|
[1]
|
Mizutani, A., Nagase, K., Kikuchi, A., Kanazawa, H., Akiyama, Y., Kobayashi, J., et al. (2010) Thermo-Responsive Polymer Brush-Grafted Porous Polystyrene Beads for All-Aqueous Chromatography. Journal of Chromatography A, 1217, 522-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xue, X., Thiagarajan, L., Braim, S., Saunders, B.R., Shakesheff, K.M. and Alexander, C. (2017) Upper Critical Solution Temperature Thermo-Responsive Polymer Brushes and a Mechanism for Controlled Cell Attachment. Journal of Materials Chemistry B, 5, 4926-4933. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Vantomme, G., Gelebart, A.H., Broer, D.J. and Meijer, E.W. (2018) Self-Sustained Actuation from Heat Dissipation in Liquid Crystal Polymer Networks. Journal of Polymer Science Part A: Polymer Chemistry, 56, 1331-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kopyshev, A., Galvin, C.J., Patil, R.R., Genzer, J., Lomadze, N., Feldmann, D., et al. (2016) Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. ACS Applied Materials & Interfaces, 8, 19175-19184. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mukai, K., Imai, K., Hara, M., Nagano, S. and Seki, T. (2019) A High-Density Azobenzene Side Chain Polymer Brush for Azimuthal and Zenithal Orientational Photoswitching of a Nematic Liquid Crystal. ChemPhotoChem, 3, 495-500. [Google Scholar] [CrossRef]
|
|
[6]
|
Bléger, D., Liebig, T., Thiermann, R., Maskos, M., Rabe, J.P. and Hecht, S. (2011) Light-Orchestrated Macromolecular “Accordions”: Reversible Photoinduced Shrinking of Rigid-Rod Polymers. Angewandte Chemie International Edition, 50, 12559-12563. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vassalini, I. and Alessandri, I. (2017) “The Phactalysts”: Carbon Nanotube/TiO2 Composites as Phototropic Actuators for Wireless Remote Triggering of Chemical Reactions and Catalysis. Nanoscale, 9, 11446-11451. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
de Groot, G.W., Santonicola, M.G., Sugihara, K., Zambelli, T., Reimhult, E., Vörös, J., et al. (2013) Switching Transport through Nanopores with pH-Responsive Polymer Brushes for Controlled Ion Permeability. ACS Applied Materials & Interfaces, 5, 1400-1407. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yadav, V., Harkin, A.V., Robertson, M.L. and Conrad, J.C. (2016) Hysteretic Memory in Ph-Response of Water Contact Angle on Poly (Acrylic Acid) Brushes. Soft Matter, 12, 3589-3599. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Topham, P.D., Howse, J.R., Crook, C.J., Armes, S.P., Jones, R.A.L. and Ryan, A.J. (2007) Antagonistic Triblock Polymer Gels Powered by pH Oscillations. Macromolecules, 40, 4393-4395. [Google Scholar] [CrossRef]
|
|
[11]
|
Nagase, K., Hatakeyama, Y., Shimizu, T., Matsuura, K., Yamato, M., Takeda, N., et al. (2015) Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation. Biomacromolecules, 16, 532-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nagase, K., Uchikawa, N., Hirotani, T., Akimoto, A.M. and Kanazawa, H. (2020) Thermoresponsive Anionic Copolymer Brush-Grafted Surfaces for Cell Separation. Colloids and Surfaces B: Biointerfaces, 185, Article 110565. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mizutani, A., Kikuchi, A., Yamato, M., Kanazawa, H. and Okano, T. (2008) Preparation of Thermoresponsive Polymer Brush Surfaces and Their Interaction with Cells. Biomaterials, 29, 2073-2081. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Santer, S., Kopyshev, A., Donges, J., Yang, H.K. and Rühe, J. (2006) Dynamically Reconfigurable Polymer Films: Impact on Nanomotion. Advanced Materials, 18, 2359-2362. [Google Scholar] [CrossRef]
