神经内分泌前列腺癌的研究进展
Research Advances in Neuroendocrine Prostate Cancer
DOI: 10.12677/bp.2025.154031, PDF, HTML, XML,   
作者: 刘雪迎, 刘 珂*:山东大学公共卫生学院,山东 济南
关键词: 神经内分泌前列腺癌分子靶向治疗Neuroendocrine Prostate Cancer Molecular Targeted Therapy
摘要: 神经内分泌前列腺癌(Neuroendocrine Prostate Cancer, NEPC)是前列腺癌中一类具有高度侵袭性且致死率极高的特殊亚型,其临床特征主要表现为疾病进展迅速、对常规雄激素受体(Androgen Receptor, AR)靶向治疗存在原发性耐药或继发性耐药,且患者预后极差。尽管少数情况下NEPC可原发发生,但更多病例源自前列腺癌在长期接受雄激素剥夺治疗(Androgen Deprivation Therapy, ADT)或雄激素受体通路抑制剂(Androgen Receptor Pathway Inhibitor, ARPI)治疗的压力下,发生转分化而形成。然而,该转分化机制的分子基础迄今仍存在较大争议。NEPC患者整体生存率极低,且目前有效的治疗手段十分有限,其临床管理面临重大挑战。本文系统综述了NEPC的最新研究进展,旨在为NEPC的基础研究转化与临床治疗优化提供参考。
Abstract: Neuroendocrine Prostate Cancer (NEPC) is a rare but highly aggressive subtype of prostate cancer with an exceptionally high mortality rate. Clinically, NEPC is characterized by rapid disease progression, primary resistance or acquired resistance to conventional Androgen Receptor (AR)—targeted therapies, and extremely poor prognosis. Although NEPC can arise de novo in a minority of cases, it more commonly develops through transdifferentiation of prostate adenocarcinoma under the selective pressure of long-term Androgen Deprivation Therapy (ADT) or Androgen Receptor Pathway Inhibitor (ARPI). However, the molecular mechanisms underlying this transdifferentiation remain highly controversial. NEPC patients exhibit very low overall survival, and effective therapeutic options are currently limited, posing major challenges to clinical management. This review provides a comprehensive overview of recent advances in NEPC research, aiming to inform future translational studies and the optimization of clinical treatment strategies.
文章引用:刘雪迎, 刘珂. 神经内分泌前列腺癌的研究进展[J]. 生物过程, 2025, 15(4): 235-244. https://doi.org/10.12677/bp.2025.154031

1. 引言

近年来,随着基因组学和转录组学研究的深入,越来越多的证据表明多种关键分子驱动因子在神经内分泌型前列腺癌(Neuroendocrine Prostate Cancer, NEPC)的发生和进展中发挥动态作用,不同阶段的分子改变共同塑造了其独特的生物学特征[1]-[3]。这些研究不仅揭示了NEPC的复杂演化机制,也为新型靶向治疗和免疫治疗的开发提供了理论依据。因此,系统总结NEPC的临床表现、病理学与分子特征,以及现有和新兴治疗策略,对于推动该领域的研究进展并改善患者预后具有重要意义。本文将重点阐述NEPC的分子生物学特征,临床病理特征,同时探讨其治疗现状及潜在的治疗新方向,以期为未来NEPC的诊断与临床管理工作提供参考。

2. 分子生物学特征

随着多组学技术的快速发展,研究者对NEPC的分子生物学特征有了更深入的认识。大量证据表明,NEPC的发生与进展并非依赖单一机制,而是基因组学异常、表观遗传学重塑及转录因子调控等多层次分子事件共同作用的结果。

2.1. 基因组层面特征

NEPC亚型呈现出多种特征性基因组改变,这些改变与疾病发生机制及起源密切相关。其一,ERG与TMPRSS2融合基因在NEPC中的发生频率约为50%,与前列腺腺癌相当,但在正常神经内分泌细胞中并未观察到该融合事件[4] [5]。此外,在腺癌与NEPC混合型肿瘤中,研究发现腺癌灶与邻近神经内分泌灶往往共享TMPRSS2-ERG融合事件,这一证据提示NEPC可能源自腺癌前体,该假说亦得到基因组研究及谱系追踪临床前实验的支持[6] [7]。其二,NEPC的另一显著基因组特征是TP53与RB1基因的缺失,且该缺失多发生于去势治疗产生耐药的过程中。大量临床前研究证实,TP53与RB1的联合缺失是驱动肿瘤细胞获得神经内分泌样表型的关键分子基础[8]-[12]

2.2. 表观遗传学层面特征

表观遗传的改变被认为是驱动NEPC细胞谱系可塑性及干细胞样特性的核心机制,主要涉及DNA甲基化、组蛋白修饰及染色质可及性的动态变化,这些变化共同调控转录过程与细胞分化状态[13] [14]。研究显示,NEPC的全基因组DNA甲基化模式与去势抵抗性前列腺癌(Castration-Resistant Prostate Cancer, CRPC)存在显著差异,且该甲基化模式与细胞分化、发育及细胞黏附相关通路密切关联[15]。值得注意的是,这些特征性甲基化改变可在细胞游离DNA (cell-free DNA, cfDNA)中检测到,提示其具有作为无创生物标志物的潜在价值[16]。与此同时,组蛋白修饰异常在NEPC细胞谱系重编程中亦发挥关键作用。EZH2 作为Polycomb抑制复合物2 (Polycomb Repressive Complex 2, PRC2)的核心组分,在NEPC中呈显著高表达状态,其通过介导组蛋白H3第27位赖氨酸三甲基化(H3K27me3)促进靶基因沉默,进而破坏细胞分化稳态[17]。临床前证据表明,抑制EZH2不仅可恢复雄激素受体(Androgen Receptor, AR)的表达,还能增强肿瘤细胞对AR靶向治疗的敏感性,因此EZH2被视为具有药物开发潜力的重要靶点[11] [18] [19]

