儿童急性肾盂肾炎肾瘢痕化的影像学研究进展
Research Development of Imaging in Acute Pyelonephritis and Renal Scarring in Children
DOI: 10.12677/acm.2025.15113170, PDF, HTML, XML,   
作者: 田小玉, 徐 晔*:重庆医科大学附属儿童医院放射科,儿童发育疾病研究教育部重点实验室,儿童发育重大疾病国家国际科技合作基地,儿童代谢与炎症性疾病重庆市重点实验室,重庆
关键词: 泌尿系感染急性肾盂肾炎肾瘢痕影像学检查Urinary Tract Infection Acute Pyelonephritis Renal Scarring Imaging Studies
摘要: 儿童急性肾盂肾炎是常见的上尿路感染性疾病,若未及时干预,可导致肾瘢痕形成,进而引发高血压、蛋白尿及慢性肾功能衰竭等严重并发症。影像学检查在急性肾盂肾炎的诊断、肾损伤评估及瘢痕监测中具有核心作用。本文综述了肾瘢痕形成的病理机制及其影像学评估的最新进展。DMSA显像作为检测肾瘢痕的“金标准”,能够精准评估肾皮质功能与结构损伤;超声技术(如能量多普勒、微血管多普勒及对比增强超声)在早期诊断和随访中表现出较高的应用潜力;CT可清晰显示解剖细节及并发症,但需关注辐射暴露风险;MRI凭借多序列功能成像(如DWI、DTI)在无辐射条件下提供微循环及纤维化信息,适用于长期随访。此外,人工智能与影像组学技术的发展有望进一步提升诊断效率与预后预测准确性。未来需优化多模态影像协同策略,以实现儿童肾瘢痕的早期干预与个体化管理。
Abstract: Acute pyelonephritis (APN) is a common upper urinary tract infection in children. Without timely intervention, it may lead to renal scarring, which can progress to severe complications such as hypertension, proteinuria, and chronic renal failure. Imaging techniques play a central role in the diagnosis of APN, assessment of renal injury, and monitoring of scar formation. This review summarizes recent advances in the pathological mechanisms of renal scarring and its imaging evaluation. Dimercaptosuccinic acid (DMSA) scintigraphy remains the “gold standard” for detecting renal scars, providing a precise assessment of cortical function and structural damage. Ultrasonographic techniques, including power Doppler, microvascular Doppler, and contrast-enhanced ultrasound, show great potential in early diagnosis and follow-up. Computed tomography (CT) offers detailed anatomical visualization and complication detection, though radiation exposure remains a concern. Magnetic resonance imaging (MRI), with functional sequences such as diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), enables non-radiation evaluation of microcirculation and fibrotic changes, making it suitable for long-term monitoring. Furthermore, artificial intelligence and radiomics are emerging tools that may enhance diagnostic accuracy and prognostic prediction. Future efforts should focus on optimizing multimodal imaging strategies to achieve early intervention and personalized management of renal scarring in children.
文章引用:田小玉, 徐晔. 儿童急性肾盂肾炎肾瘢痕化的影像学研究进展[J]. 临床医学进展, 2025, 15(11): 871-878. https://doi.org/10.12677/acm.2025.15113170

1. 引言

泌尿系感染(Urinary Tract Infection, UTI)作为儿童泌尿生殖系统常见的感染性疾病,根据发生的部位可分为上尿路感染与下尿路感染。急性肾盂肾炎(Acute Pyelonephritis, APN)属于上尿路感染,其主要致病菌是大肠埃希菌。该病临床表现为寒战、高热,肾区叩痛等症状,但婴幼儿的症状多不典型,且可能伴随下尿路感染及脓毒症等并发症[1]-[3]。若肾实质感染反复发作且未得到及时干预,可导致肾瘢痕(Renal Scarring, RS)的形成,进而引发肾功能严重受损,出现高血压、蛋白尿及肾功能衰竭等不良后果[2] [4]。影像学检查在APN的诊断、肾损伤评估、瘢痕监测及长期随访中发挥着关键作用。本文旨在综述儿童APN后肾瘢痕形成的病理机制及影像学研究进展。