|
|
[15]
|
Santer, S. and Rühe, J. (2004) Motion of Nano-Objects on Polymer Brushes. Polymer, 45, 8279-8297. [Google Scholar] [CrossRef]
|
|
[16]
|
Nagase, K., Kobayashi, J., Kikuchi, A., Akiyama, Y., Kanazawa, H. and Okano, T. (2016) Protein Separations via Thermally Responsive Ionic Block Copolymer Brush Layers. RSC Advances, 6, 26254-26263. [Google Scholar] [CrossRef]
|
|
[17]
|
Nagase, K., Shukuwa, R., Onuma, T., Yamato, M., Takeda, N. and Okano, T. (2017) Micro/Nano-Imprinted Substrates Grafted with a Thermoresponsive Polymer for Thermally Modulated Cell Separation. Journal of Materials Chemistry B, 5, 5924-5930. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, B. and Brittain, W.J. (2000) Polymer Brushes: Surface-Immobilized Macromolecules. Progress in Polymer Science, 25, 677-710. [Google Scholar] [CrossRef]
|
|
[19]
|
Toomey, R. and Tirrell, M. (2008) Functional Polymer Brushes in Aqueous Media from Self-Assembled and Surface-Initiated Polymers. Annual Review of Physical Chemistry, 59, 493-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Olivier, A., Meyer, F., Raquez, J., Damman, P. and Dubois, P. (2012) Surface-Initiated Controlled Polymerization as a Convenient Method for Designing Functional Polymer Brushes: From Self-Assembled Monolayers to Patterned Surfaces. Progress in Polymer Science, 37, 157-181. [Google Scholar] [CrossRef]
|
|
[21]
|
Conrad, J.C. and Robertson, M.L. (2019) Towards Mimicking Biological Function with Responsive Surface-Grafted Polymer Brushes. Current Opinion in Solid State and Materials Science, 23, 1-12. [Google Scholar] [CrossRef]
|
|
[22]
|
Stuart, M.A., Huck, W.T., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. and Minko, S. (2010) Emerging Applications of Stimuli-Responsive Polymer Materials. Nature Materials, 9, 101-113.
|
|
[23]
|
Li, D., Xu, L., Wang, J. and Gautrot, J.E. (2020) Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Advanced Healthcare Materials, 10, e2000953. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Anthi, J., Kolivoška, V., Holubová, B. and Vaisocherová-Lísalová, H. (2021) Probing Polymer Brushes with Electrochemical Impedance Spectroscopy: A Mini Review. Biomaterials Science, 9, 7379-7391. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Brittain, W.J. and Minko, S. (2007) A Structural Definition of Polymer Brushes. Journal of Polymer Science Part A: Polymer Chemistry, 45, 3505-3512. [Google Scholar] [CrossRef]
|
|
[26]
|
Edmondson, S., Osborne, V.L. and Huck, W.T.S. (2004) Polymer Brushes via Surface-Initiated Polymerizations. Chemical Society Reviews, 33, 14-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, F. and Huck, W.T.S. (2006) Surface Grafted Polymer Brushes as Ideal Building Blocks for “Smart” Surfaces. Physical Chemistry Chemical Physics, 8, 3815-3823. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, T., Ferris, R., Zhang, J., Ducker, R. and Zauscher, S. (2010) Stimulus-Responsive Polymer Brushes on Surfaces: Transduction Mechanisms and Applications. Progress in Polymer Science, 35, 94-112. [Google Scholar] [CrossRef]
|
|
[29]
|
Uhlmann, P., Ionov, L., Houbenov, N., Nitschke, M., Grundke, K., Motornov, M., et al. (2006) Surface Functionalization by Smart Coatings: Stimuli-Responsive Binary Polymer Brushes. Progress in Organic Coatings, 55, 168-174. [Google Scholar] [CrossRef]
|
|
[30]
|
Chen, Q.C. (2021) Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP): History, General Features, and Applications in Surface Engineering with Polymer Brushes. International Journal of Polymer Science, 2021, Article 6677049.