2.3. 转录因子调控特征

NEPC亚型常伴随转录因子的异常活化或抑制,这些改变直接影响神经内分泌表型的形成与维持。REST作为神经元特异性基因的关键抑制因子,在前列腺腺癌中通常高表达,而在NEPC中则显著下调[20] [21]。REST的缺失不仅可诱导神经内分泌标志物(如嗜铬粒蛋白A、突触素)的表达,还能解除对细胞周期相关基因(如AURKA)的抑制,从而促进肿瘤细胞增殖[22] [23]。在AR抑制治疗的压力下,RNA剪接因子SRRM4可将REST剪接为无功能的同源物,进一步削弱其转录抑制作用,这些发现提示REST下调是NEPC神经内分泌表型形成的关键分子事件[24]-[26]。另一重要转录因子为ONECUT2,其在内胚层来源组织的分化调控及神经系统发育中发挥核心作用。临床样本分析显示,NEPC的ONECUT2表达水平显著高于良性前列腺组织、原发性前列腺腺癌及CRPC (Spearman等级相关系数 = 0.54,P = 7.96e−35) [27]。机制上,REST可通过结合ONECUT2启动子区域抑制其表达;而在NEPC中,REST功能缺失导致ONECUT2持续去抑制,进而通过调控下游靶基因推动神经内分泌表型的建立与维持[28]

3. 临床病理特征

NEPC的发病模式具有显著异质性,既可原发发生,也可在治疗压力下诱导形成。其中,原发性NEPC (de novo NEPC)在前列腺癌初诊病例中十分罕见,占比不足2% [29] [30]。相比之下,治疗诱导型NEPC (treatment emergent NEPC, t-NEPC)更为常见,在CRPC患者中的发生率可达10%~17%,其主要起源是腺癌细胞在雄激素剥夺治疗(Androgen Deprivation Therapy, ADT)或雄激素受体通路抑制剂(Androgen Receptor Pathway Inhibitor, ARPI)的选择压力下,发生表型转分化而形成[2] [3] [31]。从特征关联性来看,t-NEPC在临床表型、遗传学改变及病理学特征上,与小细胞型NEPC (Small Cell-NEPC, SC-NEPC)及小细胞肺癌(Small Cell Lung Cancer, SCLC)存在显著相似性[32]

t-NEPC是一类高度异质性的肿瘤。活检结果显示,t-NEPC患者既可能表现为纯小细胞神经内分泌癌,更常见的则是肿瘤组织中同时存在神经内分泌癌成分与典型前列腺腺癌成分,这一现象直接体现了其显著的异质性[3] [33] [34]。从疾病演化轨迹来看,t-NEPC的谱系可从AR依赖性的腺癌,逐渐演变为AR非依赖性的小细胞神经内分泌癌。因此,与原发性NEPC相比,t-NEPC在临床表现与基因组特征上均呈现出更明显的异质性:原发性NEPC多为AR阴性表型,常伴随血清前列腺特异性抗原(Prostate-Specific Antigen, PSA)水平偏低、内脏转移频发、对AR靶向治疗不敏感及预后不良;而t-NEPC中,具有纯小细胞癌组织学形态的病例同样对AR靶向治疗无应答,PSA水平与肿瘤负荷明显不匹配,疾病进展迅速且预后极差[3] [34];与之不同,混合型组织学的t-NEPC患者往往表现为PSA水平较高,免疫组化(Immunohistochemistry, IHC)检测可观察到一定程度的AR表达,且对AR靶向治疗仍保留部分敏感性[35]

3.1. 组织学特征

在组织学层面,NEPC通常表现为低分化神经内分泌肿瘤,其形态学特征与其他器官来源的神经内分泌肿瘤高度相似,典型表现为AR表达缺失,同时伴随多种神经内分泌标志物的上调。值得注意的是,NEPC还常伴随血管生成显著增强,这一特征可能与其高度侵袭性的生物学行为密切相关。根据世界卫生组织的组织学分类标准,NEPC可进一步分为五个主要亚型:小细胞癌(Small Cell Carcinoma、SCPC为最常见亚型)、大细胞NEPC、伴Paneth细胞的腺癌(Adenocarcinoma with Paneth Cells, APC)、分化良好的类癌肿瘤(Carcinoid Tumor, CT-NEPC)、伴神经内分泌分化的腺癌(adenocarcinoma with neuroendocrine differentiation) [36]-[39]。其中,APC与CT-NEPC属于罕见表型,目前临床报道极为有限。此外,还存在一种混合型亚型,神经内分泌癌–腺泡状腺癌(mixed NE carcinoma-acinar adenocarcinoma),该亚型被认为是特殊的过渡性或复合性组织学类型,进一步凸显了NEPC在组织学水平上的显著异质性[33] [36]

