|
[1]
|
Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Harada, M., Takahashi, N., Azhary, J.M., Kunitomi, C., Fujii, T. and Osuga, Y. (2021) Endoplasmic Reticulum Stress: A Key Regulator of the Follicular Microenvironment in the Ovary. Molecular Human Reproduction, 27, gaaa088. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Koike, H., Harada, M., Kusamoto, A., Xu, Z., Tanaka, T., Sakaguchi, N., et al. (2023) Roles of Endoplasmic Reticulum Stress in the Pathophysiology of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article 1124405. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schwarz, D.S. and Blower, M.D. (2015) The Endoplasmic Reticulum: Structure, Function and Response to Cellular Signaling. Cellular and Molecular Life Sciences, 73, 79-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
王影, 魏兆莲. 内质网应激的发生及其与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2012, 31(2): 123-125.
|
|
[6]
|
Saaoud, F., Lu, Y., Xu, K., Shao, Y., Praticò, D., Vazquez-Padron, R.I., et al. (2024) Protein-Rich Foods, Sea Foods, and Gut Microbiota Amplify Immune Responses in Chronic Diseases and Cancers—Targeting PERK as a Novel Therapeutic Strategy for Chronic Inflammatory Diseases, Neurodegenerative Disorders, and Cancer. Pharmacology & Therapeutics, 255, Article ID: 108604. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhu, B., Chen, Y., Xu, F., Shen, X., Chen, X., Lv, J., et al. (2021) Androgens Impair β-Cell Function in a Mouse Model of Polycystic Ovary Syndrome by Activating Endoplasmic Reticulum Stress. Endocrine Connections, 10, 265-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
杨星, 潘歆怡, 郭燕娴, 等. 肥胖PCOS患者子宫内膜内质网应激反应[J]. 中国病理生理杂志, 2021, 37(6): 1107-1112.
|
|
[9]
|
Zhu, H., Li, X., Qiao, M., Sun, X. and Li, G. (2023) Resveratrol Alleviates Inflammation and ER Stress through SIRT1/NRF2 to Delay Ovarian Aging in a Short-Lived Fish. The Journals of Gerontology: Series A, 78, 596-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Takahashi, N., Harada, M., Hirota, Y., Nose, E., Azhary, J.M., Koike, H., et al. (2017) Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis. Scientific Reports, 7, Article No. 10824. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jin, J., Ma, Y., Tong, X., Yang, W., Dai, Y., Pan, Y., et al. (2020) Metformin Inhibits Testosterone-Induced Endoplasmic Reticulum Stress in Ovarian Granulosa Cells via Inactivation of p38 MAPK. Human Reproduction, 35, 1145-1158. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Özcan, U., Yilmaz, E., Özcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O., et al. (2006) Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes. Science, 313, 1137-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hetz, C., Chevet, E. and Harding, H.P. (2013) Targeting the Unfolded Protein Response in Disease. Nature Reviews Drug Discovery, 12, 703-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Azhary, J.M.K., Harada, M., Takahashi, N., Nose, E., Kunitomi, C., Koike, H., et al. (2018) Endoplasmic Reticulum Stress Activated by Androgen Enhances Apoptosis of Granulosa Cells via Induction of Death Receptor 5 in PCOS. Endocrinology, 160, 119-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Azhary, J.M.K., Harada, M., Kunitomi, C., Kusamoto, A., Takahashi, N., Nose, E., et al. (2020) Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS. Endocrinology, 161, bqaa015. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, H.L., Tian, M.M., Jiang, J.X., et al. (2021) Does Endoplasmic Reticulum Stress Stimulate the Apoptosis of Granulosa Cells in Polycystic Ovary Syndrome? Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 72, 785-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cui, Y., Ma, Z., Zhao, H., Chen, X., Zhang, Y., Guo, H., et al. (2014) Activation of eIF2α Signaling Cascade Is Associated with Testosterone-Induced Cell Apoptosis in INS-1 Cells. Hormone and Metabolic Research, 46, 574-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wu, L.L., Russell, D.L., Wong, S.L., Chen, M., Tsai, T., St John, J.C., et al. (2015) Mitochondrial Dysfunction in Oocytes of Obese Mothers: Transmission to Offspring and Reversal by Pharmacological Endoplasmic Reticulum Stress Inhibitors. Development, 142, 681-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Y., Weng, Y., Wang, D., Wang, R., Wang, L., Zhou, J., et al. (2021) Curcumin in Combination with Aerobic Exercise Improves Follicular Dysfunction via Inhibition of the Hyperandrogen‐Induced IRE1α/XBP1 Endoplasmic Reticulum Stress Pathway in PCOS‐like Rats. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 7382900. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, Y., Wang, L., Weng, Y., Wang, D., Wang, R., Wang, H., et al. (2022) Curcumin Inhibits Hyperandrogen‐Induced IRE1α‐XBP1 Pathway Activation by Activating the PI3K/AKT Signaling in Ovarian Granulosa Cells of PCOS Model Rats. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2113293. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Manna, S.K., Mukhopadhyay, A. and Aggarwal, B.B. (2000) Resveratrol Suppresses TNF-Induced Activation of Nuclear Transcription Factors NF-κB, Activator Protein-1, and Apoptosis: Potential Role of Reactive Oxygen Intermediates and Lipid Peroxidation. The Journal of Immunology, 164, 6509-6519. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Banaszewska, B., Wrotyńska-Barczyńska, J., Spaczynski, R.Z., Pawelczyk, L. and Duleba, A.J. (2016) Effects of Resveratrol on Polycystic Ovary Syndrome: A Double-Blind, Randomized, Placebo-Controlled Trial. The Journal of Clinical Endocrinology & Metabolism, 101, 4322-4328. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Brenjian, S., Moini, A., Yamini, N., Kashani, L., Faridmojtahedi, M., Bahramrezaie, M., et al. (2019) Resveratrol Treatment in Patients with Polycystic Ovary Syndrome Decreased Pro‐Inflammatory and Endoplasmic Reticulum Stress Markers. American Journal of Reproductive Immunology, 83, e13186. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lee, J., Hong, S., Kwon, H., Park, S.E., Rhee, E., Park, C., et al. (2019) Resveratrol, an Activator of SIRT1, Improves ER Stress by Increasing Clusterin Expression in HepG2 Cells. Cell Stress and Chaperones, 24, 825-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Khorshidi, M., Moini, A., Alipoor, E., Rezvan, N., Gorgani‐Firuzjaee, S., Yaseri, M., et al. (2018) The Effects of Quercetin Supplementation on Metabolic and Hormonal Parameters as Well as Plasma Concentration and Gene Expression of Resistin in Overweight or Obese Women with Polycystic Ovary Syndrome. Phytotherapy Research, 32, 2282-2289. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
江雪娟, 陈晓菲, 俞佳, 等. 槲皮素对多囊卵巢综合征大鼠的改善作用[J]. 中成药, 2023, 45(7): 2179-2184.
|
|
[27]
|
Bhuvaneswari, S., Yogalakshmi, B., Sreeja, S. and Anuradha, C.V. (2014) Astaxanthin Reduces Hepatic Endoplasmic Reticulum Stress and Nuclear Factor-κB-Mediated Inflammation in High Fructose and High Fat Diet-Fed Mice. Cell Stress and Chaperones, 19, 183-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, X., Zhao, Y. and Li, S. (2017) Astaxanthin Attenuates Glutamate-Induced Apoptosis via Inhibition of Calcium Influx and Endoplasmic Reticulum Stress. European Journal of Pharmacology, 806, 43-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, W., Liu, T., Liu, Y., Yu, L., Yan, X., Weng, W., et al. (2021) Astaxanthin Attenuates Alcoholic Cardiomyopathy via Inhibition of Endoplasmic Reticulum Stress-Mediated Cardiac Apoptosis. Toxicology and Applied Pharmacology, 412, Article ID: 115378. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jabarpour, M., Aleyasin, A., Nashtaei, M.S., Lotfi, S. and Amidi, F. (2023) Astaxanthin Treatment Ameliorates ER Stress in Polycystic Ovary Syndrome Patients: A Randomized Clinical Trial. Scientific Reports, 13, Article No. 3376. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
李艳青, 赵方, 傅金英, 等. 黄芪甲苷对多囊卵巢综合征大鼠性激素水平及氧化应激损伤的影响[J]. 中国病理生理杂志, 2020, 36(12): 2244-2250.
|
|
[32]
|
刘冷, 贺春花. 黄芪甲苷对肥胖型多囊卵巢综合征大鼠胰岛素抵抗及MAPK/ERK通路的影响[J]. 中成药, 2024, 46(1): 94-100.