2. 儿童急性肾盂肾炎的流行病学和病因

儿童急性肾盂肾炎的流行病学特征显示,UTI的发病率在不同性别和年龄群体中存在显著差异。约有75%的病例发生在出生后的前两年内,其发病呈现双峰年龄分布:第一个高峰出现在1岁以内,第二个高峰则常见于如厕训练阶段的2至4岁儿童。据统计,7岁前约有2%的男孩和8%的女孩会经历尿路感染[5]。据Faust W. C等人的一项Meta分析显示[6],在发热性尿路感染中,约三分之二的患儿经DMSA显像诊断为APN,而其后续肾瘢痕的发生率存在差异,范围在15%到52%之间。

细菌感染是急性肾盂肾炎的主要致病因素,其中大肠埃希菌是最常见的病原体,约占所有感染的80%至90%。该病原体多经由尿道上行途径,自膀胱经输尿管抵达肾盂引发炎症。除大肠埃希菌外,其他病原微生物如克雷伯杆菌、变形杆菌、肠球菌及铜绿假单胞菌等也可致病。此外,宿主自身因素在发病中扮演重要角色,包括膀胱输尿管反流(Vesicoureteral Reflux, VUR)、膀胱或肠道功能障碍、尿路梗阻(如肾盂输尿管连接处狭窄)以及其他先天性泌尿系统结构异常,这些因素均会显著增加APN的患病风险[7]

3. 急性肾盂肾炎肾瘢痕形成的病理分期

肾瘢痕的形成是细菌感染、炎症反应及组织修复机制共同作用的复杂过程。根据目前已有的研究,其病理演变可划分为三个连续阶段。

在急性炎症期,病原体(以大肠埃希菌最为常见)侵入肾实质,引发局部强烈的免疫应答,表现为粘膜损伤、肾间质充血、水肿及大量中性粒细胞浸润,并可形成微脓肿。与此同时,IL-6、IL-1和TNF-α等炎症介质激活,有助于病原体的清除[8]-[10]。若能在此阶段及时控制感染,炎症反应可逐渐消退,肾组织有望实现完全修复而不遗留永久性瘢痕。

若感染持续存在或反复发作,病变将进入修复与纤维化形成阶段。淋巴细胞、巨噬细胞以及树突状细胞的激活是肾纤维化发生和发展所必需的。肌成纤维细胞通过成纤维细胞活化、上皮–间质转化(Epithelial-Mesenchymal Transition, EMT)以及内皮-间充质转化(Endothelial-Mesenchymal Transition, EndMT)等机制激活并大量表达α-平滑肌肌动蛋白(α-Smooth Muscle Actin, α-SMA),进而合成胶原蛋白并促进细胞外基质过度沉积[11] [12]。此外,纤维化进程的启动与进展与多种细胞因子密切相关,其中转化生长因子-β (Transforming Growth Factor-β, TGF-β)被认为是促进纤维化的关键因子[13]。在肾纤维化的早期阶段,胶原基质容易发生蛋白质的分解,因此纤维化可能是可逆的,这对于临床上进行抗纤维化治疗有着重要的意义[12]

最终阶段为肾瘢痕形成期,其特征为正常肾组织被无功能的纤维瘢痕所替代,并伴有显著的肾脏结构改变。瘢痕区域肉眼可见肾包膜苍白、肾脏轮廓凹陷及体积缩小;光镜下则可见肾间质内大量淋巴细胞及单核细胞浸润,肾小管广泛萎缩、消失,肾小球发生硬化,同时伴有多量胶原沉积和间质纤维化[8] [14]。此类病变多为不可逆性,可导致肾单位功能严重丧失,进而进展为高血压、蛋白尿甚至慢性肾功能衰竭。整个病理过程受多种因素影响,其中膀胱输尿管反流(VUR)和反复感染是促进瘢痕形成的重要危险因素。

4. 影像学检查的应用

4.1. DMSA显像

DMSA显像是评估肾脏形态和功能的常用方法,也是检测肾瘢痕形成的“金标准”。99mTc-DMSA经静脉注射后特异性地与肾脏近曲小管细胞结合,清晰显示肾脏的结构和功能[15]。在DMSA显像中,没有摄取缺陷且分肾功能 ≥ 45%的肾脏被视为正常[16]。肾瘢痕的典型影像表现为孤立或散在的局灶性放射性核素减少,伴肾皮质容量丧失和收缩或呈楔形缺损[15]。研究表明,可通过受累肾实质节段的数量来判断肾损伤程度[16]。阮谢梅等人在现有的图像分级方法基础上提出了一个新的半定量方法来评估肾损伤的程度和范围,并预测尿路感染的预后,他们将每个肾脏分为上、中、下三个区域,根据显像剂分布和缺损面积是否超过区域的50%对病变进行分级。该研究发现,当初始DMSA病变等级超过3b时,无论有无突破性尿感,病变都难以改善,可能预示肾瘢痕形成[17]。然而DMSA扫描不能区分自发消退性病变和永久性肾损伤,且存在辐射暴露问题。

