|
[1]
|
Zhao, K., Yuan, X., Xie, Z., Xiang, Y., Huang, G. and Feng, L. (2023) SPA-Net: A Deep Learning Approach Enhanced Using a Span-Partial Structure and Attention Mechanism for Image Copy-Move Forgery Detection. Sensors, 23, Article No. 6430. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hussain, S., Mubeen, I., Ullah, N., Shah, S.S.U.D., Khan, B.A., Zahoor, M., et al. (2022) Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. BioMed Research International, 2022, Article ID: 5164970. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Albakri, A.A., Alzahrani, M.M. and Alghamdi, S.H. (2024) Medical Imaging in Pregnancy: Safety, Appropriate Utilization, and Alternative Modalities for Imaging Pregnant Patients. Cureus, 16, e54346. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Rong, C., Li, Z., Li, R. and Wang, Y. (2024) Spatial‐Aware Contrastive Learning for Cross‐Domain Medical Image Registration. Medical Physics, 51, 8141-8150. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Supriyadi, M.R., Samah, A.B.A., Muliadi, J., Awang, R.A.R., Ismail, N.H., Majid, H.A., et al. (2025) A Systematic Literature Review: Exploring the Challenges of Ensemble Model for Medical Imaging. BMC Medical Imaging, 25, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jia, H., Jiao, Q. and Liu, M. (2024) Special Issue: Artificial Intelligence in Advanced Medical Imaging. Bioengineering, 11, Article No. 1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Estaji, M., Hosseini, B., Bozorg-Qomi, S. and Ebrahimi, B. (2023) Pathophysiology and Diagnosis of Diabetic Retinopathy: A Narrative Review. Journal of Investigative Medicine, 71, 265-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gao, W., Wang, C., Li, Q., Zhang, X., Yuan, J., Li, D., et al. (2022) Application of Medical Imaging Methods and Artificial Intelligence in Tissue Engineering and Organ-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 985692. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ghaderi, H. and April, A. (2023) Assessing Available Open-Source PACS Options. Journal of Digital Imaging, 36, 2323-2328. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, Q., Wang, C., Zhou, X. and Qin, Z. (2022) Image Copy-Move Forgery Detection and Localization Based on Super-BPD Segmentation and DCNN. Scientific Reports, 12, Article No. 14987. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Radhakrishnan, A., Sawant, T.N., Raghuram, C., Railis, D.J. and Singh, H. (2025) Exploring Machine Learning Approaches for Efficient Image Forgery Detection. Journal of Forensic Sciences, 70, 1375-1391. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Amiri, E., Mosallanejad, A. and Sheikhahmadi, A. (2024) CFDMI-SEC: An Optimal Model for Copy-Move Forgery Detection of Medical Image Using SIFT, EOM and CHM. PLOS ONE, 19, e0303332. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xue, Z., Jiang, X., Liu, Q. and Wei, Z. (2023) Global-Local Facial Fusion Based GAN Generated Fake Face Detection. Sensors, 23, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, J., Huang, X., Liu, Y., Han, Y. and Xiang, Z. (2024) Gan-Based Medical Image Small Region Forgery Detection via a Two-Stage Cascade Framework. PLOS ONE, 19, e0290303. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lu, W., Liu, L., Zhang, B., Luo, J., Zhao, X., Zhou, Y., et al. (2024) Detection of Deepfake Videos Using Long-Distance Attention. IEEE Transactions on Neural Networks and Learning Systems, 35, 9366-9379. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Singh, U., Rathor, S. and Kumar, M. (2024) Advanced Framework for Multilevel Detection of Digital Video Forgeries. Annals of the New York Academy of Sciences, 1543, 180-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Peng, C., Sun, F., Liu, D., Wang, N. and Gao, X. (2024) Local Artifacts Amplification for Deepfakes Augmentation. Neural Networks, 180, Article ID: 106692. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, H., Li, X., Xu, B. and Liu, H. (2024) Combined Spatial and Frequency Dual Stream Network for Face Forgery Detection. PeerJ Computer Science, 10, e1959. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bao, Q., Wang, Y., Hua, H., Dong, K. and Lee, F. (2024) An Anti-Forensics Video Forgery Detection Method Based on Noise Transfer Matrix Analysis. Sensors, 24, Article No. 5341. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Amiri, E., Mosallanejad, A. and Sheikhahmadi, A. (2024) The Optimal Model for Copy-Move Forgery Detection in Medical Images. Journal of Medical Signals & Sensors, 14, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sharma, P., Kumar, M. and Sharma, H. (2022) Comprehensive Analyses of Image Forgery Detection Methods from Traditional to Deep Learning Approaches: An Evaluation. Multimedia Tools and Applications, 82, 18117-18150. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, J., Xie, A., Mai, T. and Chen, Y. (2025) Dfst-unet: Dual-Domain Fusion Swin Transformer U-Net for Image Forgery Localization. Entropy, 27, Article No. 535. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Akram, A., Jaffar, M.A., Rashid, J., Mahmood, K. and Ghani, A. (2025) Advanced Digital Image Forensics: A Hybrid Framework for Copy‐Move Forgery Detection in Multimedia Security. Journal of Forensic Sciences, 70, 1801-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shan, W., Yue, J., Ding, S.X. and Qiu, J. (2025) MSCSCC-Net: Multi-Scale Contextual Spatial-Channel Correlation Network for Forgery Detection and Localization of JPEG-Compressed Image. Scientific Reports, 15, Article No. 12509. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lin, Y.K. and Yen, T.Y. (2023) A Meta-Learning Approach for Few-Shot Face Forgery Segmentation and Classification. Sensors, 23, Article No. 3647. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hua, Y., Shi, R., Wang, P. and Ge, S. (2023) Learning Patch-Channel Correspondence for Interpretable Face Forgery Detection. IEEE Transactions on Image Processing, 32, 1668-1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, H., Hu, C., Min, S., Sui, H. and Zhou, G. (2024) TSFF-Net: A Deep Fake Video Detection Model Based on Two-Stream Feature Domain Fusion. PLOS ONE, 19, e0311366. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Joshi, D., Kashyap, A. and Arora, P. (2025) Optimized Detection and Localization of Copy‐Rotate-Move Forgeries Using Biogeography‐Based Optimization Algorithm. Journal of Forensic Sciences, 70, 1392-1413. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nagm, A.M., Moussa, M.M., Shoitan, R., Ali, A., Mashhour, M., Salama, A.S., et al. (2024) Detecting Image Manipulation with ELA-CNN Integration: A Powerful Framework for Authenticity Verification. PeerJ Computer Science, 10, e2205. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Alabrah, A. (2025) SFTA-Net: A Self-Supervised Approach to Detect Copy-Move and Splicing Forgery to Leverage Triplet Loss, Auxiliary Loss, and Spatial Attention. PeerJ Computer Science, 11, e2803. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Atallah, A.M., Mahmoud, I.I. and Ali, H.S. (2023) Robust Dense‐Field Based Copy‐Move Forgery Localization Using Generic Radial Harmonic Fourier Moment Invariants. Journal of Forensic Sciences, 69, 139-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mareen, H., De Neve, L., Lambert, P. and Van Wallendael, G. (2023) Harmonizing Image Forgery Detection & Localization: Fusion of Complementary Approaches. Journal of Imaging, 10, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kong, C., Luo, A., Wang, S., Li, H., Rocha, A. and Kot, A.C. (2025) Pixel-Inconsistency Modeling for Image Manipulation Localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47, 4455-4472. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ahmad, I. and Alqurashi, F. (2024) Early Cancer Detection Using Deep Learning and Medical Imaging: A Survey. Critical Reviews in Oncology/Hematology, 204, Article ID: 104528. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cai, Y., Zhang, W., Chen, H. and Cheng, K. (2025) Medianomaly: A Comparative Study of Anomaly Detection in Medical Images. Medical Image Analysis, 102, Article ID: 103500. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dong, J., Wang, W. and Tan, T. (2013). CASIA Image Tampering Detection Evaluation Database. 2013 IEEE China Summit and International Conference on Signal and Information Processing, Beijing, 6-10 July 2013, 422-426.[CrossRef]
|
|
[37]
|
Tralic, D., Zupancic, I., Grgic, S. and Grgic, M. (2013) CoMoFoD-New Database for Copy-Move Forgery Detection. Proceedings of the Proceedings ELMAR-2013, Zadar, 25-27 September 2013, 49-54.
|
|
[38]
|
Silva, E., Carvalho, T., Ferreira, A. and Rocha, A. (2015) Going Deeper into Copy-Move Forgery Detection: Exploring Image Telltales via Multi-Scale Analysis and Voting Processes. Journal of Visual Communication and Image Representation, 29, 16-32. [Google Scholar] [CrossRef]
|
|
[39]
|
Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A. and Serra, G. (2011) A Sift-Based Forensic Method for Copy-Move Attack Detection and Transformation Recovery. IEEE Transactions on Information Forensics and Security, 6, 1099-1110. [Google Scholar] [CrossRef]
|
|
[40]
|
Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Del Tongo, L. and Serra, G. (2013) Copy-Move Forgery Detection and Localization by Means of Robust Clustering with J-Linkage. Signal Processing: Image Communication, 28, 659-669. [Google Scholar] [CrossRef]
|
|
[41]
|
Cozzolino, D., Poggi, G. and Verdoliva, L. (2015) Efficient Dense-Field Copy-Move Forgery Detection. IEEE Transactions on Information Forensics and Security, 10, 2284-2297. [Google Scholar] [CrossRef]
|
|
[42]
|
Wen, B., Zhu, Y., Subramanian, R., Ng, T., Shen, X. and Winkler, S. (2016). COVERAGE—A Novel Database for Copy-Move Forgery Detection. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, 25-28 September 2016, 161-165.[CrossRef]
|
|
[43]
|
RSNA Pneumonia Detection Challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
|
|
[44]
|
Nguyen, H.Q., Lam, K., Le, L.T., Pham, H.H., Tran, D.Q., Nguyen, D.B., et al. (2022) Vindr-cxr: An Open Dataset of Chest X-Rays with Radiologist’s Annotations. Scientific Data, 9, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Bejnordi, B.E., Veta, M., Van Diest, et al. (2017) Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA, 318, 2199-2210.
|
|
[46]
|
Baid, U., Ghodasara, S., Mohan, S., et al. (2021) The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification.
|
|
[47]
|
Li, L., Zhang, K., Lu, J. and Zhang, S. (2025) Multi-Label Classification for Image Tamper Detection Based on Swin-T Segmentation Network in the Spatial Domain. PeerJ Computer Science, 11, e2775. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Taj, R., Tao, F., Kanwal, S., Almogren, A., Altameem, A. and Ur Rehman, A. (2024) A Reversible-Zero Watermarking Scheme for Medical Images. Scientific Reports, 14, Article No. 17320. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Peng, C., Chen, T., Liu, D., Guo, H., Wang, N. and Gao, X. (2025) Revisiting Face Forgery Detection Towards Generalization. Neural Networks, 187, Article ID: 107310. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Martin-Rodriguez, F., Garcia-Mojon, R. and Fernandez-Barciela, M. (2023) Detection of AI-Created Images Using Pixel-Wise Feature Extraction and Convolutional Neural Networks. Sensors, 23, Article No. 9037. [Google Scholar] [CrossRef] [PubMed]
|