重症肌无力自身抗体的研究进展
Research Advances in Autoantibodies in Myasthenia Gravis
摘要: 重症肌无力(MG)是一种由自身抗体介导的神经–肌肉接头(NMJ)信号传递障碍的自身免疫性疾病,临床表现为骨骼肌波动性无力和易疲劳性。近年来,随着诊断技术的发展,MG的发病率呈上升趋势。根据自身抗体谱的不同,MG可分为乙酰胆碱受体(AChR)抗体型、肌肉特异性受体酪氨酸激酶(MuSK)抗体型、低密度脂蛋白受体相关蛋白4 (LRP4)抗体型及血清抗体阴性型等。AChR抗体通过补体激活、加速AChR降解及阻断乙酰胆碱结合等机制致病;MuSK抗体多见于女性,常累及延髓肌;此外抗兰尼碱受体(RyR)抗体、LRP4抗体及聚集蛋白(agrin)抗体等新型抗体的发现为MG的病理机制和治疗提供了新视角。血清双阳性(DSP-MG)和双阴性(DSN-MG) MG的临床特征及治疗反应各异,部分DSN-MG患者可通过细胞学检测方法检出低亲和力抗体。本文综述了MG相关抗体的研究进展,探讨其致病机制、临床特征及治疗策略,为MG的精准诊断和治疗提供理论依据。
Abstract: Myasthenia gravis (MG) is an autoimmune disorder mediated by autoantibodies that impair neuromuscular junction (NMJ) signaling, clinically characterized by fluctuating skeletal muscle weakness and fatigue. In recent years, with advancements in diagnostic techniques, the incidence of MG has shown an increasing trend. Based on distinct autoantibody profiles, MG can be classified into acetylcholine receptor (AChR) antibody-positive, muscle-specific receptor tyrosine kinase (MuSK) antibody-positive, low-density lipoprotein receptor-related protein 4 (LRP4) antibody-positive, and seronegative types. AChR antibodies contribute to pathogenesis through complement activation, accelerated AChR degradation, and blockade of acetylcholine binding. MuSK antibodies are more common in females and often involve bulbar muscles. Furthermore, the discovery of novel antibodies such as anti-ryanodine receptor (RyR), LRP4, and agrin antibodies has provided new insights into the pathological mechanisms and treatment of MG. Clinical features and treatment responses vary between double seropositive (DSP-MG) and double seronegative (DSN-MG) MG patients, with some DSN-MG cases detectable for low-affinity antibodies via cytochemical assays. This article reviews recent advances in MG-related antibodies, discusses their pathogenic mechanisms, clinical characteristics, and treatment strategies, aiming to provide a theoretical basis for precise diagnosis and management of MG.
文章引用:黎芃伶, 吴鹏. 重症肌无力自身抗体的研究进展[J]. 临床医学进展, 2025, 15(11): 919-925. https://doi.org/10.12677/acm.2025.15113176

1. 引言

重症肌无力(Myasthenia Gravis, MG)是一种由自身抗体介导的破坏神经–肌肉接头(Neuromuscular Junction, NMJ)信号传递的自身免疫性疾病,其发病率约为8~10/(百万人·年),患病率约为150~250/(百万人·年),近年来,由于诊断技术的发展、人口老龄化等因素,其发病率呈增加趋势[1]。MG的临床表现多种多样,最典型的表现是骨骼肌的波动性无力和易疲劳性[2]。严重情况下,可能会出现呼吸困难,甚至导致肌无力危象。MG是一种高度异质性的疾病,不同分型患者的临床表现、症状和演变各不相同可根据自身抗体谱可分为乙酰胆碱受体(AChR)抗体型、肌肉特异性受体酪氨酸激酶(MuSK)抗体型等,根据受累肌肉不同可分为眼肌型和全身型,根据发病年龄分为儿童型和成人型[3]