4.2. 超声

常规超声检查在儿童APN中的敏感性较低,多用作初筛检查,但在排除梗阻和并发症方面仍然具有重要价值[18]。现代超声技术的发展显著提高了其在儿童APN诊断和随访中的应用价值。APN在超声上常表现为肾实质回声改变、肾局部或弥漫性肿胀、皮髓质分化消失以及皮质基底楔形低血流区等;肾瘢痕则表现为肾皮质变薄或高回声区伴肾脏轮廓异常[15] [19] [20]

研究表明,能量多普勒超声(Power Doppler Ultrasound, PDUS)在儿童APN的早期诊断作用明显,与DMSA显像在病灶定位上具有较好一致性[19]。朱辉等作者将PDUS与半定量评分系统结合评估APN病情严重程度并预测其发展,发现对于6个月龄以上儿童,PDUS诊断APN的准确性与DMSA显像接近,具备替代潜力;但PDUS分级与APN预后的关系仍需进一步研究验证[21]。微血管多普勒超声(Microvascular Doppler Ultrasound, MVUS)能显示组织微血管并识别病变血管,对儿童APN病灶有较高检出率,尤其在显示微小灌注区域方面优于传统CDUS [22]。对比增强超声(Contrast-Enhanced Ultrasound, CEUS)作为一种实时床旁成像方式,具有儿童友好、无创、安全、高效的优势。CEUS诊断儿童APN敏感性较高,能鉴别肾局灶性感染和假性病变,并在抗生素治疗期间进行客观随访及评估肾实质潜在慢性变化。此外,CEUS分辨率较高,在区分肾瘢痕与APN方面颇具潜力,但需进一步研究验证[23]-[25]

4.3. CT

CT在APN诊断和管理中具有重要应用价值,能够详细地显示腹部器官间的解剖关系,准确地显示病灶位置与范围并检测并发症。APN常见CT表现为肾脏体积增大、局部肿胀及肾实质内低增强区域等[15] [26]。除了典型影像学表现外,Ismail Basmaci等作者的研究为泌尿系感染诊断提供了一个新角度,他们回顾性收集了58名患者的资料并测量了膀胱内尿液的衰减值,发现当以-1作为临界值时,预测尿培养阳性的敏感性和特异性高达92.9%和100%,膀胱内尿液衰减值可作为诊断泌尿系统感染的高灵敏度和高特异性指标[27]。但由于这是该领域的首次研究,需进一步验证。此外,CT在评估肾实质感染严重程度方面价值显著。Takahiro Hosokawa等根据CT表现将APN、急性局灶性细菌性肾炎(Acute Focal Bacterial Nephritis, AFBN)和肾脓肿(Renal Abscess, RA)分别定义为肾实质感染程度一、二、三级,发现在感染后至少4个月进行DMSA扫描,肾实质感染越严重,发生肾瘢痕的概率越高[28]。然而,CT检查的辐射暴露、碘对比剂可能会引起的过敏反应以及急性肾损伤等局限性仍需引起注意。