3.2. 免疫组化诊断特征

IHC在NEPC的诊断中具有重要辅助价值,临床常用的经典神经内分泌标志物包括INSM1、CgA、SYP及CD56 [3] [36] [40]。此外,还发现FOXA2、CXCR2等潜在候选标志物。但需特别注意,若肿瘤组织学形态仍呈典型腺泡或导管腺癌特征,仅凭神经内分泌标志物阳性表达,不足以确立NEPC的诊断[41],这主要是由于转移性前列腺癌中,完整组织学评估的获取往往存在困难,从而限制了基于解剖病理学定义的诊断准确性。

目前,临床并不推荐在前列腺癌中常规开展神经内分泌特征的IHC检测,且腺泡状腺癌中局灶性神经内分泌分化的临床意义尚未明确。同时,IHC检测结果可能存在不一致性,少数NEPC病例甚至可能缺乏典型神经内分泌标志物,仅表现为极低的PSA水平[42]。现有研究认为,从传统前列腺腺癌向高级别NEPC的转化是一个连续过程,由复杂分子机制相互作用驱动,最终导致形态学亚型的多样化。在此过程中,部分病例可能呈现中间型表型作为过渡阶段,从而进一步增加了诊断复杂性[43]

在诊断实践中,联合检测AR及其信号通路相关基因、前列腺谱系标志物(如AR、NKX3.1、PSA)与神经内分泌标志物(如INSM1、SYP、CgA、CD56),可为NEPC的判定提供重要参考。此外,腺癌向高级别NEPC转化过程中,常伴随细胞增殖率显著升高,因此通过IHC检测Ki-67指数,可辅助神经内分泌肿瘤的评估与分级[44] [45]

4. NEPC的治疗进展

尽管近年来研究人员对NEPC的分子机制已有一定认识,但临床可用的治疗手段仍十分有限。目前,无论是原发性NEPC还是治疗诱导型NEPC,一线治疗方案仍以铂类化疗为主,这一策略主要借鉴SCLC等其他小细胞神经内分泌癌的治疗模式。随着研究的深入,越来越多针对NEPC的新型治疗策略已进入临床前或临床试验阶段,为改善患者预后带来新希望。

4.1. 化疗

当前NEPC尚未形成统一的标准化治疗方案,但在临床实践中,以铂类为基础的联合化疗是应用最广泛的策略,其中顺铂(Cisplatin)联合依托泊苷(Etoposide)是最常用的方案[46]。NEPC (尤其是分化不良的小细胞型NEPC)在组织学特征、疾病进展模式及治疗反应上与SCLC高度相似,因此其临床治疗策略多参考SCLC的化疗经验[47]-[49]。从作用机制来看,顺铂通过与DNA嘌呤碱基形成交联结构导致DNA损伤,依托泊苷则通过抑制DNA拓扑异构酶Ⅱ活性阻断DNA复制过程,二者协同作用可有效诱导肿瘤细胞凋亡。但该方案的不良反应较为明显,主要包括肾脏毒性、心血管毒性及恶心呕吐等[50]-[52]。鉴于NEPC具有高度增殖的生物学特性,顺铂联合依托泊苷方案可通过协同效应抑制肿瘤生长,并在一定程度上延缓耐药发生。

另有一项Ⅱ期临床试验探索了卡铂(Carboplatin)联合卡巴他赛(Cabazitaxel)方案的疗效。从作用机制来看,卡铂通过与肿瘤细胞中的DNA发生交联反应,干扰DNA的复制和修复,从而阻止肿瘤细胞的增殖和生长。卡巴他赛作用机制为抑制癌细胞微管蛋白聚合,干扰其有丝分裂过程。该研究共纳入160例转移性去势抵抗性前列腺癌(metastatic Castration-Resistant Prostate Cancer, mCRPC)患者,其中包含6例小细胞前列腺癌患者。结果显示,与单用卡巴他赛相比,该联合治疗将患者的中位无进展生存期从4.5个月(95% CI 3.5~5.7)延长至7.3个月(95% CI 5.5~8.2),风险比为0.69 (95% CI 0.50~0.95, P = 0.018)。但由于该研究中纳入的小细胞前列腺癌患者样本量有限,目前尚无法明确该方案在NEPC人群中的具体生存获益[53]

总体而言,NEPC对化疗通常表现出较高的初始敏感性,但疗效维持时间较短,获得性耐药的快速出现极大限制了化疗的长期疗效。此外需特别指出,尽管NEPC对传统AR靶向治疗高度耐药,且免疫组化检测多显示AR表达下调,但转录组分析提示部分t-NEPC仍保留一定程度的AR信号活性,其分子特征与前列腺腺癌及经典NEPC存在重叠[3] [15]。在临床中,t-NEPC转移灶也常观察到小细胞成分与腺癌成分共存的混合组织学特征,因此对于此类患者,临床推荐在持续ADT的基础上,选择紫杉类药物/铂类药物联合的治疗方案。

