|
[1]
|
刘哲. 不同柑橘果实可食部矿质元素分析及膳食营养评价[D]: [硕士学位论文]. 重庆: 西南大学, 2018.
|
|
[2]
|
陈飞. 丹棱县柑橘商品化处理的问题及对策研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2023.
|
|
[3]
|
Wang, X., Wu, C. and Hirafuji, M. (2016) Visible Light Image-Based Method for Sugar Content Classification of Citrus. PLOS ONE, 11, e0147419. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Song, S.Y., Lee, Y.K. and Kim, I.J. (2016) Sugar and Acid Content of Citrus Prediction Modeling Using FT-IR Fingerprinting in Combination with Multivariate Statistical Analysis. Food Chemistry, 190, 1027-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
段超, 刘群, 王倩, 等. 新型农抗N2对采后柑橘的保鲜效果研究[J]. 生物灾害科学, 2024, 47(3): 415-422.
|
|
[6]
|
杨建军, 杨亚楠, 侯萍萍, 等. 柑橘中膳食纤维的功能及提取方法研究[J]. 轻工科技, 2025(1): 55-57.
|
|
[7]
|
束俊霞, 周倩, 程丽萍, 等. 折光法对柑橘糖度的快速检测研究[J]. 食品科学, 2018, 45(4): 216-425.
|
|
[8]
|
王丹丹, 谢跳跳, 宋烨, 等. 基于斐林试剂法的温州蜜柑糖度近红外检测模型优化[J]. 食品与机械, 2022, 38(5): 63-68.
|
|
[9]
|
刘燕德, 李雄, 孙旭东, 等. 近红外光谱技术在水果内部品质无损检测中的研究进展[J]. 食品科学, 2020, 10(3): 6-65.
|
|
[10]
|
Méndez, F.V., Pinto, R.Z. and de Carvalho, M.A. (2020) Non-Invasive Quantification of Vitamin C, Citric Acid, and Sugar in ‘Valência’ Oranges Using Infrared Spectroscopies. Journal of the Science of Food and Agriculture, 100, 4455-4463.
|
|
[11]
|
高梁喨. 基于高光谱技术的柑橘品质检测研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2023.
|
|
[12]
|
范丛山. 基于数字锁相技术的近红外水果糖度检测装置设计[J]. 电子器件, 2018, 41(3): 791-794.
|
|
[13]
|
樊书祥, 王庆艳, 杨雨森, 李江波, 张驰, 田喜, 黄文倩. 水果糖度可见-近红外光谱手持式检测装置开发与试验[J]. 光谱学与光谱分析, 2021, 41(10): 3058-3063.
|
|
[14]
|
胡皆汉, 郑学仿. 实用红外光谱学[M]. 北京: 科学出版社, 2011.
|
|
[15]
|
李园园, 张淑娟, 王凤花, 等. 基于中红外光谱的苹果糖度定量分析模型优化研究[J]. 农业机械学报, 2018, 49(5): 342-348.
|
|
[16]
|
Sun, J., Lu, X., Li, M., Liu, Y. and He, Y. (2020) Rapid Determination of Fructose, Glucose, and Sucrose in Apple Juices Using ATR-FTIR Spectroscopy and Multivariate Analysis. Journal of Food Science, 85, 1435-1442. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
陈香维, 杨公明. 猕猴桃糖度傅里叶变换近红外光谱无损检测[J]. 西北农业学报, 2011, 20(7): 143-148.
|
|
[18]
|
Li, X., Wei, X., Zhang, L., et al. (2023) Rapid Determination of Sugar Content in Citrus Fruits Using Mid-Infrared Spectroscopy Coupled with Machine Learning Algorithms. Food Chemistry, 405, Article 134824.
|
|
[19]
|
Sánchez, M.T., Pérez-Marín, D., Guerrero, J.E., et al. (2020) Online Analysis of Intact Mango Fruit by Mid-Infrared Spectroscopy: Comparison of Two Sampling Methods for Sugar Content Determination. Postharvest Biology and Technology, 163, Article 111141.
|
|
[20]
|
Wang, J., Wang, J., Chen, Z., et al. (2022) Development of a Portable Mid-Infrared Spectrometer for Rapid Assessment of Sugar Content in Apples. Computers and Electronics in Agriculture, 194, Article 106761.
|
|
[21]
|
Lu, B., Dao, P., Liu, J., He, Y. and Shang, J. (2020) Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sensing, 12, Article 2659. [Google Scholar] [CrossRef]
|
|
[22]
|
Shafiee, A., Safavi, S.A., Hosseini, S.A., et al. (2023) Deep Learning in Hyperspectral Image Reconstruction from Single RGB Images—A Review. Computers and Electronics in Agriculture, 204, Article 107525.
|
|
[23]
|
Li, J., Huang, W., Tian, X., et al. (2021) Visualization of Soluble Solids Content Distribution In Kiwifruit Using Hyperspectral Imaging. Computers and Electronics in Agriculture, 187, Article 106293.
|
|
[24]
|
刘燕德, 孙通, 张俊宁, 等. 高光谱成像的猕猴桃糖度无损检测方法[J]. 光谱学与光谱分析, 2021, 41(7): 2188-2194.
|
|
[25]
|
陈姿伊, 李晨曦, 张浩然, 张恒, 刘书朋. 基于可见近红外光谱的柑橘糖度无损检测[J]. 工业控制计算机, 2025, 38(7): 30-32.