4.4. MRI

目前,MRI凭借无辐射、软组织分辨率高和多参数成像等优势被广泛应用于UTI诊断。扩散加权成像(Diffusion-Weighted Imaging, DWI)作为一种无创影像学技术,无需对比剂即可反映肾实质功能状态,在检测炎症病灶方面与增强CT、增强MRI及DMSA等检查具有较高一致性[29]-[31]。通过分析病灶区域的ADC值与临床炎症指标(如降钙素原)的相关性,发现ADC值可反映APN的炎症程度[32]。此外,通过比较正常肾实质、APN及肾脓肿区域的ADC值,可对三者进行鉴别。研究表明,正常肾实质、APN及肾脓肿的ADC值依次递减,当ADC值 ≥ 2时,可认为是正常的肾实质;当ADC值为1.2~2.0时,则高度提示APN;当ADC值 < 1.2时,需警惕肾脓肿形成[33]-[35]。Riccardo Faletti等人发现DW-MRI在评估APN病变恢复方面也具有重要价值,当病灶区域与正常肾实质的初始ADC比值(R0) ≤ 0.6以及最大径(D0) > 15 mm时,APN病灶的恢复相对较慢,可为临床上判断患者是否需要延长随访或调整治疗提供重要依据[35]。扩散张量成像(Diffusion Tensor Imaging, DTI)作为DWI的拓展技术,能提供肾组织微结构信息。研究表明,DTI在检测炎症病灶方面与DWI高度一致,且扫描时间更短、图像质量更优,可替代DWI用于儿童APN的检测与随访[36]。此外,Yvonne Simrén等人发现多参数DTI能进一步表征婴幼儿UTI中的肾损伤,并根据病灶区域b700信号是否升高来鉴别急性肾盂肾炎与其他肾实质病变[37]

肾瘢痕在MRI上主要表现为肾皮质变薄及肾脏局部轮廓的凹陷。MRI的各种功能序列(如DWI、DTI、IVIM等)在检测和评估肾瘢痕形成方面具有潜在应用价值,检出率与DMSA显像相当[38]-[42]。然而,MRI检查时间长、儿童患者需镇静以及价格昂贵等局限性,使其在实际应用中受到一定限制。未来,随着MRI技术进步,有望进一步提高其在儿童APN诊断中的应用价值。

5. 新兴影像学技术

随着科技的快速发展,各种新兴影像学检查技术在临床上广泛应用,显著提高了疾病诊断的准确性,为临床制定合适治疗方案提供了可靠依据。影像组学(Radiomics)和人工智能(Artificial Intelligence, AI)在医学上用于病灶识别、分类与器官分割,如在肺部CT上检测肺结节、多功能参数MRI检测前列腺癌、预测肿瘤远处转移和组织学亚型等[43] [44]

在泌尿系感染疾病及肾纤维化的临床诊断和管理中,AI发挥着不可或缺的作用。Paul S. Heckerling等人采集具有尿路症状的女性患者的临床数据,以人工神经网络(Artificial Neural Network, ANN)进行非线性建模,并联合遗传算法(Genetic Algorithm, GA)筛选最优预测变量组合。研究显示,将ANN与GA两种模型结合起来能够有效识别出预测UTI的精简变量组合,其判别能力优于传统统计模型,但是该模型在其他人群中的准确性尚需进一步验证,且ANN与GA的参数选择可能影响变量筛选结果[45]。Ross J. Burton等人通过构建AI模型优化尿液培养流程,其中以XGBoost模型表现最优,在不降低UTI检测敏感性的前提下,减少了约45%的尿培养工作量,该研究为实现高效、低成本、自动化的尿培养前筛选提供了有力工具,有效减少了临床中无效尿培养的数量[46]。Chanon Chantaduly等人将AI与CT影像结合,用于评估肾脏的纤维化程度。该研究构建了全局逐层分类器与体素级分类器两种2D卷积神经网络(Convolutional Neural Network, CNN)模型,并以受试者的病理活检报告作为参考,结果表明上述两种模型具有优良的预测性能与较高的准确性;当体素模型在阈值为0.5时,可识别85%的重度纤维化的患者。但是该研究需要手动勾画肾脏区域,尚未实现自动化,且需要进一步验证该模型在多中心、多人群中的泛化能力[47]

此外,AI系统的算法需要大量数据,获得这些数据耗时昂贵,且可能会引发患者数据隐私和安全问题,需要更高安全性和更大监管力度[43] [44]。相信随着科技的发展,这些问题将得到更好解决,使AI在医学上的应用更加可靠安全,从而提高疾病诊断和治疗效率。

6. 讨论与展望

Table 1. Comparison of DMSA, US, CT and MRI

1. DMSA、US、CT以及MRI的对比

DMSA

US

CT

MRI

敏感性

92.1%

74.3%

86.8%

89.5%

特异性

93.8%

56.7%

87.5%

87.5%

优点

有较高的敏感性和特异性,可及性好,成本合理,能对肾功能进行定性和定量的评估

无辐射,操作便捷

扫描时间短, 敏感性高

无辐射,软组织对比度较好

缺点

有辐射,但剂量低于CT

易受肠道气体、呼吸运动、肋骨伪影等因素干扰,导致较高的假阳性率与假阴性率

需要注射造影剂, 有辐射

需要镇静,费用高

注:数据整理自Majd等(2001)所报道的四种检查技术的APN诊断性能[48]