4.2. 针对表观遗传调控因子的药物研究

NEPC的发生发展涉及多种基因组改变及表观遗传调控机制,这为开发新型靶向治疗药物提供了潜在方向,目前已有多个表观遗传调控因子被列为NEPC的候选治疗靶点。其中,赖氨酸特异性去甲基化酶1 (Lysine-Specific Demethylase 1, LSD1)可催化组蛋白H3第4位赖氨酸的去甲基化,在维持肿瘤细胞干性及调控细胞分化过程中发挥关键作用。研究发现,LSD1可与结合蛋白ZNF217相互作用,激活与致命性前列腺癌相关的分子网络[54]。同时,LSD1已被证实是SCLC的潜在治疗靶点[55],这提示其在NEPC治疗中也可能具有应用前景。

N-myc/Aurora激酶A (AURKA)信号轴是NEPC中另一个重要的调控通路。AURKA抑制剂Alisertib可通过抑制N-myc和它的稳定因子Aurora-A之间的相互作用,从而抑制N-myc信号,抑制肿瘤的生长。一项Ⅱ期临床试验纳入60例转移性前列腺癌患者,对Alisertib的疗效进行评估。结果显示,该研究未达到预设的主要终点(6个月无进展生存率仅13.4%),但部分患者仍表现出显著疗效:其中AURKA扩增的患者与生存延长相关,而具有N-myc相关分子特征的患者也提示存在潜在获益[56]。这些研究结果表明,靶向表观遗传调控因子或N-Myc/AURKA信号通路的治疗策略,有望为NEPC患者提供新的治疗选择。

4.3. 新型免疫治疗

免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)通过阻断T细胞表面的抑制性通路(即免疫检查点),使T细胞重新获得识别和杀伤肿瘤的能力,从而实现抗肿瘤免疫应答。尽管ICIs在尿路上皮癌、肾癌等泌尿生殖系统肿瘤中已取得较好疗效[57]-[59],但在CRPC中单独使用时效果有限,这与前列腺癌肿瘤微环境的强免疫抑制特性密切相关[60]-[64]。近年来,免疫联合治疗策略在NEPC中逐渐显示出潜力。由于NEPC与SCLC在生物学特征上高度相似,部分在SCLC中证实有效的免疫治疗策略被逐步引入NEPC的研究中[65]

SCLC患者通常具有较高的肿瘤突变负荷(Tumor Mutation Burden, TMB),而高TMB往往提示肿瘤细胞更易被免疫系统识别,因此理论上对免疫治疗更敏感[66]。在一项临床研究中,一线应用PD-L1免疫检查点抑制剂阿替利珠单抗(Atezolizumab)联合化疗,相较于单纯化疗,显著延长了SCLC患者的总生存期和无进展生存期,该方案已获FDA批准[67]。在前列腺癌中,对临床样本进行的免疫组化染色和RNA-seq数据分析显示,NEPC的PD-L1表达水平高于CRPC样本,这提示NEPC患者可能较腺癌型CRPC更易从ICIs治疗中获益[68][69]。但目前针对NEPC的ICIs临床研究证据仍较为有限,临床应用主要参考SCLC的治疗经验。

此外,多个探索ICIs联合治疗的临床试验正在开展,包括ICIs与PARP抑制剂、酪氨酸激酶抑制剂或放疗的联合方案。例如,帕博利珠单抗(Pembrolizumab)联合仑伐替尼(Lenvatinib)、阿替利珠单抗(Atezolizumab)联合替沃扎尼(Tivozanib)等组合已进入Ⅱ期临床试验阶段[70]-[72];双重免疫检查点阻断方案在多种实体瘤中已显示出协同抗肿瘤效应,目前也在NEPC中积极探索。同时,免疫激活剂BXCL701联合ICIs,以及DLL3靶向双特异性抗体等新型免疫治疗策略,在临床前研究中亦展现出潜在应用价值[73]-[75]。总体而言,尽管当前NEPC免疫治疗的相关临床证据仍有限,但免疫治疗(尤其是联合治疗策略)未来有望成为NEPC治疗领域的重要发展方向。

5. 结论与展望

神经内分泌前列腺癌是一种恶性程度极高的前列腺癌亚型,致死率高,近年来已成为研究重点。其发生机制复杂且伴随高度异质性,加之组织学评估受限,使得临床诊断仍面临挑战。在治疗方面,目前一线方案主要依赖铂类为基础的化疗,可获得一定的初始疗效,但普遍存在耐药问题,长期预后仍不理想。随着分子机制研究的深入,靶向表观遗传因子以及免疫检查点抑制剂联合策略逐渐展现出应用潜力。总体而言,未来研究亟需进一步阐明NEPC转分化的分子基础,建立更为精准的生物标志物体系,并探索联合靶向与免疫治疗的新模式,以期改善患者的临床结局。

