|
[1]
|
Punga, A.R., Maddison, P., Heckmann, J.M., Guptill, J.T. and Evoli, A. (2022) Epidemiology, Diagnostics, and Biomarkers of Autoimmune Neuromuscular Junction Disorders. The Lancet Neurology, 21, 176-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mantegazza, R., Bernasconi, P. and Cavalcante, P. (2018) Myasthenia Gravis: From Autoantibodies to Therapy. Current Opinion in Neurology, 31, 517-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Verschuuren, J.J., Palace, J., Murai, H., Tannemaat, M.R., Kaminski, H.J. and Bril, V. (2022) Advances and Ongoing Research in the Treatment of Autoimmune Neuromuscular Junction Disorders. The Lancet Neurology, 21, 189-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ruff, R.L. and Lisak, R.P. (2018) Nature and Action of Antibodies in Myasthenia Gravis. Neurologic Clinics, 36, 275-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Martinez Salazar, A., Mokhtari, S., Peguero, E. and Jaffer, M. (2025) The Role of Complement in the Pathogenesis and Treatment of Myasthenia Gravis. Cells, 14, Article 739. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tan, Y., Shi, J., Huang, Y., Li, K., Yan, J., Zhu, L., et al. (2022) Long-Term Efficacy of Non-Steroid Immunosuppressive Agents in Anti-Muscle-Specific Kinase Positive Myasthenia Gravis Patients: A Prospective Study. Frontiers in Neurology, 13, Article 877895. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kordas, G., Lagoumintzis, G., Sideris, S., Poulas, K. and Tzartos, S.J. (2014) Direct Proof of the in Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients. PLOS ONE, 9, e108327. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Robeson, K.R., Kumar, A., Keung, B., DiCapua, D.B., Grodinsky, E., Patwa, H.S., et al. (2017) Durability of the Rituximab Response in Acetylcholine Receptor Autoantibody-Positive Myasthenia Gravis. JAMA Neurology, 74, 60-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Morgan, B.P., Chamberlain-Banoub, J., Neal, J.W., Song, W., Mizuno, M. and Harris, C.L. (2006) The Membrane Attack Pathway of Complement Drives Pathology in Passively Induced Experimental Autoimmune Myasthenia Gravis in Mice. Clinical and Experimental Immunology, 146, 294-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Koneczny, I. and Herbst, R. (2019) Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells, 8, Article 671. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Evoli, A., Alboini, P.E., Damato, V., Iorio, R., Provenzano, C., Bartoccioni, E., et al. (2018) Myasthenia Gravis with Antibodies to MuSK: An Update. Annals of the New York Academy of Sciences, 1412, 82-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sanders, D.B., El-Salem, K., Massey, J.M., McConville, J. and Vincent, A. (2003) Clinical Aspects of MuSK Antibody Positive Seronegative MG. Neurology, 60, 1978-1980. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Pasnoor, M., Wolfe, G.I., Nations, S., Trivedi, J., Barohn, R.J., Herbelin, L., et al. (2010) Clinical Findings in MuSK-antibody Positive Myasthenia Gravis: A U.S. Experience. Muscle & Nerve, 41, 370-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Takamori, M. (2020) Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Frontiers in Molecular Neuroscience, 13, Article 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibod-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chung, H.Y., Kim, M.J., Kim, S.W., Oh, J. and Shin, H.Y. (2023) Development and Application of a Cell-Based Assay for LRP4 Antibody Associated with Myasthenia Gravis. Journal of Clinical Neurology, 19, 60-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibody-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, Y., Zhang, Y., Cai, G., He, D., Dai, Q., Xu, Z., et al. (2017) Anti-LRP4 Autoantibodies in Chinese Patients with Myasthenia Gravis. Muscle & Nerve, 56, 938-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tsivgoulis, G., Dervenoulas, G., Kokotis, P., Zompola, C., Tzartos, J.S., Tzartos, S.J., et al. (2014) Double Seronegative Myasthenia Gravis with Low Density Lipoprotein-4 (LRP4) Antibodies Presenting with Isolated Ocular Symptoms. Journal of the Neurological Sciences, 346, 328-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Romi, F., Skeie, G.O., Gilhus, N.E., et al. (2005) Striational Antibodies in Myasthenia Gravis: Reactivity and Possible Clinical Significance. Archives of Neurology, 62, 442-446.