|
|
[31]
|
Yin, L., Liu, L. and Zhang, N. (2021) Brush-Like Polymers: Design, Synthesis and Applications. Chemical Communications, 57, 10484-10499. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Boven, G., Oosterling, M.L.C.M., Challa, G. and Jan Schouten, A. (1990) Grafting Kinetics of Poly (Methyl Methacrylate) on Microparticulate Silica. Polymer, 31, 2377-2383. [Google Scholar] [CrossRef]
|
|
[33]
|
Baum, M. and Brittain, W.J. (2002) Synthesis of Polymer Brushes on Silicate Substrates via Reversible Addition Fragmentation Chain Transfer Technique. Macromolecules, 35, 610-615. [Google Scholar] [CrossRef]
|
|
[34]
|
Tu, H., Heitzman, C.E. and Braun, P.V. (2004) Patterned Poly(n-Isopropylacrylamide) Brushes on Silica Surfaces by Microcontact Printing Followed by Surface-Initiated Polymerization. Langmuir, 20, 8313-8320. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xiao, D. and Wirth, M.J. (2002) Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules, 35, 2919-2925. [Google Scholar] [CrossRef]
|
|
[36]
|
Bontempo, D., Tirelli, N., Feldman, K., Masci, G., Crescenzi, V. and Hubbell, J.A. (2002) Atom Transfer Radical Polymerization as a Tool for Surface Functionalization. Advanced Materials, 14, 1239-1241. [Google Scholar] [CrossRef]
|
|
[37]
|
Osypova, A., Dübner, M. and Panzarasa, G. (2020) Oscillating Reactions Meet Polymers at Interfaces. Materials, 13, Article 2957. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Torbensen, K., Rossi, F., Ristori, S. and Abou-Hassan, A. (2017) Chemical Communication and Dynamics of Droplet Emulsions in Networks of Belousov-Zhabotinsky Micro-Oscillators Produced by Microfluidics. Lab on a Chip, 17, 1179-1189. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yoshida, R., Takahashi, T., Yamaguchi, T. and Ichijo, H. (1996) Self-Oscillating Gel. Journal of the American Chemical Society, 118, 5134-5135. [Google Scholar] [CrossRef]
|
|
[40]
|
Valles, D.J., Zholdassov, Y.S. and Braunschweig, A.B. (2021) Evolution and Applications of Polymer Brush Hypersurface Photolithography. Polymer Chemistry, 12, 5724-5746. [Google Scholar] [CrossRef]
|
|
[41]
|
Reese, C.J. and Boyes, S.G. (2021) New Methods in Polymer Brush Synthesis: Non-Vinyl-Based Semiflexible and Rigid-Rod Polymer Brushes. Progress in Polymer Science, 114, Article 101361. [Google Scholar] [CrossRef]
|
|
[42]
|
Eskandari, P., Abousalman-Rezvani, Z., Roghani-Mamaqani, H. and Salami-Kalajahi, M. (2021) Polymer-Functionalization of Carbon Nanotube by in Situ Conventional and Controlled Radical Polymerizations. Advances in Colloid and Interface Science, 294, Article 102471. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yang, R., Wang, X., Yan, S., Dong, A., Luan, S. and Yin, J. (2021) Advances in Design and Biomedical Application of Hierarchical Polymer Brushes. Progress in Polymer Science, 118, Article 101409. [Google Scholar] [CrossRef]
|
|
[44]
|
Geurds, L., Lauko, J., Rowan, A.E. and Amiralian, N. (2021) Tailored Nanocellulose-Grafted Polymer Brush Applications. Journal of Materials Chemistry A, 9, 17173-17188. [Google Scholar] [CrossRef]
|
|
[45]
|
Li, Z., Tang, M., Liang, S., Zhang, M., Biesold, G.M., He, Y., et al. (2021) Bottlebrush Polymers: From Controlled Synthesis, Self-Assembly, Properties to Applications. Progress in Polymer Science, 116, Article 101387. [Google Scholar] [CrossRef]
|
|
[46]
|