儿童急性肾盂肾炎若长期反复发作,极易引发肾瘢痕形成,进而可能诱发高血压、蛋白尿以及肾功能衰竭等严重并发症。影像学检查在儿童APN诊断中发挥着至关重要的作用。DMSA显像能够检测肾瘢痕形成并评估肾功能,在感染治疗后的长期随访中意义重大;超声检查可初步筛查儿童APN并检测微血管的病变;CT和MRI能清晰呈现腹部器官间的解剖关系,精准定位病灶并确定其范围,其中MRI更是检测肾瘢痕形成的优秀方法。随着人工智能的快速发展,儿童APN诊断与肾瘢痕评估准确性得到进一步提升,助力临床医生及时采取干预措施,从而更好地改善患者预后,为儿童APN的精准诊疗与健康管理提供了坚实保障。

Majd,M等人[48]通过人为建立APN的动物模型,依次进行DMSA、US、CT以及MRI检查,对上述四种检查技术进行评估对比(见表1)并对临床上APN的检查流程提出建议。因此,根据《泌尿道感染诊治循证指南(2016)》[49]及2023年美国放射学会(American College of Radiology, ACR)最新指南[6],所有首次发热性UTI的患儿均应进行泌尿系超声检查,以排除泌尿系统发育畸形及评估肾积水的情况;对于≤2岁的患儿,此项检查尤为重要。若临床怀疑膀胱输尿管返流(VUR),可进行排泄性膀胱尿路造影检查(Voiding Cystourethrography, VCUG)。对于复发性或不典型UTI,若存在并发症风险(如肾脓肿等),可考虑行腹部增强CT检查。此外,建议于急性感染后6个月进行DMSA扫描,以评估是否形成肾瘢痕。

