|
[1]
|
Wang, Y., Wang, Y., Ci, X., Choi, S.Y.C., Crea, F., Lin, D., et al. (2021) Molecular Events in Neuroendocrine Prostate Cancer Development. Nature Reviews Urology, 18, 581-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bluemn, E.G., Coleman, I.M., Lucas, J.M., Coleman, R.T., Hernandez-Lopez, S., Tharakan, R., et al. (2017) Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 32, 474-489.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Aggarwal, R., Huang, J., Alumkal, J.J., Zhang, L., Feng, F.Y., Thomas, G.V., et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-Institutional Prospective Study. Journal of Clinical Oncology, 36, 2492-2503. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Demichelis, F., Fall, K., Perner, S., Andrén, O., Schmidt, F., Setlur, S.R., et al. (2007) TMPRSS2:ERG Gene Fusion Associated with Lethal Prostate Cancer in a Watchful Waiting Cohort. Oncogene, 26, 4596-4599. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rajput, A.B., Miller, M.A., De Luca, A., Boyd, N., Leung, S., Hurtado-Coll, A., et al. (2007) Frequency of the TMPRSS2:ERG Gene Fusion Is Increased in Moderate to Poorly Differentiated Prostate Cancers. Journal of Clinical Pathology, 60, 1238-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Beltran, H., Rickman, D.S., Park, K., Chae, S.S., Sboner, A., MacDonald, T.Y., et al. (2011) Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 1, 487-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zou, M., Toivanen, R., Mitrofanova, A., Floch, N., Hayati, S., Sun, Y., et al. (2017) Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discovery, 7, 736-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tan, H., Sood, A., Rahimi, H.A., Wang, W., Gupta, N., Hicks, J., et al. (2014) Rb Loss Is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma. Clinical Cancer Research, 20, 890-903. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kaye, F.J. (2002) RB and Cyclin Dependent Kinase Pathways: Defining a Distinction between RB and P16 Loss in Lung Cancer. Oncogene, 21, 6908-6914. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsai, H., Morais, C.L., Alshalalfa, M., Tan, H., Haddad, Z., Hicks, J., et al. (2015) Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas. Clinical Cancer Research, 21, 5619-5629. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ku, S.Y., Rosario, S., Wang, Y., Mu, P., Seshadri, M., Goodrich, Z.W., et al. (2017) Rb1 and Trp53 Cooperate to Suppress Prostate Cancer Lineage Plasticity, Metastasis, and Antiandrogen Resistance. Science, 355, 78-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mu, P., Zhang, Z., Benelli, M., Karthaus, W.R., Hoover, E., Chen, C., et al. (2017) SOX2 Promotes Lineage Plasticity and Antiandrogen Resistance in TP53-and RB1-Deficient Prostate Cancer. Science, 355, 84-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, R., Dong, X. and Gleave, M. (2018) Molecular Model for Neuroendocrine Prostate Cancer Progression. BJU International, 122, 560-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ge, R., Wang, Z., Montironi, R., Jiang, Z., Cheng, M., Santoni, M., et al. (2020) Epigenetic Modulations and Lineage Plasticity in Advanced Prostate Cancer. Annals of Oncology, 31, 470-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Beltran, H., Prandi, D., Mosquera, J.M., Benelli, M., Puca, L., Cyrta, J., et al. (2016) Divergent Clonal Evolution of Castration-Resistant Neuroendocrine Prostate Cancer. Nature Medicine, 22, 298-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Beltran, H., Romanel, A., Conteduca, V., Casiraghi, N., Sigouros, M., Franceschini, G.M., et al. (2020) Circulating Tumor DNA Profile Recognizes Transformation to Castration-Resistant Neuroendocrine Prostate Cancer. Journal of Clinical Investigation, 130, 1653-1668. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., et al. (2006) Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells. Cell, 125, 301-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, Y., Zheng, D., Zhou, T., Song, H., Hulsurkar, M., Su, N., et al. (2018) Androgen Deprivation Promotes Neuroendocrine Differentiation and Angiogenesis through CREB-EZH2-TSP1 Pathway in Prostate Cancers. Nature Communications, 9, Article No. 4080. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kleb, B., Estécio, M.R.H., Zhang, J., Tzelepi, V., Chung, W., Jelinek, J., et al. (2016) Differentially Methylated Genes and Androgen Receptor Re-Expression in Small Cell Prostate Carcinomas. Epigenetics, 11, 184-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lapuk, A.V., Wu, C., Wyatt, A.W., McPherson, A., McConeghy, B.J., Brahmbhatt, S., et al. (2012) From Sequence to Molecular Pathology, and a Mechanism Driving the Neuroendocrine Phenotype in Prostate Cancer. The Journal of Pathology, 227, 286-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, X., Coleman, I.M., Brown, L.G., True, L.D., Kollath, L., Lucas, J.M., et al. (2015) SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 21, 4698-4708. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Terry, S. and Beltran, H. (2014) The Many Faces of Neuroendocrine Differentiation in Prostate Cancer Progression. Frontiers in Oncology, 4, Article 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Svensson, C., Ceder, J., Iglesias-Gato, D., Chuan, Y., Pang, S.T., Bjartell, A., et al. (2013) REST Mediates Androgen Receptor Actions on Gene Repression and Predicts Early Recurrence of Prostate Cancer. Nucleic Acids Research, 42, 999-1015. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Panman, L., Andersson, E., Alekseenko, Z., Hedlund, E., Kee, N., Mong, J., et al. (2011) Transcription Factor-Induced Lineage Selection of Stem-Cell-Derived Neural Progenitor Cells. Cell Stem Cell, 8, 663-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ramnarine, V.R., Alshalalfa, M., Mo, F., Nabavi, N., Erho, N., Takhar, M., et al. (2018) The Long Noncoding RNA Landscape of Neuroendocrine Prostate Cancer and Its Clinical Implications. GigaScience, 7, giy050. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Crea, F., Venalainen, E., Ci, X., Cheng, H., Pikor, L., Parolia, A., et al. (2016) The Role of Epigenetics and Long Noncoding RNA MIAT in Neuroendocrine Prostate Cancer. Epigenomics, 8, 721-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Guo, H., Ci, X., Ahmed, M., Hua, J.T., Soares, F., Lin, D., et al. (2019) ONECUT2 Is a Driver of Neuroendocrine Prostate Cancer. Nature Communications, 10, Article No. 278. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rotinen, M., You, S., Yang, J., Coetzee, S.G., Reis-Sobreiro, M., Huang, W., et al. (2018) ONECUT2 Is a Targetable Master Regulator of Lethal Prostate Cancer That Suppresses the Androgen Axis. Nature Medicine, 24, 1887-1898. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zaffuto, E., Pompe, R., Zanaty, M., Bondarenko, H.D., Leyh-Bannurah, S., Moschini, M., et al. (2017) Contemporary Incidence and Cancer Control Outcomes of Primary Neuroendocrine Prostate Cancer: A SEER Database Analysis. Clinical Genitourinary Cancer, 15, e793-e800. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Vlachostergios, P.J., Puca, L. and Beltran, H. (2017) Emerging Variants of Castration-Resistant Prostate Cancer. Current Oncology Reports, 19, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Abida, W., Cyrta, J., Heller, G., Prandi, D., Armenia, J., Coleman, I., et al. (2019) Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 11428-11436. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zamora, I., Freeman, M.R., Encío, I.J. and Rotinen, M. (2023) Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. International Journal of Molecular Sciences, 24, 13673. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Epstein, J.I., Amin, M.B., Beltran, H., Lotan, T.L., Mosquera, J., Reuter, V.E., et al. (2014) Proposed Morphologic Classification of Prostate Cancer with Neuroendocrine Differentiation. American Journal of Surgical Pathology, 38, 756-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Conteduca, V., Oromendia, C., Eng, K.W., Bareja, R., Sigouros, M., Molina, A., et al. (2019) Clinical Features of Neuroendocrine Prostate Cancer. European Journal of Cancer, 121, 7-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Okasho, K., Ogawa, O. and Akamatsu, S. (2021) Narrative Review of Challenges in the Management of Advanced Neuroendocrine Prostate Cancer. Translational Andrology and Urology, 10, 3953-3962. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Aggarwal, R., Zhang, T., Small, E.J. and Armstrong, A.J. (2014) Neuroendocrine Prostate Cancer: Subtypes, Biology, and Clinical Outcomes. Journal of the National Comprehensive Cancer Network, 12, 719-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fine, S.W. (2018) Neuroendocrine Tumors of the Prostate. Modern Pathology, 31, 122-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Formaggio, N., Rubin, M.A. and Theurillat, J. (2021) Loss and Revival of Androgen Receptor Signaling in Advanced Prostate Cancer. Oncogene, 40, 1205-1216. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Spetsieris, N., Boukovala, M., Patsakis, G., Alafis, I. and Efstathiou, E. (2020) Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers, 12, Article 3792. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hu, J., Han, B. and Huang, J. (2019) Morphologic Spectrum of Neuroendocrine Tumors of the Prostate: An Updated Review. Archives of Pathology & Laboratory Medicine, 144, 320-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Butler, W. and Huang, J. (2021) Neuroendocrine Cells of the Prostate: Histology, Biological Functions, and Molecular Mechanisms. Precision Clinical Medicine, 4, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tsai, H.K., Lehrer, J., Alshalalfa, M., Erho, N., Davicioni, E. and Lotan, T.L. (2017) Gene Expression Signatures of Neuroendocrine Prostate Cancer and Primary Small Cell Prostatic Carcinoma. BMC Cancer, 17, Article No. 759. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Abdulfatah, E., Fine, S.W., Lotan, T.L. and Mehra, R. (2022) De Novo Neuroendocrine Features in Prostate Cancer. Human Pathology, 127, 112-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Haffner, M.C., Morris, M.J., Ding, C.C., Sayar, E., Mehra, R., Robinson, B., et al. (2024) Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clinical Cancer Research, 31, 466-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gupta, S., Vanderbilt, C., Abida, W., Fine, S.W., Tickoo, S.K., Al-Ahmadie, H.A., et al. (2020) Immunohistochemistry-based Assessment of Androgen Receptor Status and the AR-Null Phenotype in Metastatic Castrate Resistant Prostate Cancer. Prostate Cancer and Prostatic Diseases, 23, 507-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tagawa, S.T. (2014) Neuroendocrine Prostate Cancer after Hormonal Therapy: Knowing Is Half the Battle. Journal of Clinical Oncology, 32, 3360-3364. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Beltran, H., Tomlins, S., Aparicio, A., Arora, V., Rickman, D., Ayala, G., et al. (2014) Aggressive Variants of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 20, 2846-2850. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Aparicio, A.M., Harzstark, A.L., Corn, P.G., Wen, S., Araujo, J.C., Tu, S., et al. (2013) Platinum-Based Chemotherapy for Variant Castrate-Resistant Prostate Cancer. Clinical Cancer Research, 19, 3621-3630. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Amato, R.J., Logothetis, C.J., Hallinan, R., Ro, J.Y., Sella, A. and Dexeus, F.H. (1992) Chemotherapy for Small Cell Carcinoma of Prostatic Origin. Journal of Urology, 147, 935-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Dasari, S. and Bernard Tchounwou, P. (2014) Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. European Journal of Pharmacology, 740, 364-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Montecucco, A., Zanetta, F. and Biamonti, G. (2015) Molecular Mechanisms of Etoposide. EXCLI Journal, 14, 95-108.
|
|
[52]
|
Chang, H., Moudgil, R., Scarabelli, T., Okwuosa, T.M. and Yeh, E.T.H. (2017) Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 1. Journal of the American College of Cardiology, 70, 2536-2551. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Corn, P.G., Heath, E.I., Zurita, A., Ramesh, N., Xiao, L., Sei, E., et al. (2019) Cabazitaxel Plus Carboplatin for the Treatment of Men with Metastatic Castration-Resistant Prostate Cancers: A Randomised, Open-Label, Phase 1-2 Trial. The Lancet Oncology, 20, 1432-1443. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., McWeeney, S.K., King, C.J., et al. (2018) LSD1 Activates a Lethal Prostate Cancer Gene Network Independently of Its Demethylase Function. Proceedings of the National Academy of Sciences of the United States of America, 115, E4179-E4188. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Stewart, C.A. and Byers, L.A. (2015) Altering the Course of Small Cell Lung Cancer: Targeting Cancer Stem Cells via LSD1 Inhibition. Cancer Cell, 28, 4-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Beltran, H., Oromendia, C., Danila, D.C., Montgomery, B., Hoimes, C., Szmulewitz, R.Z., et al. (2019) A Phase II Trial of the Aurora Kinase a Inhibitor Alisertib for Patients with Castration-Resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clinical Cancer Research, 25, 43-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Bellmunt, J., de Wit, R., Vaughn, D.J., Fradet, Y., Lee, J., Fong, L., et al. (2017) Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine, 376, 1015-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Balar, A.V., Castellano, D., O'Donnell, P.H., Grivas, P., Vuky, J., Powles, T., et al. (2017) First-line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. The Lancet Oncology, 18, 1483-1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Sharma, P., Retz, M., Siefker-Radtke, A., Baron, A., Necchi, A., Bedke, J., et al. (2017) Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (Checkmate 275): A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 18, 312-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Pasero, C., Gravis, G., Guerin, M., Granjeaud, S., Thomassin-Piana, J., Rocchi, P., et al. (2016) Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 76, 2153-2165. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ciavarra, R.P., Holterman, D.A., Brown, R.R., Mangiotti, P., Yousefieh, N., Wright, G.L., et al. (2004) Prostate Tumor Microenvironment Alters Immune Cells and Prevents Long-Term Survival in an Orthotopic Mouse Model Following Flt3-Ligand/CD40-Ligand Immunotherapy. Journal of Immunotherapy, 27, 13-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Beer, T.M., Kwon, E.D., Drake, C.G., Fizazi, K., Logothetis, C., Gravis, G., et al. (2017) Randomized, Double-Blind, Phase III Trial of Ipilimumab versus Placebo in Asymptomatic or Minimally Symptomatic Patients with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 35, 40-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Antonarakis, E.S., Piulats, J.M., Gross-Goupil, M., Goh, J., Ojamaa, K., Hoimes, C.J., et al. (2020) Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. Journal of Clinical Oncology, 38, 395-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Rickman, D.S., Beltran, H., Demichelis, F. and Rubin, M.A. (2017) Biology and Evolution of Poorly Differentiated Neuroendocrine Tumors. Nature Medicine, 23, 664-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Alexandrov, L.B., Ju, Y.S., Haase, K., Van Loo, P., Martincorena, I., Nik-Zainal, S., et al. (2016) Mutational Signatures Associated with Tobacco Smoking in Human Cancer. Science, 354, 618-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Horn, L., Mansfield, A.S., Szczęsna, A., Havel, L., Krzakowski, M., Hochmair, M.J., et al. (2018) First-Line Atezolizumab Plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 379, 2220-2229. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Vicier, C., Xie, W., Hamid, A., Evan, C. and Sweeney, C. (2019) Impact of New Systemic Therapies on Outcomes of Patients with Non-Metastatic Castration Resistant Prostate Cancer (nmCRPC). Journal of Clinical Oncology, 37, 244-244. [Google Scholar] [CrossRef]
|
|
[69]
|
Nappi, L., Kesch, C., Vahid, S., Fazli, L., Eigl, B.J., Kollmannsberger, C.K., et al. (2019) Immunogenomic Landscape of Neuroendocrine Small Cell Prostate Cancer. Journal of Clinical Oncology, 37, 217-217. [Google Scholar] [CrossRef]
|
|
[70]
|
Jin, H., Shi, Y., Lv, Y., Yuan, S., Ramirez, C.F.A., Lieftink, C., et al. (2021) EGFR Activation Limits the Response of Liver Cancer to Lenvatinib. Nature, 595, 730-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Liu, B., Li, L., Yang, G., Geng, C., Luo, Y., Wu, W., et al. (2019) PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 25, 6839-6851. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Kooshkaki, O., Derakhshani, A., Hosseinkhani, N., Torabi, M., Safaei, S., Brunetti, O., et al. (2020) Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. International Journal of Molecular Sciences, 21, Article 4427. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Mansfield, A.S., Hong, D.S., Hann, C.L., Farago, A.F., Beltran, H., Waqar, S.N., et al. (2021) A Phase I/II Study of Rovalpituzumab Tesirine in Delta-Like 3—Expressing Advanced Solid Tumors. npj Precision Oncology, 5, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Isobe, Y., Sato, K., Nishinaga, Y., Takahashi, K., Taki, S., Yasui, H., et al. (2020) Near Infrared Photoimmunotherapy Targeting DLL3 for Small Cell Lung Cancer. EBioMedicine, 52, Article ID: 102632. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Giffin, M.J., Cooke, K., Lobenhofer, E.K., Estrada, J., Zhan, J., Deegen, P., et al. (2021) AMG 757, a Half-Life Extended, Dll3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clinical Cancer Research, 27, 1526-1537. [Google Scholar] [CrossRef] [PubMed]
|