|
[1]
|
McKinnon, C., Nandhabalan, M., Murray, S.A. and Plaha, P. (2021) Glioblastoma: Clinical Presentation, Diagnosis, and Management. British Medical Journal, 374, n1560. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wang, R., Sharma, R., Shen, X., Laughney, A.M., Funato, K., Clark, P.J., et al. (2020) Adult Human Glioblastomas Harbor Radial Glia-Like Cells. Stem Cell Reports, 14, 338-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, Z., Zhang, Q., Zhou, L., et al. (2020) Norwogonin Flavone Suppresses the Growth of Human Colon Cancer Cells via Mitochondrial Mediated Apoptosis, Autophagy Induction and Triggering G2/M Phase Cell Cycle Arrest. Journal of BUON, 25, 1449-1454.
|
|
[4]
|
Reardon, D.A., Brandes, A.A., Omuro, A., Mulholland, P., Lim, M., Wick, A., et al. (2020) Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The Check Mate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology, 6, 1003-1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, W., Stetler, R.A., Chen, J. (2017) Akt-GSK3β Pro-Survival Signaling Pathway in Cerebral Ischemic Injury. In: Primer on Cerebrovascular Diseases, Academic Press, 269-272.
|
|
[6]
|
Friedman, H.S., Prados, M.D., Wen, P.Y., Mikkelsen, T., Schiff, D., Abrey, L.E., et al. (2009) Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology, 27, 4733-4740. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y., et al. (2014) Cilengitide Combined with Standard Treatment for Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CENTRIC EORTC 26071-22072 Study): A Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 15, 1100-1108. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, Q., Zhou, Y., Chen, J., Huang, N., Wang, Z. and Cheng, Y. (2021) Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound. International Journal of Nanomedicine, 16, 185-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
An, Z., Aksoy, O., Zheng, T., Fan, Q. and Weiss, W.A. (2018) Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma: Signaling Pathways and Targeted Therapies. Oncogene, 37, 1561-1575. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Le Rhun, E., Preusser, M., Roth, P., Reardon, D.A., van den Bent, M., Wen, P., et al. (2019) Molecular Targeted Therapy of Glioblastoma. Cancer Treatment Reviews, 80, Article 101896. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shen, Y.C., Lu, C.K., Liou, K.T., et al. (2015) Common and Unique Mechanisms of Chinese Herbal Remedies on Ischemic Stroke Mice Revealed by Transcriptome Analyses. Journal of Ethnopharmacology, 173, 370-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Deng, L., Liu, W., Xu, Q., Guo, R., Zhang, D., Ni, J., et al. (2022) Tianma Gouteng Decoction Regulates Oxidative Stress and Inflammation in AngII-Induced Hypertensive Mice via Transcription Factor EB to Exert Anti-Hypertension Effect. Biomedicine & Pharmacotherapy, 145, Article 112383. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhou, T., Yao, Z., Hu, S., et al. (2021) Research on Professor Hou Wei’s Medication Pattern for the Treatment of Glioma Based on the Traditional Chinese Medicine Inheritance Support System. Modernization of Traditional Chinese Medicine and Materia Medica—World Science and Technology, 23, 2830-2837.
|
|
[14]
|
Huang, L., Xie, D., Yu, Y., Liu, H., Shi, Y., Shi, T., et al. (2018) TCMID 2.0: A Comprehensive Resource for TCM. Nucleic Acids Research, 46, D1117-D1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., et al. (2021) HERB: A High-Throughput Experiment-and Reference-Guided Database of Traditional Chinese Medicine. Nucleic Acids Research, 49, D1197-D1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wu, J., Li, X., Liang, J., Fang, D., Yang, Z., Wei, J., et al. (2022) Network Pharmacological Analysis of Active Components of Xiaoliu Decoction in the Treatment of Glioblastoma Multiforme. Frontiers in Genetics, 13, Article 940462. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021) Pubchem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Research, 49, D1388-D1395. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Daina, A., Michielin, O. and Zoete, V. (2019) Swisstargetprediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research, 47, W357-W364. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., et al. (2013) NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Research, 41, D991-D995. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, T., Yang, Y., Song, X., Wan, X., Wu, B., Sastry, N., et al. (2021) PRMT6 Methylation of RCC1 Regulates Mitosis, Tumorigenicity, and Radiation Response of Glioblastoma Stem Cells. Molecular Cell, 81, 1276-1291.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., et al. (2017) DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. Nucleic Acids Research, 45, D833-D839. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2023) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Berman, H.M. (2000) The Protein Data Bank. Nucleic Acids Research, 28, 235-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Q., Zhao, J.J., Xu, J., Feng, F. and Qu, W. (2015) Medicinal Uses, Phytochemistry and Pharmacology of the Genus Uncaria. Journal of Ethnopharmacology, 173, 48-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Huang, B., Zeng, Y., Li, Y., Huang, X., Hu, N., Yao, N., et al. (2017) Uncaria Alkaloids Reverse ABCB1-Mediated Cancer Multidrug Resistance. International Journal of Oncology, 51, 257-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kim, T., Lee, J., Lee, J., Yu, J., Hwang, B., Ye, S., et al. (2008) Corynoxeine Isolated from the Hook of Uncaria rhynchophylla Inhibits Rat Aortic Vascular Smooth Muscle Cell Proliferation through the Blocking of Extracellular Signal Regulated Kinase 1/2 Phosphorylation. Biological and Pharmaceutical Bulletin, 31, 2073-2078. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yuan, D., Ma, B., Wu, C., Yang, J., Zhang, L., Liu, S., et al. (2008) Alkaloids from the Leaves of Uncaria rhynchophylla and Their Inhibitory Activity on NO Production in Lipopolysaccharide-Activated Microglia. Journal of Natural Products, 71, 1271-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wu, L., Yang, F.R., Xing, M.L., et al. (2022) Multi-Material Basis and Multi-Mechanisms of the Dahuang Zhechong Pill for Regulating Treg/Th1 Balance in Hepatocellular Carcinoma. Phytomedicine, 100, Article 154055. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li-Weber, M. (2009) New Therapeutic Aspects of Flavones: The Anticancer Properties of Scutellaria and Its Main Active Constituents Wogonin, Baicalein and Baicalin. Cancer Treatment Reviews, 35, 57-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Heese, K. (2020) Gastrodia elata Blume (Tianma): Hope for Brain Aging and Dementia. Evidence-Based Complementary and Alternative Medicine, 2020, Article 8870148. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lu, C., Qu, S., Zhong, Z., Luo, H., Lei, S.S., Zhong, H., et al. (2022) The Effects of Bioactive Components from the Rhizome of Gastrodia elata Blume (Tianma) on the Characteristics of Parkinson’s Disease. Frontiers in Pharmacology, 13, Article 963317. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Matias, M., Silvestre, S., Falcão, A. and Alves, G. (2016) Gastrodia elata and Epilepsy: Rationale and Therapeutic Potential. Phytomedicine, 23, 1511-1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kim, N., Xin, M.J., Cha, J., Ji, S., Kwon, S., Jee, H., et al. (2017) Antitumor and Immunomodulatory Effect of Gastrodia elata on Colon Cancer in Vitro and in Vivo. The American Journal of Chinese Medicine, 45, 319-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, Z., Zhou, J., Song, D., Sun, Y., Liao, C. and Jiang, X. (2017) Gastrodin Protects against LPS-Induced Acute Lung Injury by Activating Nrf2 Signaling Pathway. Oncotarget, 8, 32147-32156. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hawes, B.E. and van Biesen, T. (2001) Protein Tyrosine Kinase Activity Assays. Current Protocols in Pharmacology, 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Akbarzadeh, M., Mihanfar, A., Akbarzadeh, S., Yousefi, B. and Majidinia, M. (2021) Crosstalk between miRNA and PI3K/AKT/mTOR Signaling Pathway in Cancer. Life Sciences, 285, Article 119984. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Alzahrani, A.S. (2019) PI3K/AKT/mTOR Inhibitors in Cancer: At the Bench and Bedside. Seminars in Cancer Biology, 59, 125-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, Y., Zhang, J., Hou, L., Wang, G., Liu, H., Zhang, R., et al. (2017) LncRNA AK023391 Promotes Tumorigenesis and Invasion of Gastric Cancer through Activation of the PI3K/Akt Signaling Pathway. Journal of Experimental & Clinical Cancer Research, 36, Article No. 194. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Malumbres, M. and Barbacid, M. (2009) Cell Cycle, CDKs and Cancer: A Changing Paradigm. Nature Reviews Cancer, 9, 153-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xie, B., Wang, S., Jiang, N. and Li, J.J. (2019) Cyclin B1/CDK1-Regulated Mitochondrial Bioenergetics in Cell Cycle Progression and Tumor Resistance. Cancer Letters, 443, 56-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., et al. (2004) Regulation of the Innate and Adaptive Immune Responses by STAT-3 Signaling in Tumor Cells. Nature Medicine, 10, 48-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yu, H., Pardoll, D. and Jove, R. (2009) STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nature Reviews Cancer, 9, 798-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Levine, A.J. and Oren, M. (2009) The First 30 Years of P53: Growing Ever More Complex. Nature Reviews Cancer, 9, 749-758. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Muller, P.A.J. and Vousden, K.H. (2013) P53 Mutations in Cancer. Nature Cell Biology, 15, 2-8. [Google Scholar] [CrossRef] [PubMed]
|