|
[1]
|
沈茜. 儿童泌尿系感染与先天性肾脏和尿路畸形[J]. 中国实用儿科杂志, 2025, 40(1): 20-25.
|
|
[2]
|
Simões e Silva, A.C. and Oliveira, E.A. (2015) Update on the Approach of Urinary Tract Infection in Childhood. Jornal de Pediatria, 91, S2-S10. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
张乔. 儿童急性肾盂肾炎临床特点分析及其预测模型的研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2022.
|
|
[4]
|
孙玉, 沈茜. 儿童肾瘢痕形成的危险因素[J]. 临床儿科杂志, 2017, 35(9): 713-715.
|
|
[5]
|
Chandra, T., Bajaj, M., Iyer, R.S., Chan, S.S., Bardo, D.M.E., Chen, J., et al. (2024) ACR Appropriateness Criteria Urinary Tract Infection-Child: 2023 Update. Journal of the American College of Radiology, 21, S326-S342. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Faust, W.C., Diaz, M. and Pohl, H.G. (2009) Incidence of Post-Pyelonephritic Renal Scarring: A Meta-Analysis of the Dimercapto-Succinic Acid Literature. Journal of Urology, 181, 290-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Morello, W., La Scola, C., Alberici, I. and Montini, G. (2016) Acute Pyelonephritis in Children. Pediatric Nephrology, 31, 1253-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Smith, E.A. (2008) Pyelonephritis, Renal Scarring, and Reflux Nephropathy: A Pediatric Urologist’s Perspective. Pediatric Radiology, 38, 76-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, B., Haridas, B., Jackson, A.R., Cortado, H., Mayne, N., Kohnken, R., et al. (2017) Inflammation Drives Renal Scarring in Experimental Pyelonephritis. American Journal of Physiology-Renal Physiology, 312, F43-F53. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ambite, I., Chao, S.M., Rosenblad, T., Hopkins, R., Storm, P., Ng, Y.H., et al. (2024) Molecular Analysis of Acute Pyelonephritis—Excessive Innate and Attenuated Adaptive Immunity. Life Science Alliance, 8, e202402926. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hewitson, T.D. (2009) Renal Tubulointerstitial Fibrosis: Common but Never Simple. American Journal of Physiology-Renal Physiology, 296, F1239-F1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, Y. (2011) Cellular and Molecular Mechanisms of Renal Fibrosis. Nature Reviews Nephrology, 7, 684-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lan, H.Y. (2011) Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. International Journal of Biological Sciences, 7, 1056-1067. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Coulthard, M.G., Flecknell, P., Orr, H., Manas, D. and O’Donnell, M. (2002) Renal Scarring Caused by Vesicoureteric Reflux and Urinary Infection: A Study in Pigs. Pediatric Nephrology, 17, 481-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
耿琳. 儿童泌尿道感染影像学检查进展[J]. 中国实用儿科杂志, 2004(2): 114-116.
|
|
[16]
|
Roupakias, S., Sinopidis, X., Tsikopoulos, G., Spyridakis, I., Karatza, A. and Varvarigou, A. (2017) Dimercaptosuccinic Acid Scan Challenges in Childhood Urinary Tract Infection, Vesicoureteral Reflux and Renal Scarring Investigation and Management. Minerva Urology and Nephrology, 69, 144-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ruan, X., Zhang, B., Chen, Z. and Wu, H. (2025) Improved Grading Method of 99mTc-Dimercaptosuccinic Acid Static Renal Imaging Helps Predict the Prognosis of Urinary Tract Infection in Children. Nuclear Medicine Communications, 46, 411-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Björgvinsson, E., Majd, M. and Eggli, K.D. (1991) Diagnosis of Acute Pyelonephritis in Children: Comparison of Sonography and 99mTc-DMSA Scintigraphy. American Journal of Roentgenology, 157, 