2. 发病机制

重症肌无力(MG)是一种以神经肌肉接头(NMJ)传递障碍为特征的自身免疫病。AChR抗体是其最主要的致病抗体(占80%~90%)。该抗体通过多种机制导致突触后膜AChR数量减少及功能丧失,其病理结局是终板电位不足和肌无力,其致病过程涉及细胞免疫与补体参与,造成突触后膜AChR大量破坏,使突触传递失效[4]。从功能丧失的角度看,已被阐明的机制主要有三种:补体依赖性溶解作用、受体周转加速所致的内化降解、以及对乙酰胆碱结合的直接竞争性抑制[5]。然而重症肌无力(MG)的免疫发病机制不仅局限于神经肌肉接头(NMJ)局部的抗体介导损伤,还包括免疫系统上游的调控异常。研究显示,MG患者存在明显的T、B细胞亚群失衡:Th17细胞比例升高,而调节性T细胞(Treg)数量及功能下降,导致免疫耐受破坏。活化的Th17细胞分泌IL‑17、IL‑21、IL‑6等细胞因子,促进B细胞活化与分化,增强自身抗体生成;同时,滤泡辅助性T细胞(Tfh)通过分泌IL‑21与B细胞活化因子(BAFF)维持生发中心反应,进一步扩大自身反应性B细胞克隆。部分研究提示IFN‑γ及TNF‑α上调肌肉组织中AChR抗原的表达,从而形成持续抗原刺激。

3. 自身抗体的研究进展

目前已知的MG主要分型包括:AChR-MG (约占80%)、MuSK-MG (约5%~8%)、LRP4-MG (约2%~5%)以及血清学阴性MG等。各类型在免疫机制、发病年龄、性别分布、受累肌群及治疗反应方面差异显著,反映了MG的免疫学异质性。

3.1. 抗乙酰胆碱受体抗体

神经肌肉接头处突触后膜上的乙酰胆碱受体(AChR)是一种五聚体跨膜糖蛋白,其中央为离子通道。其激活机制为:结合突触前释放的乙酰胆碱(ACh)后通道开放,引发钠/钾离子跨膜流动,最终导致肌膜去极化并产生微终板电位(mEPP),众多mEPP经空间与时间总和形成终板电位(EPP)。当EPP的幅值超过激发阈值时,即可在肌纤维上引发动作电位,最终导致肌肉收缩[6]。在MG患者中,抗AChR抗体(Anti-AChR)的总体检出率为68.60%,其中全身型与眼肌型患者的阳性率分别为71.43%和49.02%。大约50%的AChR自身免疫反应聚焦于其α亚基。由于该亚基是受体行使功能不可或缺的部分,针对它的抗体较靶向β亚基的抗体更能有效地损害AChR,从而导致更强的病理结果[7]。进一步的研究还提示,抗体所识别的特定表位模式,是决定疾病临床表现严重程度的一个重要因素。特别值得注意的是,针对AChR“主要免疫原区”(MIR)的抗体属于IgG1和IgG3亚型,它们能够有效激活补体系统,且其滴度与病情严重性存在关联[8]。在治疗方面,有研究证实,美罗华治疗抗AChR阳性的MG患者能明显降低其血清中的抗体水平,并具有明显的效果,而依库丽单抗对于难治性全身型AChR抗体阳性MG患者展现出良好的安全性与耐受性[9]

3.2. 肌肉特异性酪氨酸激酶抗体

肌肉特异性酪氨酸激酶(MuSK)是神经肌肉接头突触后膜上的一种关键跨膜受体。其分子结构特征为:胞外段包含N末端的三个免疫球蛋白样结构域(Ig1~Ig3)及一个富含半胱氨酸的结构域(cysteine-richdomain, CRD)构成,胞质结构域包含酪氨酸激酶结构域、短的近膜区和由8个氨基酸构成的羧基端序列[9]。该抗体不激活补体,主要干扰MuSK-LRP4-Agrin信号通路,抑制AChR聚集,导致NMJ结构不稳定。大约5%~8%的MG患者对肌肉特异性酪氨酸激酶受体抗体呈阳性[10]。其患病率因地域、种族群体等而异,在东亚人群中,MuSK-Ab阳性率更高。MuSK-MG多见于女性,占患者的70%以上,40岁左右为高发期,年龄>70岁者少见[11]。MuSK-MG通常起病急性,症状通常在数周内逐渐发展,早期呼吸功能不全风险高。肌无力分布具有选择性,优先影响球部肌肉,并常扩展至呼吸肌,部分患者可见舌肌萎缩;约30%的MuSK-MG患者存在复视或眼睑下垂但肢体受累通常并不常见,一旦出现,则通常程度严重并与肌肉萎缩相关[12] [13]