NOTES

*通讯作者。

参考文献

[1] Wang, Y., Wang, Y., Ci, X., Choi, S.Y.C., Crea, F., Lin, D., et al. (2021) Molecular Events in Neuroendocrine Prostate Cancer Development. Nature Reviews Urology, 18, 581-596. [Google Scholar] [CrossRef] [PubMed]
[2] Bluemn, E.G., Coleman, I.M., Lucas, J.M., Coleman, R.T., Hernandez-Lopez, S., Tharakan, R., et al. (2017) Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 32, 474-489.e6. [Google Scholar] [CrossRef] [PubMed]
[3] Aggarwal, R., Huang, J., Alumkal, J.J., Zhang, L., Feng, F.Y., Thomas, G.V., et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-Institutional Prospective Study. Journal of Clinical Oncology, 36, 2492-2503. [Google Scholar] [CrossRef] [PubMed]
[4] Demichelis, F., Fall, K., Perner, S., Andrén, O., Schmidt, F., Setlur, S.R., et al. (2007) TMPRSS2:ERG Gene Fusion Associated with Lethal Prostate Cancer in a Watchful Waiting Cohort. Oncogene, 26, 4596-4599. [Google Scholar] [CrossRef] [PubMed]
[5] Rajput, A.B., Miller, M.A., De Luca, A., Boyd, N., Leung, S., Hurtado-Coll, A., et al. (2007) Frequency of the TMPRSS2:ERG Gene Fusion Is Increased in Moderate to Poorly Differentiated Prostate Cancers. Journal of Clinical Pathology, 60, 1238-1243. [Google Scholar] [CrossRef] [PubMed]
[6] Beltran, H., Rickman, D.S., Park, K., Chae, S.S., Sboner, A., MacDonald, T.Y., et al. (2011) Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 1, 487-495. [Google Scholar] [CrossRef] [PubMed]
[7] Zou, M., Toivanen, R., Mitrofanova, A., Floch, N., Hayati, S., Sun, Y., et al. (2017) Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discovery, 7, 736-749. [Google Scholar] [CrossRef] [PubMed]
[8] Tan, H., Sood, A., Rahimi, H.A., Wang, W., Gupta, N., Hicks, J., et al. (2014) Rb Loss Is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma. Clinical Cancer Research, 20, 890-903. [Google Scholar] [CrossRef] [PubMed]
[9] Kaye, F.J. (2002) RB and Cyclin Dependent Kinase Pathways: Defining a Distinction between RB and P16 Loss in Lung Cancer. Oncogene, 21, 6908-6914. [Google Scholar] [CrossRef] [PubMed]
[10] Tsai, H., Morais, C.L., Alshalalfa, M., Tan, H., Haddad, Z., Hicks, J., et al. (2015) Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas. Clinical Cancer Research, 21, 5619-5629. [Google Scholar] [CrossRef] [PubMed]
[11] Ku, S.Y., Rosario, S., Wang, Y., Mu, P., Seshadri, M., Goodrich, Z.W., et al. (2017) Rb1 and Trp53 Cooperate to Suppress Prostate Cancer Lineage Plasticity, Metastasis, and Antiandrogen Resistance. Science, 355, 78-83. [Google Scholar] [CrossRef] [PubMed]
[12] Mu, P., Zhang, Z., Benelli, M., Karthaus, W.R., Hoover, E., Chen, C., et al. (2017) SOX2 Promotes Lineage Plasticity and Antiandrogen Resistance in TP53-and RB1-Deficient Prostate Cancer. Science, 355, 84-88. [Google Scholar] [CrossRef] [PubMed]
[13] Chen, R., Dong, X. and Gleave, M. (2018) Molecular Model for Neuroendocrine Prostate Cancer Progression. BJU International, 122, 560-570. [Google Scholar] [CrossRef] [PubMed]
[14] Ge, R., Wang, Z., Montironi, R., Jiang, Z., Cheng, M., Santoni, M., et al. (2020) Epigenetic Modulations and Lineage Plasticity in Advanced Prostate Cancer. Annals of Oncology, 31, 470-479. [Google Scholar] [CrossRef] [PubMed]
[15] Beltran, H., Prandi, D., Mosquera, J.M., Benelli, M., Puca, L., Cyrta, J., et al. (2016) Divergent Clonal Evolution of Castration-Resistant Neuroendocrine Prostate Cancer. Nature Medicine, 22, 298-305. [Google Scholar] [CrossRef] [PubMed]
[16] Beltran, H., Romanel, A., Conteduca, V., Casiraghi, N., Sigouros, M., Franceschini, G.M., et al. (2020) Circulating Tumor DNA Profile Recognizes Transformation to Castration-Resistant Neuroendocrine Prostate Cancer. Journal of Clinical Investigation, 130, 1653-1668. [Google Scholar] [CrossRef] [PubMed]
[17] Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., et al. (2006) Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells. Cell, 125, 301-313. [Google Scholar] [CrossRef] [PubMed]
[18] Zhang, Y., Zheng, D., Zhou, T., Song, H., Hulsurkar, M., Su, N., et al. (2018) Androgen Deprivation Promotes Neuroendocrine Differentiation and Angiogenesis through CREB-EZH2-TSP1 Pathway in Prostate Cancers. Nature Communications, 9, Article No. 4080. [Google Scholar] [CrossRef] [PubMed]
[19] Kleb, B., Estécio, M.R.H., Zhang, J., Tzelepi, V., Chung, W., Jelinek, J., et al. (2016) Differentially Methylated Genes and Androgen Receptor Re-Expression in Small Cell Prostate Carcinomas. Epigenetics, 11, 184-193. [Google Scholar] [CrossRef] [PubMed]