NOTES

*通讯作者。

参考文献

[1] 沈茜. 儿童泌尿系感染与先天性肾脏和尿路畸形[J]. 中国实用儿科杂志, 2025, 40(1): 20-25.
[2] Simões e Silva, A.C. and Oliveira, E.A. (2015) Update on the Approach of Urinary Tract Infection in Childhood. Jornal de Pediatria, 91, S2-S10. [Google Scholar] [CrossRef] [PubMed]
[3] 张乔. 儿童急性肾盂肾炎临床特点分析及其预测模型的研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2022.
[4] 孙玉, 沈茜. 儿童肾瘢痕形成的危险因素[J]. 临床儿科杂志, 2017, 35(9): 713-715.
[5] Chandra, T., Bajaj, M., Iyer, R.S., Chan, S.S., Bardo, D.M.E., Chen, J., et al. (2024) ACR Appropriateness Criteria Urinary Tract Infection-Child: 2023 Update. Journal of the American College of Radiology, 21, S326-S342. [Google Scholar] [CrossRef] [PubMed]
[6] Faust, W.C., Diaz, M. and Pohl, H.G. (2009) Incidence of Post-Pyelonephritic Renal Scarring: A Meta-Analysis of the Dimercapto-Succinic Acid Literature. Journal of Urology, 181, 290-298. [Google Scholar] [CrossRef] [PubMed]
[7] Morello, W., La Scola, C., Alberici, I. and Montini, G. (2016) Acute Pyelonephritis in Children. Pediatric Nephrology, 31, 1253-1265. [Google Scholar] [CrossRef] [PubMed]
[8] Smith, E.A. (2008) Pyelonephritis, Renal Scarring, and Reflux Nephropathy: A Pediatric Urologist’s Perspective. Pediatric Radiology, 38, 76-82. [Google Scholar] [CrossRef] [PubMed]
[9] Li, B., Haridas, B., Jackson, A.R., Cortado, H., Mayne, N., Kohnken, R., et al. (2017) Inflammation Drives Renal Scarring in Experimental Pyelonephritis. American Journal of Physiology-Renal Physiology, 312, F43-F53. [Google Scholar] [CrossRef] [PubMed]
[10] Ambite, I., Chao, S.M., Rosenblad, T., Hopkins, R., Storm, P., Ng, Y.H., et al. (2024) Molecular Analysis of Acute Pyelonephritis—Excessive Innate and Attenuated Adaptive Immunity. Life Science Alliance, 8, e202402926. [Google Scholar] [CrossRef] [PubMed]
[11] Hewitson, T.D. (2009) Renal Tubulointerstitial Fibrosis: Common but Never Simple. American Journal of Physiology-Renal Physiology, 296, F1239-F1244. [Google Scholar] [CrossRef] [PubMed]
[12] Liu, Y. (2011) Cellular and Molecular Mechanisms of Renal Fibrosis. Nature Reviews Nephrology, 7, 684-696. [Google Scholar] [CrossRef] [PubMed]
[13] Lan, H.Y. (2011) Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. International Journal of Biological Sciences, 7, 1056-1067. [Google Scholar] [CrossRef] [PubMed]
[14] Coulthard, M.G., Flecknell, P., Orr, H., Manas, D. and O’Donnell, M. (2002) Renal Scarring Caused by Vesicoureteric Reflux and Urinary Infection: A Study in Pigs. Pediatric Nephrology, 17, 481-484. [Google Scholar] [CrossRef] [PubMed]
[15] 耿琳. 儿童泌尿道感染影像学检查进展[J]. 中国实用儿科杂志, 2004(2): 114-116.
[16] Roupakias, S., Sinopidis, X., Tsikopoulos, G., Spyridakis, I., Karatza, A. and Varvarigou, A. (2017) Dimercaptosuccinic Acid Scan Challenges in Childhood Urinary Tract Infection, Vesicoureteral Reflux and Renal Scarring Investigation and Management. Minerva Urology and Nephrology, 69, 144-152. [Google Scholar] [CrossRef] [PubMed]
[17] Ruan, X., Zhang, B., Chen, Z. and Wu, H. (2025) Improved Grading Method of 99mTc-Dimercaptosuccinic Acid Static Renal Imaging Helps Predict the Prognosis of Urinary Tract Infection in Children. Nuclear Medicine Communications, 46, 411-417. [Google Scholar] [CrossRef] [PubMed]
[18] Björgvinsson, E., Majd, M. and Eggli, K.D. (1991) Diagnosis of Acute Pyelonephritis in Children: Comparison of Sonography and 99mTc-DMSA Scintigraphy. American Journal of Roentgenology, 157, 539-543. [Google Scholar] [CrossRef] [PubMed]
[19] Stogianni, A., Nikolopoulos, P., Oikonomou, I., Gatzola, M., Balaris, V., Farmakiotis, D., et al. (2007) Childhood Acute Pyelonephritis: Comparison of Power Doppler Sonography and Tc-DMSA Scintigraphy. Pediatric Radiology, 37, 685-690. [Google Scholar] [CrossRef] [PubMed]