3.3. 低密度脂蛋白受体相关蛋白4抗体

LRP4是一种跨膜蛋白,其胞外结构域较大包含9个低密度脂蛋白(LDL)的结构域、2个表皮生长因子(EGF)样结构域和4个β-螺旋结构域[14]。该蛋白已被确认是MG的一种自身免疫靶点,其抗体被证明具有致病性。支持证据来自动物实验:向小鼠体内注射LRP4胞外段可成功诱导产生特异性抗体,并导致动物出现肌肉无力、体重减轻等典型症状,高频重复电刺激则记录到复合肌肉动作电位波幅的递减反应[15]。该抗体主要是阻断了Agrin-LRP4-MuSK复合体形成,影响AChR聚集。LRP4-MG患者的阳性率在不同研究中存在较大变异,报道范围介于2%至50%之间[16]。LRP4-MG好发于女性,可见于各年龄段人群,但以50岁以下个体更为常见[15]。该亚型患者的临床表现谱包括单纯眼肌型与全身型,但总体病情严重程度通常较轻。数据显示,约五分之一的LRP4-MG患者在发病两年后症状仍局限于复视或眼睑下垂等眼部表现。然而,若患者体内同时存在agrin抗体,则其临床症状往往会显著加重[17]

3.4. 兰尼碱受体钙释放通道抗体

兰尼碱受体(RyR)是骨骼肌和心肌肌浆网上的Ca2+通道,RyR的四种同源性亚基中间形成一通道。RyR有两种分型,其中RyR1型与骨骼肌相关,心肌为RyR2型,RyR-Ab能与两种分型交叉反应[18]。该抗体的致病机理已被阐明:它通过占据兰尼碱的结合位点,使通道开放受阻,最终导致肌浆网钙释放受限[19]。临床证据显示,携带RyR-Ab的MG患者往往症状严重,全身肌无力、呼吸功能不全及面瘫发生率高,球部与呼吸肌受累程度远超连接素抗体阳性患者,且该抗体是胸腺瘤和重症化的重要标志[20]。针对此型患者,他克莫司等药物展现出良好治疗效果,其机制兼具免疫抑制(抑制T细胞)与直接改善RyR相关钙信号功能障碍的双重作用[21]

3.5. 聚集蛋白

Agrin是一种由运动神经末梢释放的硫酸乙酰肝素蛋白聚糖(HSPG),其广泛存在于肌肉组织中,对骨骼肌的伸展性与弹性调节具有重要作用[22]。agrin与肌纤维膜上的蛋白结合(如LRP4、肌营养不良蛋白聚糖、层粘连蛋白),调节NMJ的形成、维持和再生[23]。在MG领域,约30%的患者血清中可检测到针对连接素(Titin)的自身抗体。研究进一步揭示,该抗体在伴有胸腺病变的MG个体中阳性率升至50%~55%,于病程晚期患者中更是达到55%~60%,表明其高表达与MG的胸腺病理改变存在显著关联[24]。此外,有研究提示agrin自身抗体的出现可能与病情严重度相关[25],并且该抗体在部分肌萎缩侧索硬化(ALS)患者中亦有检出[15]。然而,当前对agrin抗体的探索仍不充分,其确切的致病机理及其在MG中的具体作用尚待深入阐明。

3.6. 胶原蛋白

胶原蛋白(Collagen)构成细胞外基质的骨架,是突触间隙中突触基底结构的组成成分。关于ColQ-Ab的病理机制的研究相对较为匮乏,ColQ-Ab可能会影响ColQ-AchE复合物的浓度,从而导致突触间隙中 AchE的数量减少[26]。ColQ抗体在MG患者中可出现,但ColQ抗体阳性表达也可见于健康人的血清[27]。目前有关该蛋白与MG相互作用的报道较少,有待深入研究。