[20] Lapuk, A.V., Wu, C., Wyatt, A.W., McPherson, A., McConeghy, B.J., Brahmbhatt, S., et al. (2012) From Sequence to Molecular Pathology, and a Mechanism Driving the Neuroendocrine Phenotype in Prostate Cancer. The Journal of Pathology, 227, 286-297. [Google Scholar] [CrossRef] [PubMed]
[21] Zhang, X., Coleman, I.M., Brown, L.G., True, L.D., Kollath, L., Lucas, J.M., et al. (2015) SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 21, 4698-4708. [Google Scholar] [CrossRef] [PubMed]
[22] Terry, S. and Beltran, H. (2014) The Many Faces of Neuroendocrine Differentiation in Prostate Cancer Progression. Frontiers in Oncology, 4, Article 60. [Google Scholar] [CrossRef] [PubMed]
[23] Svensson, C., Ceder, J., Iglesias-Gato, D., Chuan, Y., Pang, S.T., Bjartell, A., et al. (2013) REST Mediates Androgen Receptor Actions on Gene Repression and Predicts Early Recurrence of Prostate Cancer. Nucleic Acids Research, 42, 999-1015. [Google Scholar] [CrossRef] [PubMed]
[24] Panman, L., Andersson, E., Alekseenko, Z., Hedlund, E., Kee, N., Mong, J., et al. (2011) Transcription Factor-Induced Lineage Selection of Stem-Cell-Derived Neural Progenitor Cells. Cell Stem Cell, 8, 663-675. [Google Scholar] [CrossRef] [PubMed]
[25] Ramnarine, V.R., Alshalalfa, M., Mo, F., Nabavi, N., Erho, N., Takhar, M., et al. (2018) The Long Noncoding RNA Landscape of Neuroendocrine Prostate Cancer and Its Clinical Implications. GigaScience, 7, giy050. [Google Scholar] [CrossRef] [PubMed]
[26] Crea, F., Venalainen, E., Ci, X., Cheng, H., Pikor, L., Parolia, A., et al. (2016) The Role of Epigenetics and Long Noncoding RNA MIAT in Neuroendocrine Prostate Cancer. Epigenomics, 8, 721-731. [Google Scholar] [CrossRef] [PubMed]
[27] Guo, H., Ci, X., Ahmed, M., Hua, J.T., Soares, F., Lin, D., et al. (2019) ONECUT2 Is a Driver of Neuroendocrine Prostate Cancer. Nature Communications, 10, Article No. 278. [Google Scholar] [CrossRef] [PubMed]
[28] Rotinen, M., You, S., Yang, J., Coetzee, S.G., Reis-Sobreiro, M., Huang, W., et al. (2018) ONECUT2 Is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. Nature Medicine, 24, 1887-1898. [Google Scholar] [CrossRef] [PubMed]
[29] Zaffuto, E., Pompe, R., Zanaty, M., Bondarenko, H.D., Leyh-Bannurah, S., Moschini, M., et al. (2017) Contemporary Incidence and Cancer Control Outcomes of Primary Neuroendocrine Prostate Cancer: A SEER Database Analysis. Clinical Genitourinary Cancer, 15, e793-e800. [Google Scholar] [CrossRef] [PubMed]
[30] Vlachostergios, P.J., Puca, L. and Beltran, H. (2017) Emerging Variants of Castration-Resistant Prostate Cancer. Current Oncology Reports, 19, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
[31] Abida, W., Cyrta, J., Heller, G., Prandi, D., Armenia, J., Coleman, I., et al. (2019) Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 11428-11436. [Google Scholar] [CrossRef] [PubMed]
[32] Zamora, I., Freeman, M.R., Encío, I.J. and Rotinen, M. (2023) Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. International Journal of Molecular Sciences, 24, 13673. [Google Scholar] [CrossRef] [PubMed]
[33] Epstein, J.I., Amin, M.B., Beltran, H., Lotan, T.L., Mosquera, J., Reuter, V.E., et al. (2014) Proposed Morphologic Classification of Prostate Cancer with Neuroendocrine Differentiation. American Journal of Surgical Pathology, 38, 756-767. [Google Scholar] [CrossRef] [PubMed]
[34] Conteduca, V., Oromendia, C., Eng, K.W., Bareja, R., Sigouros, M., Molina, A., et al. (2019) Clinical Features of Neuroendocrine Prostate Cancer. European Journal of Cancer, 121, 7-18. [Google Scholar] [CrossRef] [PubMed]
[35] Okasho, K., Ogawa, O. and Akamatsu, S. (2021) Narrative Review of Challenges in the Management of Advanced Neuroendocrine Prostate Cancer. Translational Andrology and Urology, 10, 3953-3962. [Google Scholar] [CrossRef] [PubMed]
[36] Aggarwal, R., Zhang, T., Small, E.J. and Armstrong, A.J. (2014) Neuroendocrine Prostate Cancer: Subtypes, Biology, and Clinical Outcomes. Journal of the National Comprehensive Cancer Network, 12, 719-726. [Google Scholar] [CrossRef] [PubMed]
[37] Fine, S.W. (2018) Neuroendocrine Tumors of the Prostate. Modern Pathology, 31, 122-132. [Google Scholar] [CrossRef] [PubMed]
[38] Formaggio, N., Rubin, M.A. and Theurillat, J. (2021) Loss and Revival of Androgen Receptor Signaling in Advanced Prostate Cancer. Oncogene, 40, 1205-1216. [Google Scholar] [CrossRef] [PubMed]
