|
[1]
|
Wei, L., Yang, X., Wang, J., Wang, Z., Wang, Q., Ding, Y., et al. (2023) H3K18 Lactylation of Senescent Microglia Potentiates Brain Aging and Alzheimer’s Disease through the NFκB Signaling Pathway. Journal of Neuroinflammation, 20, Article No. 208. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dai, W., Wu, G., Liu, K., Chen, Q., Tao, J., Liu, H., et al. (2023) Lactate Promotes Myogenesis via Activating H3K9 Lactylation-Dependent Up‐Regulation of Neu2 Expression. Journal of Cachexia, Sarcopenia and Muscle, 14, 2851-2865. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jones, R.S., Parker, M.D. and Morris, M.E. (2017) Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6. Molecular Pharmaceutics, 14, 2930-2936. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ghafouri-Fard, S., Shabestari, F.A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., et al. (2021) Emerging Impact of Quercetin in the Treatment of Prostate Cancer. Biomedicine & Pharmacotherapy, 138, Article 111548. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nancolas, B., Guo, L., Zhou, R., Nath, K., Nelson, D.S., Leeper, D.B., et al. (2016) The Anti-Tumour Agent Lonidamine Is a Potent Inhibitor of the Mitochondrial Pyruvate Carrier and Plasma Membrane Monocarboxylate Transporters. Biochemical Journal, 473, 929-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wenzel, U., Schoberl, K., Lohner, K. and Daniel, H. (2005) Activation of Mitochondrial Lactate Uptake by Flavone Induces Apoptosis in Human Colon Cancer Cells. Journal of Cellular Physiology, 202, 379-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Qiao, T., Xiong, Y., Feng, Y., Guo, W., Zhou, Y., Zhao, J., et al. (2021) Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Frontiers in Oncology, 11, Article 632364. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhai, X., Yang, Y., Wan, J., Zhu, R. and Wu, Y. (2013) Inhibition of LDH-A by Oxamate Induces G2/M Arrest, Apoptosis and Increases Radiosensitivity in Nasopharyngeal Carcinoma Cells. Oncology Reports, 30, 2983-2991. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Billiard, J., Dennison, J.B., Briand, J., Annan, R.S., Chai, D., Colón, M., et al. (2013) Quinoline 3-Sulfonamides Inhibit Lactate Dehydrogenase A and Reverse Aerobic Glycolysis in Cancer Cells. Cancer & Metabolism, 1, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xiong, J., Li, J., Yang, Q., Wang, J., Su, T. and Zhou, S. (2017) Gossypol Has Anti-Cancer Effects by Dual-Targeting MDM2 and VEGF in Human Breast Cancer. Breast Cancer Research, 19, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
刘浩, 周云, 卢瑗瑗. 表观遗传学标志物在肿瘤液体活检中的研究进展[J]. 中国细胞生物学学报, 2023, 45(12): 1844-1854.
|
|
[13]
|
Liao, Z., Kempson, I.M., Hsieh, C., Tseng, S. and Yang, P. (2021) Potential Therapeutics Using Tumor-Secreted Lactate in Nonsmall Cell Lung Cancer. Drug Discovery Today, 26, 2508-2514. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Huang, H., Wang, S., Xia, H., Zhao, X., Chen, K., Jin, G., et al. (2024) Lactate Enhances NMNAT1 Lactylation to Sustain Nuclear NAD+ Salvage Pathway and Promote Survival of Pancreatic Adenocarcinoma Cells under Glucose-Deprived Conditions. Cancer Letters, 588, Article 216806. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Faubert, B., Li, K.Y., Cai, L., Hensley, C.T., Kim, J., Zacharias, L.G., et al. (2017) Lactate Metabolism in Human Lung Tumors. Cell, 171, 358-371.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gao, M., Zhang, N. and Liang, W. (2020) Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis Cinerea. Frontiers in Microbiology, 11, Article ID: 594743. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhu, R., Ye, X., Lu, X., Xiao, L., Yuan, M., Zhao, H., et al. (2025) ACSS2 Acts as a Lactyl-Coa Synthetase and Couples KAT2A to Function as a Lactyltransferase for Histone Lactylation and Tumor Immune Evasion. Cell Metabolism, 37, 361-376.