3.7. 血清双阳性

DSP-MG是指体内可测出AChR-Ab和MuSK-Ab的MG患者[28]。根据现有研究,对于DSP-MG患者,其临床表型呈现出以严重延髓麻痹和高危象发生率为特点的重症化倾向[28]。该亚型在人口学与临床特征上与MuSK抗体单阳性MG (MuSK-MG)的相似度远高于AChR抗体单阳性MG (AChR-MG),尽管与前者的一些差异(如女性比例更高)未达统计学显著性[29]。一项针对中国南部人群的研究据此提出,DSP-MG或可归类为MuSK-MG的一个亚型。该论断的有力支持在于:DSP-MG患者中延髓功能障碍(构音障碍、吞咽困难)和肌无力危象极为常见,这与MuSK-MG的典型特征[30]高度吻合,且详细的组间比较未发现DSP-MG与MuSK-MG存在显著差异[31]

3.8. 血清阴性

血清阴性重症肌无力(Seronegative MG, SNMG)包括传统意义上的双阴性(AChR‑Ab和MuSK‑Ab阴性)以及三阴性(AChR‑Ab、MuSK‑Ab、LRP4‑Ab均阴性)患者。随着检测技术发展,越来越多“阴性”病例被重新归类。基于细胞的检测(Cell‑Based Assay, CBA)能识别低亲和力或构象依赖性抗体,其灵敏度显著高于ELISA或免疫印迹。CBA利用HEK293细胞共表达AChR亚基及rapsyn形成簇集结构,更接近生理状态,因而在抗体检测中具有更高特异性。未来,结合流式CBA及自动化成像分析将进一步提高MG抗体检测的准确性[32]

一般来说,DSN-MG患者在受累肌群、症状严重程度和对治疗的反应方面呈现出与AChR-MG患者相似的特点,与AChR-MG患者相比,DSN-MG患者发病年龄较小,临床表现轻微,且延髓肌很少受累,不易发生肌无力危象[33]。事实上,当引入高灵敏度的基于细胞的检测(CBA)来检测DSN-MG自身抗体时,可以在大约50%左右的患者中检测到低亲和力AChR抗体[34]

现有证据提示,其血清学阴性结果并非意味着完全不存在自身免疫应答。实际情况可能是抗体水平过低或其与抗原的结合能力不足,超出了常规ELISA方法的检测能力,从而造成了漏检[34]-[37]。建议在初步评估后6~18个月对已知抗体进行重复检测,因为一部分患者可能会因抗体浓度增加、表位扩散或检测灵敏度提高而发生血清转换[38],最初AChR抗体血清阴性的患者中,高达40%在随访2年内转为血清阳性[39]

4. 总结与展望

近年来,重症肌无力(MG)的研究正从单一抗体学层面,逐步向多维免疫网络与精准治疗方向拓展。随着AChR、MuSK、LRP4及Agrin等抗体相继被发现,MG的临床分型体系愈加完善,不同抗体亚型在致病机制、临床表型及治疗反应上的特异性逐渐明确。同时,基于细胞的抗体检测(CBA)、高灵敏度免疫印迹、流式细胞分析等新技术的应用,显著提高了血清学阴性MG的检出率,为精准诊断提供了重要支持。从免疫调控角度来看,T细胞亚群失衡(Th17/Treg轴紊乱)、滤泡辅助性T细胞(Tfh)异常活化以及细胞因子网络(IL-6、IL-21、BAFF、IFN-γ等)的持续激活,是MG免疫耐受破坏的重要上游机制。基于此认识,靶向B细胞、补体及FcRn的治疗策略逐渐成为研究热点,补体抑制剂(如依库丽单抗)和B细胞去除疗法(如利妥昔单抗)已在难治性MG中取得显著疗效。未来的研究将聚焦以下几个方向:(1) 多组学整合:结合抗原组学、表位组学与单细胞测序技术,解析不同抗体亚型的免疫网络特征;(2) 个体化免疫干预:探索基于抗体谱与免疫细胞特征的精准治疗策略;(3) 儿童MG与成人MG差异化研究:揭示发病机制与免疫反应的年龄依赖性差异;(4) 复发与免疫记忆机制:明确长期免疫记忆细胞在疾病复发中的作用;(5) 新型靶向治疗:开发FcRn拮抗剂、BAFF阻断剂及细胞因子网络调节药物,推动免疫精准干预的临床转化。总体而言,MG研究正处于从“抗体识别”迈向“系统免疫调控”的阶段。随着免疫学与分子技术的不断发展,对MG致病机制的理解将更加全面,为实现真正的个体化诊疗和疾病免疫重建奠定基础。