[39] Spetsieris, N., Boukovala, M., Patsakis, G., Alafis, I. and Efstathiou, E. (2020) Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers, 12, Article 3792. [Google Scholar] [CrossRef] [PubMed]
[40] Hu, J., Han, B. and Huang, J. (2019) Morphologic Spectrum of Neuroendocrine Tumors of the Prostate: An Updated Review. Archives of Pathology & Laboratory Medicine, 144, 320-325. [Google Scholar] [CrossRef] [PubMed]
[41] Butler, W. and Huang, J. (2021) Neuroendocrine Cells of the Prostate: Histology, Biological Functions, and Molecular Mechanisms. Precision Clinical Medicine, 4, 25-34. [Google Scholar] [CrossRef] [PubMed]
[42] Tsai, H.K., Lehrer, J., Alshalalfa, M., Erho, N., Davicioni, E. and Lotan, T.L. (2017) Gene Expression Signatures of Neuroendocrine Prostate Cancer and Primary Small Cell Prostatic Carcinoma. BMC Cancer, 17, Article No. 759. [Google Scholar] [CrossRef] [PubMed]
[43] Abdulfatah, E., Fine, S.W., Lotan, T.L. and Mehra, R. (2022) De Novo Neuroendocrine Features in Prostate Cancer. Human Pathology, 127, 112-122. [Google Scholar] [CrossRef] [PubMed]
[44] Haffner, M.C., Morris, M.J., Ding, C.C., Sayar, E., Mehra, R., Robinson, B., et al. (2024) Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clinical Cancer Research, 31, 466-478. [Google Scholar] [CrossRef] [PubMed]
[45] Gupta, S., Vanderbilt, C., Abida, W., Fine, S.W., Tickoo, S.K., Al-Ahmadie, H.A., et al. (2020) Immunohistochemistry-based Assessment of Androgen Receptor Status and the AR-Null Phenotype in Metastatic Castrate Resistant Prostate Cancer. Prostate Cancer and Prostatic Diseases, 23, 507-516. [Google Scholar] [CrossRef] [PubMed]
[46] Tagawa, S.T. (2014) Neuroendocrine Prostate Cancer after Hormonal Therapy: Knowing Is Half the Battle. Journal of Clinical Oncology, 32, 3360-3364. [Google Scholar] [CrossRef] [PubMed]
[47] Beltran, H., Tomlins, S., Aparicio, A., Arora, V., Rickman, D., Ayala, G., et al. (2014) Aggressive Variants of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 20, 2846-2850. [Google Scholar] [CrossRef] [PubMed]
[48] Aparicio, A.M., Harzstark, A.L., Corn, P.G., Wen, S., Araujo, J.C., Tu, S., et al. (2013) Platinum-Based Chemotherapy for Variant Castrate-Resistant Prostate Cancer. Clinical Cancer Research, 19, 3621-3630. [Google Scholar] [CrossRef] [PubMed]
[49] Amato, R.J., Logothetis, C.J., Hallinan, R., Ro, J.Y., Sella, A. and Dexeus, F.H. (1992) Chemotherapy for Small Cell Carcinoma of Prostatic Origin. Journal of Urology, 147, 935-937. [Google Scholar] [CrossRef] [PubMed]
[50] Dasari, S. and Bernard Tchounwou, P. (2014) Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. European Journal of Pharmacology, 740, 364-378. [Google Scholar] [CrossRef] [PubMed]
[51] Montecucco, A., Zanetta, F. and Biamonti, G. (2015) Molecular Mechanisms of Etoposide. EXCLI Journal, 14, 95-108.
[52] Chang, H., Moudgil, R., Scarabelli, T., Okwuosa, T.M. and Yeh, E.T.H. (2017) Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 1. Journal of the American College of Cardiology, 70, 2536-2551. [Google Scholar] [CrossRef] [PubMed]
[53] Corn, P.G., Heath, E.I., Zurita, A., Ramesh, N., Xiao, L., Sei, E., et al. (2019) Cabazitaxel Plus Carboplatin for the Treatment of Men with Metastatic Castration-Resistant Prostate Cancers: A Randomised, Open-Label, Phase 1-2 Trial. The Lancet Oncology, 20, 1432-1443. [Google Scholar] [CrossRef] [PubMed]
[54] Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., McWeeney, S.K., King, C.J., et al. (2018) LSD1 Activates a Lethal Prostate Cancer Gene Network Independently of Its Demethylase Function. Proceedings of the National Academy of Sciences of the United States of America, 115, E4179-E4188. [Google Scholar] [CrossRef] [PubMed]
[55] Stewart, C.A. and Byers, L.A. (2015) Altering the Course of Small Cell Lung Cancer: Targeting Cancer Stem Cells via LSD1 Inhibition. Cancer Cell, 28, 4-6. [Google Scholar] [CrossRef] [PubMed]
[56] Beltran, H., Oromendia, C., Danila, D.C., Montgomery, B., Hoimes, C., Szmulewitz, R.Z., et al. (2019) A Phase II Trial of the Aurora Kinase a Inhibitor Alisertib for Patients with Castration-Resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clinical Cancer Research, 25, 43-51. [Google Scholar] [CrossRef] [PubMed]
[57] Bellmunt, J., de Wit, R., Vaughn, D.J., Fradet, Y., Lee, J., Fong, L., et al. (2017) Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine, 376, 1015-1026. [Google Scholar] [CrossRef] [PubMed]
