sciences, 24, Article 17384. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xu, Z., Gongbuzhaxi, Wang, C., Xue, F., Zhang, H. and Ji, W. (2015) Wheat NAC Transcription Factor Tanac29 Is Involved in Response to Salt Stress. Plant Physiology and Biochemistry, 96, 356-363. [Google Scholar] [CrossRef] [PubMed]
|