NOTES

*通讯作者。

参考文献

[1] Punga, A.R., Maddison, P., Heckmann, J.M., Guptill, J.T. and Evoli, A. (2022) Epidemiology, Diagnostics, and Biomarkers of Autoimmune Neuromuscular Junction Disorders. The Lancet Neurology, 21, 176-188. [Google Scholar] [CrossRef] [PubMed]
[2] Mantegazza, R., Bernasconi, P. and Cavalcante, P. (2018) Myasthenia Gravis: From Autoantibodies to Therapy. Current Opinion in Neurology, 31, 517-525. [Google Scholar] [CrossRef] [PubMed]
[3] Verschuuren, J.J., Palace, J., Murai, H., Tannemaat, M.R., Kaminski, H.J. and Bril, V. (2022) Advances and Ongoing Research in the Treatment of Autoimmune Neuromuscular Junction Disorders. The Lancet Neurology, 21, 189-202. [Google Scholar] [CrossRef] [PubMed]
[4] Ruff, R.L. and Lisak, R.P. (2018) Nature and Action of Antibodies in Myasthenia Gravis. Neurologic Clinics, 36, 275-291. [Google Scholar] [CrossRef] [PubMed]
[5] Martinez Salazar, A., Mokhtari, S., Peguero, E. and Jaffer, M. (2025) The Role of Complement in the Pathogenesis and Treatment of Myasthenia Gravis. Cells, 14, Article 739. [Google Scholar] [CrossRef] [PubMed]
[6] Tan, Y., Shi, J., Huang, Y., Li, K., Yan, J., Zhu, L., et al. (2022) Long-Term Efficacy of Non-Steroid Immunosuppressive Agents in Anti-Muscle-Specific Kinase Positive Myasthenia Gravis Patients: A Prospective Study. Frontiers in Neurology, 13, Article 877895. [Google Scholar] [CrossRef] [PubMed]
[7] Kordas, G., Lagoumintzis, G., Sideris, S., Poulas, K. and Tzartos, S.J. (2014) Direct Proof of the in Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients. PLOS ONE, 9, e108327. [Google Scholar] [CrossRef] [PubMed]
[8] Robeson, K.R., Kumar, A., Keung, B., DiCapua, D.B., Grodinsky, E., Patwa, H.S., et al. (2017) Durability of the Rituximab Response in Acetylcholine Receptor Autoantibody-Positive Myasthenia Gravis. JAMA Neurology, 74, 60-66. [Google Scholar] [CrossRef] [PubMed]
[9] Morgan, B.P., Chamberlain-Banoub, J., Neal, J.W., Song, W., Mizuno, M. and Harris, C.L. (2006) The Membrane Attack Pathway of Complement Drives Pathology in Passively Induced Experimental Autoimmune Myasthenia Gravis in Mice. Clinical and Experimental Immunology, 146, 294-302. [Google Scholar] [CrossRef] [PubMed]
[10] Koneczny, I. and Herbst, R. (2019) Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells, 8, Article 671. [Google Scholar] [CrossRef] [PubMed]
[11] Evoli, A., Alboini, P.E., Damato, V., Iorio, R., Provenzano, C., Bartoccioni, E., et al. (2018) Myasthenia Gravis with Antibodies to MuSK: An Update. Annals of the New York Academy of Sciences, 1412, 82-89. [Google Scholar] [CrossRef] [PubMed]
[12] Sanders, D.B., El-Salem, K., Massey, J.M., McConville, J. and Vincent, A. (2003) Clinical Aspects of MuSK Antibody Positive Seronegative MG. Neurology, 60, 1978-1980. [Google Scholar] [CrossRef] [PubMed]
[13] Pasnoor, M., Wolfe, G.I., Nations, S., Trivedi, J., Barohn, R.J., Herbelin, L., et al. (2010) Clinical Findings in MuSK-antibody Positive Myasthenia Gravis: A U.S. Experience. Muscle & Nerve, 41, 370-374. [Google Scholar] [CrossRef] [PubMed]