539-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Stogianni, A., Nikolopoulos, P., Oikonomou, I., Gatzola, M., Balaris, V., Farmakiotis, D., et al. (2007) Childhood Acute Pyelonephritis: Comparison of Power Doppler Sonography and Tc-DMSA Scintigraphy. Pediatric Radiology, 37, 685-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Riccabona, M. (2016) Imaging in Childhood Urinary Tract Infection. La Radiologia Medica, 121, 391-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhu, H., Chen, M., Luo, H., Pan, Y., Zheng, W. and Yang, Y. (2020) Semiquantitative Analysis of Power Doppler Ultrasonography versus Tc-99m DMSA Scintigraphy in Diagnostic and Severity Assessment of Acute Childhood Pyelonephritis. Translational Pediatrics, 9, 487-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Choi, G., Je, B., Hong, D. and Cha, J. (2021) Microvascular Doppler Ultrasound in Children with Acute Pyelonephritis. Medical Ultrasonography, 23, 161-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pšeničny, E., Glušič, M., Pokorn, M. and Ključevšek, D. (2022) Contrast-Enhanced Ultrasound in Detection and Follow-Up of Focal Renal Infections in Children. The British Journal of Radiology, 95, Article 20220290. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jung, H.J., Choi, M.H., Pai, K.S. and Kim, H.G. (2020) Diagnostic Performance of Contrast-Enhanced Ultrasound for Acute Pyelonephritis in Children. Scientific Reports, 10, Article No. 10715. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lee, H.B., Lee, S., Choi, Y.H., Cheon, J., Lee, S.B., Cho, Y.J., et al. (2023) Contrast-Enhanced Ultrasound for the Diagnosis of Acute Pyelonephritis in Pediatric Patients with Urinary Tract Infection: A Feasibility Study. PLOS ONE, 18, e0284016. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
赵锦桥. 急性肾盂肾炎的CT表现及临床意义[J]. 影像研究与医学应用, 2022, 6(5): 149-151.
|
|
[27]
|
Basmaci, I., Bozkurt, I.H., Sefik, E., Celik, S., Yarimoglu, S. and Degirmenci, T. (2018) A Novel Use of Attenuation Value (Hounsfield Unit) in Non-Contrast CT: Diagnosis of Urinary Tract Infection. International Urology and Nephrology, 50, 1557-1562. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hosokawa, T., Uchiyama, M., Tanami, Y., Sato, Y., Wakabayashi, Y. and Oguma, E. (2022) Incidence of Renal Scarring on Technetium-99 M Dimercaptosuccinic Acid Renal Scintigraphy after Acute Pyelonephritis, Acute Focal Bacterial Nephritis, and Renal Abscess. Annals of Nuclear Medicine, 37, 176-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Simrén, Y., Stokland, E., Hansson, S., Sixt, R., Svensson, P.-A. and Lagerstrand, K.M. (2020) Diffusion Weighted Imaging Is a Promising Method to Detect Acute Pyelonephritis in Non-Sedated Free Breathing Infants. Journal of Pediatric Urology, 16, 320-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Vivier, P., Sallem, A., Beurdeley, M., Lim, R.P., Leroux, J., Caudron, J., et al. (2014) MRI and Suspected Acute Pyelonephritis in Children: Comparison of Diffusion-Weighted Imaging with Gadolinium-Enhanced T1-Weighted Imaging. European Radiology, 24, 19-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sriman, R., Venkatesh, K., Mathew, C., Pankaj, M. and Shankar, R. (2020) Validity of Diffusion-Weighted Magnetic Resonance Imaging in the Evaluation of Acute Pyelonephritis in Comparison with Contrast-Enhanced Computed Tomography. Polish Journal of Radiology, 85, 137-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
刘肖, 全冠民, 李雪庆, 等. 急性肾盂肾炎ADC值及与降钙素原相关性的初步研究[J]. 放射学实践, 2018, 33(1): 51-54.