[20] Riccabona, M. (2016) Imaging in Childhood Urinary Tract Infection. La Radiologia Medica, 121, 391-401. [Google Scholar] [CrossRef] [PubMed]
[21] Zhu, H., Chen, M., Luo, H., Pan, Y., Zheng, W. and Yang, Y. (2020) Semiquantitative Analysis of Power Doppler Ultrasonography versus Tc-99m DMSA Scintigraphy in Diagnostic and Severity Assessment of Acute Childhood Pyelonephritis. Translational Pediatrics, 9, 487-495. [Google Scholar] [CrossRef] [PubMed]
[22] Choi, G., Je, B., Hong, D. and Cha, J. (2021) Microvascular Doppler Ultrasound in Children with Acute Pyelonephritis. Medical Ultrasonography, 23, 161-167. [Google Scholar] [CrossRef] [PubMed]
[23] Pšeničny, E., Glušič, M., Pokorn, M. and Ključevšek, D. (2022) Contrast-Enhanced Ultrasound in Detection and Follow-Up of Focal Renal Infections in Children. The British Journal of Radiology, 95, Article 20220290. [Google Scholar] [CrossRef] [PubMed]
[24] Jung, H.J., Choi, M.H., Pai, K.S. and Kim, H.G. (2020) Diagnostic Performance of Contrast-Enhanced Ultrasound for Acute Pyelonephritis in Children. Scientific Reports, 10, Article No. 10715. [Google Scholar] [CrossRef] [PubMed]
[25] Lee, H.B., Lee, S., Choi, Y.H., Cheon, J., Lee, S.B., Cho, Y.J., et al. (2023) Contrast-Enhanced Ultrasound for the Diagnosis of Acute Pyelonephritis in Pediatric Patients with Urinary Tract Infection: A Feasibility Study. PLOS ONE, 18, e0284016. [Google Scholar] [CrossRef] [PubMed]
[26] 赵锦桥. 急性肾盂肾炎的CT表现及临床意义[J]. 影像研究与医学应用, 2022, 6(5): 149-151.
[27] Basmaci, I., Bozkurt, I.H., Sefik, E., Celik, S., Yarimoglu, S. and Degirmenci, T. (2018) A Novel Use of Attenuation Value (Hounsfield Unit) in Non-Contrast CT: Diagnosis of Urinary Tract Infection. International Urology and Nephrology, 50, 1557-1562. [Google Scholar] [CrossRef] [PubMed]
[28] Hosokawa, T., Uchiyama, M., Tanami, Y., Sato, Y., Wakabayashi, Y. and Oguma, E. (2022) Incidence of Renal Scarring on Technetium-99 M Dimercaptosuccinic Acid Renal Scintigraphy after Acute Pyelonephritis, Acute Focal Bacterial Nephritis, and Renal Abscess. Annals of Nuclear Medicine, 37, 176-188. [Google Scholar] [CrossRef] [PubMed]
[29] Simrén, Y., Stokland, E., Hansson, S., Sixt, R., Svensson, P.-A. and Lagerstrand, K.M. (2020) Diffusion Weighted Imaging Is a Promising Method to Detect Acute Pyelonephritis in Non-Sedated Free Breathing Infants. Journal of Pediatric Urology, 16, 320-325. [Google Scholar] [CrossRef] [PubMed]
[30] Vivier, P., Sallem, A., Beurdeley, M., Lim, R.P., Leroux, J., Caudron, J., et al. (2014) MRI and Suspected Acute Pyelonephritis in Children: Comparison of Diffusion-Weighted Imaging with Gadolinium-Enhanced T1-Weighted Imaging. European Radiology, 24, 19-25. [Google Scholar] [CrossRef] [PubMed]
[31] Sriman, R., Venkatesh, K., Mathew, C., Pankaj, M. and Shankar, R. (2020) Validity of Diffusion-Weighted Magnetic Resonance Imaging in the Evaluation of Acute Pyelonephritis in Comparison with Contrast-Enhanced Computed Tomography. Polish Journal of Radiology, 85, 137-143. [Google Scholar] [CrossRef] [PubMed]
[32] 刘肖, 全冠民, 李雪庆, 等. 急性肾盂肾炎ADC值及与降钙素原相关性的初步研究[J]. 放射学实践, 2018, 33(1): 51-54.
[33] Faletti, R., Cassinis, M.C., Fonio, P., Grasso, A., Battisti, G., Bergamasco, L., et al. (2013) Diffusion-Weighted Imaging and Apparent Diffusion Coefficient Values versus Contrast-Enhanced MR Imaging in the Identification and Characterisation of Acute Pyelonephritis. European Radiology, 23, 3501-3508. [Google Scholar] [CrossRef] [PubMed]
[34] Pinto, D.S., George, A., Johny, J. and Hoisala, R.V. (2023) Role of MRI in the Evaluation of Acute Pyelonephritis in a High-Risk Population with Renal Dysfunction: A Prospective Study. Emergency Radiology, 30, 285-295. [Google Scholar] [CrossRef] [PubMed]