[14] Takamori, M. (2020) Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Frontiers in Molecular Neuroscience, 13, Article 86. [Google Scholar] [CrossRef] [PubMed]
[15] Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibod-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
[16] Chung, H.Y., Kim, M.J., Kim, S.W., Oh, J. and Shin, H.Y. (2023) Development and Application of a Cell-Based Assay for LRP4 Antibody Associated with Myasthenia Gravis. Journal of Clinical Neurology, 19, 60-66. [Google Scholar] [CrossRef] [PubMed]
[17] Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibody-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
[18] Li, Y., Zhang, Y., Cai, G., He, D., Dai, Q., Xu, Z., et al. (2017) Anti-LRP4 Autoantibodies in Chinese Patients with Myasthenia Gravis. Muscle & Nerve, 56, 938-942. [Google Scholar] [CrossRef] [PubMed]
[19] Tsivgoulis, G., Dervenoulas, G., Kokotis, P., Zompola, C., Tzartos, J.S., Tzartos, S.J., et al. (2014) Double Seronegative Myasthenia Gravis with Low Density Lipoprotein-4 (LRP4) Antibodies Presenting with Isolated Ocular Symptoms. Journal of the Neurological Sciences, 346, 328-330. [Google Scholar] [CrossRef] [PubMed]
[20] Romi, F., Skeie, G.O., Gilhus, N.E., et al. (2005) Striational Antibodies in Myasthenia Gravis: Reactivity and Possible Clinical Significance. Archives of Neurology, 62, 442-446.
[21] Lazaridis, K. and Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212. [Google Scholar] [CrossRef] [PubMed]
[22] 王泳心, 崔有斌, 周达, 等. 重症肌无力合并胸腺病变患者血清AChR抗体、Titin抗体和RyR抗体的检测及其临床意义[J]. 实用医学杂志, 2012, 28(2): 218-221.
[23] Romi, F., Aarli, J.A. and Gilhus, N.E. (2007) Myasthenia Gravis Patients with Ryanodine Receptor Antibodies Have Distinctive Clinical Features. European Journal of Neurology, 14, 617-620. [Google Scholar] [CrossRef] [PubMed]
[24] McMahan, U.J., Horton, S.E., Werle, M.J., Honig, L.S., Kröger, S., Ruegg, M.A., et al. (1992) Agrin Isoforms and Their Role in Synaptogenesis. Current Opinion in Cell Biology, 4, 869-874. [Google Scholar] [CrossRef] [PubMed]
[25] Gilhus, N.E., Tzartos, S., Evoli, A., Palace, J., Burns, T.M. and Verschuuren, J.J.G.M. (2019) Myasthenia Gravis. Nature Reviews Disease Primers, 5, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
[26] Nakata, R., Motomura, M., Masuda, T., Shiraishi, H., Tokuda, M., Fukuda, T., et al. (2013) Thymus Histology and Concomitant Autoimmune Diseases in Japanese Patients with Muscle-Specific Receptor Tyrosine Kinase-Antibody-Positive Myasthenia Gravis. European Journal of Neurology, 20, 1272-1276. [Google Scholar] [CrossRef] [PubMed]
[27] Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibody-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
[28] Rivner, M.H., Liu, S., Quarles, B., Fleenor, B., Shen, C., Pan, J., et al. (2017) Agrin and Low-Density Lipoprotein-Related Receptor Protein 4 Antibodies in Amyotrophic Lateral Sclerosis Patients. Muscle & Nerve, 55, 430-432. [Google Scholar] [CrossRef] [PubMed]