Szczepaniak, G., Fu, L., Jafari, H., Kapil, K. and Matyjaszewski, K. (2021) Making ATRP More Practical: Oxygen Tolerance. Accounts of Chemical Research, 54, 1779-1790. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ślusarczyk, K., Flejszar, M. and Chmielarz, P. (2021) Less Is More: A Review of ΜL-Scale of SI-ATRP in Polymer Brushes Synthesis. Polymer, 233, Article 124212. [Google Scholar] [CrossRef]
|
|
[48]
|
Field, R.J., Koros, E. and Noyes, R.M. (1972) Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System. Journal of the American Chemical Society, 94, 8649-8664. [Google Scholar] [CrossRef]
|
|
[49]
|
Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J. and Kusumo, A. (2007) Grafting from Surfaces for “Everyone”: ARGET ATRP in the Presence of Air. Langmuir, 23, 4528-4531. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Braunecker, W.A. and Matyjaszewski, K. (2007) Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science, 32, 93-146. [Google Scholar] [CrossRef]
|
|
[51]
|
Masuda, T., Akimoto, A.M., Nagase, K., Okano, T. and Yoshida, R. (2015) Design of Self-Oscillating Polymer Brushes and Control of the Dynamic Behaviors. Chemistry of Materials, 27, 7395-7402. [Google Scholar] [CrossRef]
|
|
[52]
|
Milner, S.T. (1991) Polymer Brushes. Science, 251, 905-914. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Masuda, T., Hidaka, M., Murase, Y., Akimoto, A.M., Nagase, K., Okano, T., et al. (2013) Self-Oscillating Polymer Brushes. Angewandte Chemie International Edition, 52, 7468-7471. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Homma, K., Masuda, T., Akimoto, A.M., Nagase, K., Itoga, K., Okano, T., et al. (2017) Fabrication of Micropatterned Self-Oscillating Polymer Brush for Direction Control of Chemical Waves. Small, 13, Article 1700041. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Epstein, I.R. (2014) Coupled Chemical Oscillators and Emergent System Properties. Chemical Communications, 50, 10758-10767. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Agladze, K., Aliev, R.R., Yamaguchi, T. and Yoshikawa, K. (1996) Chemical Diode. The Journal of Physical Chemistry, 100, 13895-13897. [Google Scholar] [CrossRef]
|
|
[57]
|
Homma, K., Ohta, Y., Minami, K., Yoshikawa, G., Nagase, K., Akimoto, A.M., et al. (2021) Autonomous Nanoscale Chemomechanical Oscillation on the Self-Oscillating Polymer Brush Surface by Precise Control of Graft Density. Langmuir, 37, 4380-4386. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ito, Y., Hara, Y., Uetsuka, H., Hasuda, H., Onishi, H., Arakawa, H., et al. (2006) AFM Observation of Immobilized Self-Oscillating Polymer. The Journal of Physical Chemistry B, 110, 5170-5173. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Masuda, T., Akimoto, A.M., Nagase, K., Okano, T. and Yoshida, R. (2016) Artificial Cilia as Autonomous Nanoactuators: Design of a Gradient Self-Oscillating Polymer Brush with Controlled Unidirectional Motion. Science Advances, 2, e1600902. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Masuda, T., Akimoto, A.M., Furusawa, M., Tamate, R., Nagase, K., Okano, T., et al. (2018) Aspects of the Belousov-Zhabotinsky Reaction Inside a Self-Oscillating Polymer Brush. Langmuir, 34, 1673-1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Homma, K., Masuda, T., Akimoto, A.M., Nagase, K., Okano, T. and Yoshida, R. (2019) Stable and Prolonged Autonomous Oscillation in a Self-Oscillating Polymer Brush Prepared on a Porous Glass Substrate. Langmuir, 35, 9794-9801. [Google Scholar] [CrossRef] [PubMed]
|