|
|
[33]
|
Chiang, Y., Lin, I., Huang, K., Chen, H., Ali, M., Huang, Y., et al. (2023) Caffeic Acid’s Role in Mitigating Polycystic Ovary Syndrome by Countering Apoptosis and ER Stress Triggered by Oxidative Stress. Biomedicine & Pharmacotherapy, 166, Article ID: 115327. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, K., Wang, L., Wu, C., Chen, H., Cai, D., Lu, L., et al. (2025) Lycopene Ameliorates Polycystic Ovary Syndrome in Rats by Inhibiting Ovarian Ferroptosis through Activation of the AMPK/Nrf2 Pathway. Journal of Biochemical and Molecular Toxicology, 39, e70158. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shi, Y., Li, L., Zhou, J., Sun, J., Chen, L., Zhao, J., et al. (2019) Efficacy of Electroacupuncture in Regulating the Imbalance of AMH and FSH to Improve Follicle Development and Hyperandrogenism in PCOS Rats. Biomedicine & Pharmacotherapy, 113, Article ID: 108687. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cong, J., Zhang, Y., Yang, X., Wang, Y., He, H. and Wang, M. (2022) Anti-Polycystic Ovary Syndrome Effect of Electroacupuncture: IMD Inhibits ER Stress-Mediated Apoptosis and Autophagy in Granulosa Cells. Biochemical and Biophysical Research Communications, 634, 159-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Peng, Y., Guo, L., Gu, A., Shi, B., Ren, Y., Cong, J., et al. (2020) Electroacupuncture Alleviates Polycystic Ovary Syndrome-Like Symptoms through Improving Insulin Resistance, Mitochondrial Dysfunction, and Endoplasmic Reticulum Stress via Enhancing Autophagy in Rats. Molecular Medicine, 26, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xu, Y., Pan, C., Li, Q., Zhang, H., Yan, L., Anwaier, G., et al. (2021) The Ameliorating Effects of Bushen Huatan Granules and Kunling Wan on Polycystic Ovary Syndrome Induced by Dehydroepiandrosterone in Rats. Frontiers in Physiology, 12, Article 525145. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Pan, X., Liu, Y., Liu, L., Pang, B., Sun, Z., Guan, S., et al. (2022) Bushen Jieyu Tiaochong Formula Reduces Apoptosis of Granulosa Cells via the PERK-ATF4-CHOP Signaling Pathway in a Rat Model of Polycystic Ovary Syndrome with Chronic Stress. Journal of Ethnopharmacology, 292, Article ID: 114923. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
田珈瑜, 秦文熠, 杨涓, 等. 归肾丸加味调控AMPK/Akt/Nrf2通路改善多囊卵巢综合征大鼠糖脂代谢及氧化应激的机制[J]. 中国实验方剂学杂志, 2025, 31(8): 1-8.
|
|
[41]
|
董双千, 汤怡倩, 徐浩田, 等. 启宫丸对多囊卵巢综合征-胰岛素抵抗大鼠AdipoR/AMPK信号通路的影响[J]. 中成药, 2025, 47(2): 584-589.
|
|
[42]
|
Liu, H., Wang, G., Sui, C., Guo, Y. and He, X. (2025) Woxuanzhongzhou Formula Improves DHEAS and High-Fat Diet-Induced IR and Anovulatory Mice via AMPK/PGC1-α/Irisin Pathway. Journal of Ovarian Research, 18, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ren, J., Bi, Y., Sowers, J.R., Hetz, C. and Zhang, Y. (2021) Endoplasmic Reticulum Stress and Unfolded Protein Response in Cardiovascular Diseases. Nature Reviews Cardiology, 18, 499-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ajoolabady, A., Kaplowitz, N., Lebeaupin, C., Kroemer, G., Kaufman, R.J., Malhi, H., et al. (2022) Endoplasmic Reticulum Stress in Liver Diseases. Hepatology, 77, 619-639. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Huber, A., Lebeau, J., Guillaumot, P., Pétrilli, V., Malek, M., Chilloux, J., et al. (2013) p58IPK-Mediated Attenuation of the Proapoptotic PERK-CHOP Pathway Allows Malignant Progression Upon Low Glucose. Molecular Cell, 49, 1049-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Celik, C., Lee, S.Y.T., Yap, W.S. and Thibault, G. (2023) Endoplasmic Reticulum Stress and Lipids in Health and Diseases. Progress in Lipid Research, 89, Article ID: 101198. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Boatright, J.H., Nickerson, J.M., Moring, A.G. and Pardue, M.T. (2009) Bile Acids in Treatment of Ocular Disease. Journal of Ocular Biology, Diseases, and Informatics, 2, 149-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kennedy, T.L., Swiderski, K., Murphy, K.T., Gehrig, S.M., Curl, C.L., Chandramouli, C., et al. (2016) BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. The American Journal of Pathology, 186, 3246-3260. [Google Scholar] [CrossRef] [PubMed]
|