[29] Zoltowska Katarzyna, M., Belaya, K., Leite, M., Patrick, W., Vincent, A. and Beeson, D. (2015) Collagen Q—A Potential Target for Autoantibodies in Myasthenia Gravis. Journal of the Neurological Sciences, 348, 241-244. [Google Scholar] [CrossRef] [PubMed]
[30] Rotundo, R.L., Rossi, S.G., Kimbell, L.M., Ruiz, C. and Marrero, E. (2005) Targeting Acetylcholinesterase to the Neuromuscular Synapse. Chemico-Biological Interactions, 157, 15-21. [Google Scholar] [CrossRef] [PubMed]
[31] Ohno, K., Otsuka, K. and Ito, M. (2016) Roles of Collagen Q in MuSK Antibody-Positive Myasthenia Gravis. Chemico-Biological Interactions, 259, 266-270. [Google Scholar] [CrossRef] [PubMed]
[32] Huda, S., Waters, P., Woodhall, M., Leite, M.I., Jacobson, L., De Rosa, A., et al. (2017) IgG-Specific Cell-Based Assay Detects Potentially Pathogenic MuSK-Abs in Seronegative MG. Neurology Neuroimmunology & Neuroinflammation, 4, e357. [Google Scholar] [CrossRef] [PubMed]
[33] Muppidi, S. and Wolfe, G.I. (2009) Muscle-Specific Receptor Tyrosine Kinase Antibody-Positive and Seronegative Myasthenia Gravis. In: Frontiers of Neurology and Neuroscience, Karger, 109-119. [Google Scholar] [CrossRef] [PubMed]
[34] Guptill, J.T. and Sanders, D.B. (2010) Update on Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis. Current Opinion in Neurology, 23, 530-535. [Google Scholar] [CrossRef] [PubMed]
[35] Cortés-Vicente, E., Gallardo, E., Martínez, M.Á., Díaz-Manera, J., Querol, L., Rojas-García, R., et al. (2016) Clinical Characteristics of Patients with Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. JAMA Neurology, 73, 1099-1104. [Google Scholar] [CrossRef] [PubMed]
[36] Zhao, G., Wang, X., Yu, X., Zhang, X., Guan, Y. and Jiang, J. (2015) Clinical Application of Clustered-AChR for the Detection of SNMG. Scientific Reports, 5, Article No. 10193. [Google Scholar] [CrossRef] [PubMed]
[37] Cossins, J., Belaya, K., Zoltowska, K., Koneczny, I., Maxwell, S., Jacobson, L., et al. (2012) The Search for New Antigenic Targets in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1275, 123-128. [Google Scholar] [CrossRef] [PubMed]
[38] Tsonis, A.I., Zisimopoulou, P., Lazaridis, K., Tzartos, J., Matsigkou, E., Zouvelou, V., et al. (2015) MuSK Autoantibodies in Myasthenia Gravis Detected by Cell Based Assay—A Multinational Study. Journal of Neuroimmunology, 284, 10-17. [Google Scholar] [CrossRef] [PubMed]
[39] Leite, M.I., Jacob, S., Viegas, S., Cossins, J., Clover, L., Morgan, B.P., et al. (2008) IgG1 Antibodies to Acetylcholine Receptors in ‘Seronegative’ Myasthenia Gravis. Brain, 131, 1940-1952. [Google Scholar] [CrossRef] [PubMed]
[40] Gilhus, N.E., Skeie, G.O., Romi, F., Lazaridis, K., Zisimopoulou, P. and Tzartos, S. (2016) Myasthenia Gravis—Autoantibody Characteristics and Their Implications for Therapy. Nature Reviews Neurology, 12, 259-268. [Google Scholar] [CrossRef] [PubMed]
[41] Klein, C.J., Beecher, G., Lamb, C., Naddaf, E., Milone, M., Liewluck, T., et al. (2022) LRP4-IgG Service Line Testing in Seronegative Myasthenia Gravis and Controls. Journal of Neuroimmunology, 368, Article 577895. [Google Scholar] [CrossRef] [PubMed]