|
[1]
|
Salari, N., Darvishi, N., Bartina, Y., Larti, M., Kiaei, A., Hemmati, M., et al. (2021) Global Prevalence of Osteoporosis among the World Older Adults: A Comprehensive Systematic Review and Meta-Analysis. Journal of Orthopaedic Surgery and Research, 16, Article No. 669. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sopina, L., Hitz, M.F., Thygesen, L.C., Langdahl, B., Ladefoged, B.T. and Kruse, M. (2025) Healthcare and Productivity Cost of Osteoporosis: A Danish Register-Based Quasi-Experimental Study. Osteoporosis International, 36, 865-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kim, H., Choi, I.A., Umemoto, A., Bae, S., Kaneko, K., Mizuno, M., et al. (2024) SREBP2 Restricts Osteoclast Differentiation and Activity by Regulating IRF7 and Limits Inflammatory Bone Erosion. Bone Research, 12, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Park, J.H., Lee, J., Lee, G., Kwon, M., Lee, H.I., Kim, N., et al. (2023) Cholesterol Sulfate Inhibits Osteoclast Differentiation and Survival by Regulating the AMPK-Sirt1-NF-κB Pathway. Journal of Cellular Physiology, 238, 2063-2075. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Smith, A.E., Sigurbjörnsdóttir, E.S., Steingrímsson, E. and Sigurbjörnsdóttir, S. (2022) Hedgehog Signalling in Bone and Osteoarthritis: The Role of Smoothened and Cholesterol. The FEBS Journal, 290, 3059-3075. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Abdalkareem Jasim, S., Kzar, H.H., Haider Hamad, M., Ahmad, I., Al-Gazally, M.E., Ziyadullaev, S., et al. (2022) The Emerging Role of 27-Hydroxycholesterol in Cancer Development and Progression: An Update. International Immunopharmacology, 110, Article ID: 109074. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, G., Sul, O., Yu, R. and Choi, H. (2022) 7-Ketocholesterol-Induced Micro-RNA-107-5p Increases Number and Activity of Osteoclasts by Targeting MKP1. International Journal of Molecular Sciences, 23, Article No. 3697. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dai, L., Wang, J., Meng, L., Zhang, X., Xiao, T., Deng, M., et al. (2025) The Cholesterol 24-Hydroxylase CYP46A1 Promotes Α-Synuclein Pathology in Parkinson’s Disease. PLOS Biology, 23, e3002974. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dai, L., Wang, J., Zhang, X., Yan, M., Zhou, L., Zhang, G., et al. (2023) 27‐Hydroxycholesterol Drives the Spread of Α‐Synuclein Pathology in Parkinson’s Disease. Movement Disorders, 38, 2005-2018. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, X., Ma, T., Chen, K., Pang, Z., Wang, H., Huang, J., et al. (2021) Accumulation of LDL/Ox-LDL in the Necrotic Region Participates in Osteonecrosis of the Femoral Head: A Pathological and in Vitro Study. Lipids in Health and Disease, 20, Article No. 167. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Akhmetshina, A., Kratky, D. and Rendina-Ruedy, E. (2023) Influence of Cholesterol on the Regulation of Osteoblast Function. Metabolites, 13, Article No. 578. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, F., Lu, Y., Lin, J., Kang, R. and Liu, J. (2023) Cholesterol Metabolism in Cancer and Cell Death. Antioxidants & Redox Signaling, 39, 102-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, L., Duan, W., Ruan, C., Liu, J., Miyagishi, M., Kasim, V., et al. (2025) YY2-CYP51A1 Signaling Suppresses Hepatocellular Carcinoma Progression by Restraining De Novo Cholesterol Biosynthesis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1871, Article ID: 167658. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vejux, A., Ghzaiel, I., Mackrill, J.J., Dias, I.H.K., Rezig, L., Ksila, M., et al. (2025) Oxysterols, Age-Related-Diseases and Nutritherapy: Focus on 7-Ketocholesterol and 7β-Hydroxycholesterol. Prostaglandins & Other Lipid Mediators, 178, Article ID: 106993. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Marini, F., Giusti, F., Palmini, G. and Brandi, M.L. (2022) Role of Wnt Signaling and Sclerostin in Bone and as Therapeutic Targets in Skeletal Disorders. Osteoporosis International, 34, 213-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, X., Tian, Y., Liang, X., Yin, C., Huai, Y., Zhao, Y., et al. (2022) Bergamottin Promotes Osteoblast Differentiation and Bone Formation via Activating the Wnt/β-Catenin Signaling Pathway. Food & Function, 13, 2913-2924. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shen, J., Sun, Y., Liu, X., Zhu, Y., Bao, B., Gao, T., et al. (2021) EGFL6 Regulates Angiogenesis and Osteogenesis in Distraction Osteogenesis via Wnt/β-Catenin Signaling. Stem Cell Research & Therapy, 12, Article No. 415. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zou, M.L., Chen, Z.H., Teng, Y.Y., et al. (2021) The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies. Frontiers in Molecular Biosciences, 8, Article ID: 593310. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, P., Park, J., Lee, D., Mizuno, S., Shinohara, M., Hong, C.P., et al. (2022) Mast4 Determines the Cell Fate of MSCs for Bone and Cartilage Development. Nature Communications, 13, Article No. 3960. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sun, B., Wu, H., Lu, J., Zhang, R., Shen, X., Gu, Y., et al. (2023) Irisin Reduces Bone Fracture by Facilitating Osteogenesis and Antagonizing TGF-β/Smad Signaling in a Growing Mouse Model of Osteogenesis Imperfecta. Journal of Orthopaedic Translation, 38, 175-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., et al. (2022) Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduction and Targeted Therapy, 7, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Deng, Y., Li, R., Wang, H., Yang, B., Shi, P., Zhang, Y., et al. (2021) Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS Nano, 16, 1051-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tomasoni, C., Arsuffi, C., Donsante, S., Corsi, A., Riminucci, M., Biondi, A., et al. (2023) AML Alters Bone Marrow Stromal Cell Osteogenic Commitment via Notch Signaling. Frontiers in Immunology, 14, Article ID: 1320497. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Medina, E., Perez, D.H., Antfolk, D. and Luca, V.C. (2023) New Tricks for an Old Pathway: Emerging Notch-Based Biotechnologies and Therapeutics. Trends in Pharmacological Sciences, 44, 934-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chamani, S., Liberale, L., Mobasheri, L., Montecucco, F., Al‐Rasadi, K., Jamialahmadi, T., et al. (2021) The Role of Statins in the Differentiation and Function of Bone Cells. European Journal of Clinical Investigation, 51, e13534. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Seo, D.H., Jeong, Y., Cho, Y., Kim, S.H., Hong, S., Suh, Y.J., et al. (2023) Age-and Dose-Dependent Effect of Statin Use on the Risk of Osteoporotic Fracture in Older Adults. Osteoporosis International, 34, 1927-1936. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Biswas, P., Thorenoor Kumaraswamy, S. and Hilgers, R. (2025) Efficacy of Statins in Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis. Cureus, 17, e86425. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Arabi, S.M., Chambari, M., Bahrami, L.S., Jafari, A., Bahari, H., Reiner, Ž., et al. (2024) The Effect of Statin Therapy on Bone Metabolism Markers and Mineral Density: Aa Grade-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Advanced Pharmaceutical Bulletin, 14, 591-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cosman, F., Langdahl, B. and Leder, B.Z. (2024) Treatment Sequence for Osteoporosis. Endocrine Practice, 30, 490-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kamanda-Kosseh, M., Shiau, S., Agarwal, S., Kondapalli, A., Colon, I., Kil, N., et al. (2024) Bisphosphonates Maintain BMD after Sequential Teriparatide and Denosumab in Premenopausal Women with Idiopathic Osteoporosis. The Journal of Clinical Endocrinology & Metabolism, 110, e791-e801. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
LeBoff, M.S., Greenspan, S.L., Insogna, K.L., Lewiecki, E.M., Saag, K.G., Singer, A.J., et al. (2022) The Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 33, 2049-2102. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kang, X., Tian, B., Zhao, Z., Zhang, B. and Zhang, M. (2023) Evaluation of the Association between Low-Density Lipoprotein (LDL) and All-Cause Mortality in Geriatric Patients with Hip Fractures: A Prospective Cohort Study of 339 Patients. Journal of Personalized Medicine, 13, Article No. 345. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Barzilay, J.I., Buzkova, P., Kuller, L.H., Cauley, J.A., Fink, H.A., Sheets, K., et al. (2022) The Association of Lipids and Lipoproteins with Hip Fracture Risk: The Cardiovascular Health Study. The American Journal of Medicine, 135, 1101-1108.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, D.Q., Xu, W.B., Xiao, K.Y., et al. (2024) PCSK9 Inhibitors and Osteoporosis: Mendelian Randomization and Meta-Analysis. BMC Musculoskeletal Disorders, 25, Article No. 548. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Han, L., Wu, L., Yin, Q., Li, L., Zheng, X., Du, S., et al. (2024) A Promising Therapy for Fatty Liver Disease: PCSK9 Inhibitors. Phytomedicine, 128, Article ID: 155505. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, C., Chen, J., Chen, H., Zhang, T., He, D., Luo, Q., et al. (2022) PCSK9 Inhibition: From Current Advances to Evolving Future. Cells, 11, Article No. 2972. [Google Scholar] [CrossRef] [PubMed]
|