[35] Faletti, R., Gatti, M., Bassano, S., Finocchietti, D., Fiore, S., Colla, L., et al. (2018) Follow-Up of Acute Pyelonephritis: What Causes the Diffusion-Weighted Magnetic Resonance Imaging Recovery to Lag Clinical Recovery? Abdominal Radiology, 43, 639-646. [Google Scholar] [CrossRef] [PubMed]
[36] Lair, M., Renaux-Petel, M., Hassani, A., Cruypeninck, Y., Vasies, I., Liard, A., et al. (2018) Diffusion Tensor Imaging in Acute Pyelonephritis in Children. Pediatric Radiology, 48, 1081-1085. [Google Scholar] [CrossRef] [PubMed]
[37] Simrén, Y., Stokland, E., Hansson, S., Hebelka, H., Svensson, P. and Lagerstrand, K.M. (2021) Diffusion Tensor Imaging Based Multiparametric Characterization of Renal Lesions in Infants with Urinary Tract Infections: An Explorative Study. BMC Pediatrics, 21, Article No. 440. [Google Scholar] [CrossRef] [PubMed]
[38] Koçyiğit, A., Yüksel, S., Bayram, R., Yılmaz, İ. and Karabulut, N. (2014) Efficacy of Magnetic Resonance Urography in Detecting Renal Scars in Children with Vesicoureteral Reflux. Pediatric Nephrology, 29, 1215-1220. [Google Scholar] [CrossRef] [PubMed]
[39] Chan, Y.-L., Chan, K., Yeung, C., Roebuck, D.J., Chu, W.C.W., Lee, K., et al. (1999) Potential Utility of MRI in the Evaluation of Children at Risk of Renal Scarring. Pediatric Radiology, 29, 856-862. [Google Scholar] [CrossRef] [PubMed]
[40] Freeman, C.W., Altes, T.A., Rehm, P.K., de Lange, E.E., Lancaster, L., Mugler, J.P., et al. (2018) Unenhanced MRI as an Alternative to 99mTc-Labeled Dimercaptosuccinic Acid Scintigraphy in the Detection of Pediatric Renal Scarring. American Journal of Roentgenology, 210, 869-875. [Google Scholar] [CrossRef] [PubMed]
[41] Lee, C.H., Yoo, K.H., Je, B., Kim, I.S., Kiefer, B., Park, Y.S., et al. (2014) Using Intravoxel Incoherent Motion MR Imaging to Evaluate Cortical Defects in the First Episode of Upper Urinary Tract Infections: Preliminary Results. Journal of Magnetic Resonance Imaging, 40, 545-551. [Google Scholar] [CrossRef] [PubMed]
[42] Nassar, M.K., Khedr, D., Abu-Elfadl, H.G., et al. (2021) Diffusion Tensor Imaging in Early Prediction of Renal Fibrosis in Patients with Renal Disease: Functional and Histopathological Correlations. International Journal of Clinical Practice, 75, e13918. [Google Scholar] [CrossRef] [PubMed]
[43] Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H. and Aerts, H.J.W.L. (2018) Artificial Intelligence in Radiology. Nature Reviews Cancer, 18, 500-510. [Google Scholar] [CrossRef] [PubMed]
[44] Mello-Thoms, C. and Mello, C.A.B. (2023) Clinical Applications of Artificial Intelligence in Radiology. The British Journal of Radiology, 96, Article 20221031. [Google Scholar] [CrossRef] [PubMed]
[45] Heckerling, P.S., Canaris, G.J., Flach, S.D., Tape, T.G., Wigton, R.S. and Gerber, B.S. (2007) Predictors of Urinary Tract Infection Based on Artificial Neural Networks and Genetic Algorithms. International Journal of Medical Informatics, 76, 289-296. [Google Scholar] [CrossRef] [PubMed]
[46] Burton, R.J., Albur, M., Eberl, M. and Cuff, S.M. (2019) Using Artificial Intelligence to Reduce Diagnostic Workload without Compromising Detection of Urinary Tract Infections. BMC Medical Informatics and Decision Making, 19, Article No. 171. [Google Scholar] [CrossRef] [PubMed]
[47] Chantaduly, C., Troutt, H.R., Perez Reyes, K.A., Zuckerman, J.E., Chang, P.D. and Lau, W.L. (2021) Artificial Intelligence Assessment of Renal Scarring (AIRS Study). Kidney 360, 3, 83-90. [Google Scholar] [CrossRef] [PubMed]
[48] Majd, M., Nussbaum Blask, A.R., Markle, B.M., Shalaby-Rana, E., Pohl, H.G., Park, J., et al. (2001) Acute Pyelonephritis: Comparison of Diagnosis With99mTc-Dmsa SPECT, Spiral CT, MR Imaging, and Power Doppler US in an Experimental Pig Model. Radiology, 218, 101-108. [Google Scholar] [CrossRef] [PubMed]
[49] 中华医学会儿科学分会肾脏学组. 泌尿道感染诊治循证指南(2016) [J]. 中华儿科杂志, 2017, 55(12): 898-901.