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Moreno-Yruela, C., Zhang, D., Wei, W., Bæk, M., Liu, W., Gao, J., et al. (2022) Class I Histone Deacetylases (HDAC1-3) Are Histone Lysine Delactylases. Science Advances, 8, eabi6696. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhai, G., Niu, Z., Jiang, Z., Zhao, F., Wang, S., Chen, C., et al. (2024) DPF2 Reads Histone Lactylation to Drive Transcription and Tumorigenesis. Proceedings of the National Academy of Sciences, 121, e2421496121. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hu, X., Huang, X., Yang, Y., Sun, Y., Zhao, Y., Zhang, Z., et al. (2024) Dux Activates Metabolism-Lactylation-Met Network during Early iPSC Reprogramming with Brg1 as the Histone Lactylation Reader. Nucleic Acids Research, 52, 5529-5548. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Peng, X. and Du, J. (2025) Histone and Non-Histone Lactylation: Molecular Mechanisms, Biological Functions, Diseases, and Therapeutic Targets. Molecular Biomedicine, 6, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shi, P., Ma, Y. and Zhang, S. (2025) Non-Histone Lactylation: Unveiling Its Functional Significance. Frontiers in Cell and Developmental Biology, 13, Article ID: 1535611. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zong, Z., Xie, F., Wang, S., Wu, X., Zhang, Z., Yang, B., et al. (2024) Alanyl-tRNA Synthetase, AARS1, Is a Lactate Sensor and Lactyltransferase That Lactylates P53 and Contributes to Tumorigenesis. Cell, 187, 2375-2392.e33. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gu, J., Zhou, J., Chen, Q., Xu, X., Gao, J., Li, X., et al. (2022) Tumor Metabolite Lactate Promotes Tumorigenesis by Modulating MOESIN Lactylation and Enhancing TGF-β Signaling in Regulatory T Cells. Cell Reports, 39, Article 110986. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, Y., Yang, Z., Yu, Y. and Zhang, P. (2022) Hif1α Lactylation Enhances KIAA1199 Transcription to Promote Angiogenesis and Vasculogenic Mimicry in Prostate Cancer. International Journal of Biological Macromolecules, 222, 2225-2243. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Colegio, O.R., Chu, N., Szabo, A.L., Chu, T., Rhebergen, A.M., Jairam, V., et al. (2014) Functional Polarization of Tumour-Associated Macrophages by Tumour-Derived Lactic Acid. Nature, 513, 559-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, L., Huang, L., Gu, Y., Cang, W., Sun, P. and Xiang, Y. (2022) Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression. International Journal of Molecular Sciences, 23, Article 11943. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pötzl, J., Roser, D., Bankel, L., Hömberg, N., Geishauser, A., Brenner, C.D., et al. (2017) Reversal of Tumor Acidosis by Systemic Buffering Reactivates NK Cells to Express IFN‐γ and Induces NK Cell-Dependent Lymphoma Control without Other Immunotherapies. International Journal of Cancer, 140, 2125-2133. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M.H., et al. (2017) Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metabolism, 25, 1282-1293.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mendler, A.N., Hu, B., Prinz, P.U., Kreutz, M., Gottfried, E. and Noessner, E. (2012) Tumor Lactic Acidosis Suppresses CTL Function by Inhibition of P38 and JNK/C-Jun Activation. International Journal of Cancer, 131, 633-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Watson, M.J., Vignali, P.D.A., Mullett, S.J., Overacre-Delgoffe, A.E., Peralta, R.M., Grebinoski, S., et al. (2021) Metabolic Support of Tumour-Infiltrating Regulatory T Cells by Lactic Acid. Nature, 591, 645-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Huang, Z., Zhang, X., Zhang, L., Liu, L., Zhang, J., Sun, Y., et al. (2023) STAT5 Promotes PD-L1 Expression by Facilitating Histone Lactylation to Drive Immunosuppression in Acute Myeloid Leukemia. Signal Transduction and Targeted Therapy, 8, Article No. 391. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Deng, H., Kan, A., Lyu, N., He, M., Huang, X., Qiao, S., et al. (2021) Tumor-Derived Lactate Inhibit the Efficacy of Lenvatinib through Regulating PD-L1 Expression on Neutrophil in Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 9, e002305. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, J., Zhao, L., Yan, M., Jin, S., Shang, L., Wang, J., et al. (2025) H4K79 and H4K91 Histone Lactylation, Newly Identified Lactylation Sites Enriched in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 44, Article No. 252. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fan, W., Zeng, S., Wang, X., Wang, G., Liao, D., Li, R., et al. (2024) A Feedback Loop Driven by H3K9 Lactylation and HDAC2 in Endothelial Cells Regulates VEGF-Induced Angiogenesis. Genome Biology, 25, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhao, M., Qian, Y., He, L., Peng, T., Wang, H., Wang, X., et al. (2025) Lactate-Mediated Histone Lactylation Promotes Melanoma Angiogenesis via IL-33/ST2 Axis. Cell Death & Disease, 16, Article No. 701. [Google Scholar] [CrossRef]
|
|
[37]
|
Yu, Y., Huang, X., Liang, C. and Zhang, P. (2023) Evodiamine Impairs HIF1A Histone Lactylation to Inhibit Sema3a-Mediated Angiogenesis and PD-L1 by Inducing Ferroptosis in Prostate Cancer. European Journal of Pharmacology, 957, Article 176007. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Payen, V.L., Mina, E., Van Hée, V.F., Porporato, P.E. and Sonveaux, P. (2020) Monocarboxylate Transporters in Cancer. Molecular Metabolism, 33, 48-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sun, X., Wang, M., Wang, M., Yao, L., Li, X., Dong, H., et al. (2020) Role of Proton-Coupled Monocarboxylate Transporters in Cancer: From Metabolic Crosstalk to Therapeutic Potential. Frontiers in Cell and Developmental Biology, 8, Article ID: 651. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sprowl-Tanio, S., Habowski, A.N., Pate, K.T., McQuade, M.M., Wang, K., Edwards, R.A., et al. (2016) Lactate/Pyruvate Transporter MCT-1 Is a Direct Wnt Target That Confers Sensitivity to 3-Bromopyruvate in Colon Cancer. Cancer & Metabolism, 4, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Vander Linden, C., Corbet, C., Bastien, E., Martherus, R., Guilbaud, C., Petit, L., et al. (2021) Therapy-Induced DNA Methylation Inactivates MCT1 and Renders Tumor Cells Vulnerable to MCT4 Inhibition. Cell Reports, 35, Article 109202. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Halestrap, A.P. (2013) The SLC16 Gene Family—Structure, Role and Regulation in Health and Disease. Molecular Aspects of Medicine, 34, 337-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kirk, P., Wilson, M.C., Heddle, C., Brown, M.H., Barclay, A.N. and Halestrap, A.P. (2000) CD147 Is Tightly Associated with Lactate Transporters MCT1 and MCT4 and Facilitates Their Cell Surface Expression. The EMBO Journal, 19, 3896-3904. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Walters, D.K., Arendt, B.K. and Jelinek, D.F. (2013) CD147 Regulates the Expression of MCT1 and Lactate Export in Multiple Myeloma Cells. Cell Cycle, 12, 3364-3372. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, J., Wu, Z., Chen, G., Wang, X., Zhu, X., Zhang, Y., et al. (2023) Formosanin C Inhibits Non-Small-Cell Lung Cancer Progression by Blocking MCT4/CD147-Mediated Lactate Export. Phytomedicine, 109, Article 154618. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Eichner, R., Heider, M., Fernández-Sáiz, V., van Bebber, F., Garz, A., Lemeer, S., et al. (2016) Immunomodulatory Drugs Disrupt the Cereblon-CD147-MCT1 Axis to Exert Antitumor Activity and Teratogenicity. Nature Medicine, 22, 735-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sharma, D., Singh, M. and Rani, R. (2022) Role of LDH in Tumor Glycolysis: Regulation of LDHA by Small Molecules for Cancer Therapeutics. Seminars in Cancer Biology, 87, 184-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Khajah, M., Khushaish, S. and Luqmani, Y. (2024) The Effect of Lactate Dehydrogenase Inhibitors on Proliferation, Motility and Invasion of Breast Cancer Cells in Vitro Highlights a New Role for Lactate. Molecular Medicine Reports, 29, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|