|
|
[26]
|
曾贤明, 韩龙波, 文韬, 代兴勇. 近红外光谱检测柑橘糖度光照角度可调装置设计与试验[J]. 食品与机械, 2023, 39(8): 76-83.
|
|
[27]
|
文韬, 代兴勇, 李浪, 刘豪. 基于机器视觉与光谱融合的柑橘品质无损检测分级系统设计与试验[J]. 江苏大学学报(自然科学版), 2024, 45(1): 38-45.
|
|
[28]
|
Sun, J., Lan, W., Shao, Y., et al. (2020) Non-Destructive Determination of Soluble Solids Content in Various Citrus Fruits Using Near-Infrared Spectroscopy and Multivariate Analysis. Journal of the Science of Food and Agriculture, 100, 4445-4453.
|
|
[29]
|
Zhang, B., Dai, D., Huang, J., et al. (2022) Online Detection of Soluble Solids Content of Citrus Fruits Using a Near-Infrared Spectroscopy System Optimized for Mass Grading. Postharvest Biology and Technology, 185, Article 111781.
|
|
[30]
|
Ncama, K., Tesfay, S.Z., Opara, U.L., Fawole, O.A. and Magwaza, L.S. (2018) Non-Destructive Prediction of ‘Valencia’ Orange (Citrus sinensis) and ‘Star Ruby’ Grapefruit (Citrus paradisi Macfad) Internal Quality Parameters Using Vis/NIRS. Acta Horticulturae, 1194, 1119-1126. [Google Scholar] [CrossRef]
|
|
[31]
|
Huang, W., Liu, Y., Wang, Y., Li, J. and He, Y. (2023) Online Detection of Soluble Solids Content for Peach (Amygdalus persica L.) by Portable Near-Infrared Spectroscopy System Coupled with Machine Learning. Computers and Electronics in Agriculture, 212, Article 108189.
|
|
[32]
|
廖志强, 何崇训基于近红外光谱技术的苹果糖度预测及分级研究[J]. 信息技术与信息化, 2023(10): 93-98.
|
|
[33]
|
李明, 王鹏, 姚鳗鲡. 近红外光谱结合Stacking集成学习的猕猴桃糖度检测研究[J]. 食品科学, 2024, 14(5): 321-330.
|
|
[34]
|
文韬, 代兴勇, 李浪, 等. 基于中红外透射光谱的脐橙糖度无损检测模型优化[J]. 江苏大学学报(自然科学版), 2024, 45(1): 38-45.
|
|
[35]
|
黄聪, 马琳, 蔡杰, 等. 中红外光谱法测定沃柑可溶性固形物含量的品种适应性研究[J]. 中国南方果树, 2022, 51(3): 45-49.
|
|
[36]
|
Ferreira, M.F., Pimentel, M.F., Ribeiro, W.Q., da Silva, R.M. and da Silva, C.E. (2020) Mid-Infrared Spectroscopy Combined with PLS for Sugar Content Prediction in Intact “Valência” Oranges. Journal of Agricultural and Food Chemistry, 68, 12052-12058.
|
|
[37]
|
王琳, 陈亚光, 李鹏, 等. 衰减全反射中红外光谱快速测定蜜橘可溶性固形物含量[J]. 光谱学与光谱分析, 2023, 43(5): 1489-1494.
|
|
[38]
|
Hu, Y., He, Y., Dong, J. and Li, X. (2023) Rapid and Non-Destructive Determination of Soluble Solids Content of Kiwifruit by Mid-Infrared Spectroscopy Coupled with an Attenuated Total Reflection Accessory. Infrared Physics & Technology, 133, Article 104689.
|
|
[39]
|
Wang, J., Wang, J., Chen, Z. and Han, D. (2022) Rapid and Non-Destructive Evaluation of Soluble Solids Content in Apples Using a Portable Mid-Infrared Spectrometer and Machine Learning. Computers and Electronics in Agriculture, 200, Article 107188.
|
|
[40]
|
李华, 等. 基于中红外光谱的水蜜桃可溶性固形物含量快速无损检测研究[J]. 光谱学与光谱分析, 2023, 43(6): 1872-1877.
|
|
[41]
|
Zhang, H., Zhan, B., Pan, F. and Luo, W. (2020) Determination of Soluble Solids Content in Oranges Using Visible and near Infrared Full Transmittance Hyperspectral Imaging with Comparative Analysis of Models. Postharvest Biology and Technology, 163, Article 111148. [Google Scholar] [CrossRef]
|
|
[42]
|
许丽佳, 陈铭, 王玉超, 陈晓燕, 雷小龙. 高光谱成像的猕猴桃糖度无损检测方法[J]. 光谱学与光谱分析, 2021, 41(7): 2188-2195.
|
|
[43]
|
班兆军, 高喧翔, 马肄恒, 张爽, 方晨羽, 王俊博, 朱艺. 基于高光谱和深度学习的苹果品质无损检测方法[J]. 江苏农业学报, 2024, 40(8): 1446-1454
|
|
[44]
|
Weng, S., Yu, S., Guo, B.Q., Tang, P. and Liang, D. (2020) Non-Destructive Detection of Strawberry Quality Using Multi-Features of Hyperspectral Imaging and Multivariate Methods. Sensors, 20, Article 3074. [Google Scholar] [CrossRef] [PubMed]
|