[58] Balar, A.V., Castellano, D., O'Donnell, P.H., Grivas, P., Vuky, J., Powles, T., et al. (2017) First-line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. The Lancet Oncology, 18, 1483-1492. [Google Scholar] [CrossRef] [PubMed]
[59] Sharma, P., Retz, M., Siefker-Radtke, A., Baron, A., Necchi, A., Bedke, J., et al. (2017) Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (Checkmate 275): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 18, 312-322. [Google Scholar] [CrossRef] [PubMed]
[60] Pasero, C., Gravis, G., Guerin, M., Granjeaud, S., Thomassin-Piana, J., Rocchi, P., et al. (2016) Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 76, 2153-2165. [Google Scholar] [CrossRef] [PubMed]
[61] Ciavarra, R.P., Holterman, D.A., Brown, R.R., Mangiotti, P., Yousefieh, N., Wright, G.L., et al. (2004) Prostate Tumor Microenvironment Alters Immune Cells and Prevents Long-Term Survival in an Orthotopic Mouse Model Following Flt3-Ligand/CD40-Ligand Immunotherapy. Journal of Immunotherapy, 27, 13-26. [Google Scholar] [CrossRef] [PubMed]
[62] Beer, T.M., Kwon, E.D., Drake, C.G., Fizazi, K., Logothetis, C., Gravis, G., et al. (2017) Randomized, Double-Blind, Phase III Trial of Ipilimumab versus Placebo in Asymptomatic or Minimally Symptomatic Patients with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 35, 40-47. [Google Scholar] [CrossRef] [PubMed]
[63] Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454. [Google Scholar] [CrossRef] [PubMed]
[64] Antonarakis, E.S., Piulats, J.M., Gross-Goupil, M., Goh, J., Ojamaa, K., Hoimes, C.J., et al. (2020) Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. Journal of Clinical Oncology, 38, 395-405. [Google Scholar] [CrossRef] [PubMed]
[65] Rickman, D.S., Beltran, H., Demichelis, F. and Rubin, M.A. (2017) Biology and Evolution of Poorly Differentiated Neuroendocrine Tumors. Nature Medicine, 23, 664-673. [Google Scholar] [CrossRef] [PubMed]
[66] Alexandrov, L.B., Ju, Y.S., Haase, K., Van Loo, P., Martincorena, I., Nik-Zainal, S., et al. (2016) Mutational Signatures Associated with Tobacco Smoking in Human Cancer. Science, 354, 618-622. [Google Scholar] [CrossRef] [PubMed]
[67] Horn, L., Mansfield, A.S., Szczęsna, A., Havel, L., Krzakowski, M., Hochmair, M.J., et al. (2018) First-Line Atezolizumab Plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 379, 2220-2229. [Google Scholar] [CrossRef] [PubMed]
[68] Vicier, C., Xie, W., Hamid, A., Evan, C. and Sweeney, C. (2019) Impact of New Systemic Therapies on Outcomes of Patients with Non-Metastatic Castration Resistant Prostate Cancer (nmCRPC). Journal of Clinical Oncology, 37, 244-244. [Google Scholar] [CrossRef
[69] Nappi, L., Kesch, C., Vahid, S., Fazli, L., Eigl, B.J., Kollmannsberger, C.K., et al. (2019) Immunogenomic Landscape of Neuroendocrine Small Cell Prostate Cancer. Journal of Clinical Oncology, 37, 217-217. [Google Scholar] [CrossRef
[70] Jin, H., Shi, Y., Lv, Y., Yuan, S., Ramirez, C.F.A., Lieftink, C., et al. (2021) EGFR Activation Limits the Response of Liver Cancer to Lenvatinib. Nature, 595, 730-734. [Google Scholar] [CrossRef] [PubMed]
[71] Liu, B., Li, L., Yang, G., Geng, C., Luo, Y., Wu, W., et al. (2019) PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 25, 6839-6851. [Google Scholar] [CrossRef] [PubMed]
[72] Kooshkaki, O., Derakhshani, A., Hosseinkhani, N., Torabi, M., Safaei, S., Brunetti, O., et al. (2020) Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. International Journal of Molecular Sciences, 21, Article 4427. [Google Scholar] [CrossRef] [PubMed]
[73] Mansfield, A.S., Hong, D.S., Hann, C.L., Farago, A.F., Beltran, H., Waqar, S.N., et al. (2021) A Phase I/II Study of Rovalpituzumab Tesirine in Delta-Like 3—Expressing Advanced Solid Tumors. npj Precision Oncology, 5, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
[74] Isobe, Y., Sato, K., Nishinaga, Y., Takahashi, K., Taki, S., Yasui, H., et al. (2020) Near Infrared Photoimmunotherapy Targeting DLL3 for Small Cell Lung Cancer. EBioMedicine, 52, Article ID: 102632. [Google Scholar] [CrossRef] [PubMed]
[75] Giffin, M.J., Cooke, K., Lobenhofer, E.K., Estrada, J., Zhan, J., Deegen, P., et al. (2021) AMG 757, a Half-Life Extended, Dll3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clinical Cancer Research, 27, 1526-1537. [Google Scholar] [CrossRef] [PubMed]