|
|
[33]
|
Faletti, R., Cassinis, M.C., Fonio, P., Grasso, A., Battisti, G., Bergamasco, L., et al. (2013) Diffusion-Weighted Imaging and Apparent Diffusion Coefficient Values versus Contrast-Enhanced MR Imaging in the Identification and Characterisation of Acute Pyelonephritis. European Radiology, 23, 3501-3508. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pinto, D.S., George, A., Johny, J. and Hoisala, R.V. (2023) Role of MRI in the Evaluation of Acute Pyelonephritis in a High-Risk Population with Renal Dysfunction: A Prospective Study. Emergency Radiology, 30, 285-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Faletti, R., Gatti, M., Bassano, S., Finocchietti, D., Fiore, S., Colla, L., et al. (2018) Follow-Up of Acute Pyelonephritis: What Causes the Diffusion-Weighted Magnetic Resonance Imaging Recovery to Lag Clinical Recovery? Abdominal Radiology, 43, 639-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lair, M., Renaux-Petel, M., Hassani, A., Cruypeninck, Y., Vasies, I., Liard, A., et al. (2018) Diffusion Tensor Imaging in Acute Pyelonephritis in Children. Pediatric Radiology, 48, 1081-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Simrén, Y., Stokland, E., Hansson, S., Hebelka, H., Svensson, P. and Lagerstrand, K.M. (2021) Diffusion Tensor Imaging Based Multiparametric Characterization of Renal Lesions in Infants with Urinary Tract Infections: An Explorative Study. BMC Pediatrics, 21, Article No. 440. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Koçyiğit, A., Yüksel, S., Bayram, R., Yılmaz, İ. and Karabulut, N. (2014) Efficacy of Magnetic Resonance Urography in Detecting Renal Scars in Children with Vesicoureteral Reflux. Pediatric Nephrology, 29, 1215-1220. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chan, Y.-L., Chan, K., Yeung, C., Roebuck, D.J., Chu, W.C.W., Lee, K., et al. (1999) Potential Utility of MRI in the Evaluation of Children at Risk of Renal Scarring. Pediatric Radiology, 29, 856-862. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Freeman, C.W., Altes, T.A., Rehm, P.K., de Lange, E.E., Lancaster, L., Mugler, J.P., et al. (2018) Unenhanced MRI as an Alternative to 99mTc-Labeled Dimercaptosuccinic Acid Scintigraphy in the Detection of Pediatric Renal Scarring. American Journal of Roentgenology, 210, 869-875. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lee, C.H., Yoo, K.H., Je, B., Kim, I.S., Kiefer, B., Park, Y.S., et al. (2014) Using Intravoxel Incoherent Motion MR Imaging to Evaluate Cortical Defects in the First Episode of Upper Urinary Tract Infections: Preliminary Results. Journal of Magnetic Resonance Imaging, 40, 545-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Nassar, M.K., Khedr, D., Abu-Elfadl, H.G., et al. (2021) Diffusion Tensor Imaging in Early Prediction of Renal Fibrosis in Patients with Renal Disease: Functional and Histopathological Correlations. International Journal of Clinical Practice, 75, e13918. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H. and Aerts, H.J.W.L. (2018) Artificial Intelligence in Radiology. Nature Reviews Cancer, 18, 500-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Mello-Thoms, C. and Mello, C.A.B. (2023) Clinical Applications of Artificial Intelligence in Radiology. The British Journal of Radiology, 96, Article 20221031. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Heckerling, P.S., Canaris, G.J., Flach, S.D., Tape, T.G., Wigton, R.S. and Gerber, B.S. (2007) Predictors of Urinary Tract Infection Based on Artificial Neural Networks and Genetic Algorithms. International Journal of Medical Informatics, 76, 289-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Burton, R.J., Albur, M., Eberl, M. and Cuff, S.M. (2019) Using Artificial Intelligence to Reduce Diagnostic Workload without Compromising Detection of Urinary Tract Infections. BMC Medical Informatics and Decision Making, 19, Article No. 171. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Chantaduly, C., Troutt, H.R., Perez Reyes, K.A., Zuckerman, J.E., Chang, P.D. and Lau, W.L. (2021) Artificial Intelligence Assessment of Renal Scarring (AIRS Study). Kidney 360, 3, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Majd, M., Nussbaum Blask, A.R., Markle, B.M., Shalaby-Rana, E., Pohl, H.G., Park, J., et al. (2001) Acute Pyelonephritis: Comparison of Diagnosis With99mTc-Dmsa SPECT, Spiral CT, MR Imaging, and Power Doppler US in an Experimental Pig Model. Radiology, 218, 101-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
中华医学会儿科学分会肾脏学组. 泌尿道感染诊治循证指南(2016) [J]. 中华儿科杂志, 2017, 55(12): 898-901.
|