|
|
[21]
|
Lazaridis, K. and Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
王泳心, 崔有斌, 周达, 等. 重症肌无力合并胸腺病变患者血清AChR抗体、Titin抗体和RyR抗体的检测及其临床意义[J]. 实用医学杂志, 2012, 28(2): 218-221.
|
|
[23]
|
Romi, F., Aarli, J.A. and Gilhus, N.E. (2007) Myasthenia Gravis Patients with Ryanodine Receptor Antibodies Have Distinctive Clinical Features. European Journal of Neurology, 14, 617-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
McMahan, U.J., Horton, S.E., Werle, M.J., Honig, L.S., Kröger, S., Ruegg, M.A., et al. (1992) Agrin Isoforms and Their Role in Synaptogenesis. Current Opinion in Cell Biology, 4, 869-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gilhus, N.E., Tzartos, S., Evoli, A., Palace, J., Burns, T.M. and Verschuuren, J.J.G.M. (2019) Myasthenia Gravis. Nature Reviews Disease Primers, 5, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nakata, R., Motomura, M., Masuda, T., Shiraishi, H., Tokuda, M., Fukuda, T., et al. (2013) Thymus Histology and Concomitant Autoimmune Diseases in Japanese Patients with Muscle-Specific Receptor Tyrosine Kinase-Antibody-Positive Myasthenia Gravis. European Journal of Neurology, 20, 1272-1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Rivner, M.H., Quarles, B.M., Pan, J., Yu, Z., Howard, J.F., Corse, A., et al. (2020) Clinical Features of LRP4/Agrin-Antibody-Positive Myasthenia Gravis: A Multicenter Study. Muscle & Nerve, 62, 333-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rivner, M.H., Liu, S., Quarles, B., Fleenor, B., Shen, C., Pan, J., et al. (2017) Agrin and Low-Density Lipoprotein-Related Receptor Protein 4 Antibodies in Amyotrophic Lateral Sclerosis Patients. Muscle & Nerve, 55, 430-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zoltowska Katarzyna, M., Belaya, K., Leite, M., Patrick, W., Vincent, A. and Beeson, D. (2015) Collagen Q—A Potential Target for Autoantibodies in Myasthenia Gravis. Journal of the Neurological Sciences, 348, 241-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rotundo, R.L., Rossi, S.G., Kimbell, L.M., Ruiz, C. and Marrero, E. (2005) Targeting Acetylcholinesterase to the Neuromuscular Synapse. Chemico-Biological Interactions, 157, 15-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ohno, K., Otsuka, K. and Ito, M. (2016) Roles of Collagen Q in MuSK Antibody-Positive Myasthenia Gravis. Chemico-Biological Interactions, 259, 266-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Huda, S., Waters, P., Woodhall, M., Leite, M.I., Jacobson, L., De Rosa, A., et al. (2017) IgG-Specific Cell-Based Assay Detects Potentially Pathogenic MuSK-Abs in Seronegative MG. Neurology Neuroimmunology & Neuroinflammation, 4, e357. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Muppidi, S. and Wolfe, G.I. (2009) Muscle-Specific Receptor Tyrosine Kinase Antibody-Positive and Seronegative Myasthenia Gravis. In: Frontiers of Neurology and Neuroscience, Karger, 109-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Guptill, J.T. and Sanders, D.B. (2010) Update on Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis. Current Opinion in Neurology, 23, 530-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cortés-Vicente, E., Gallardo, E., Martínez, M.Á., Díaz-Manera, J., Querol, L., Rojas-García, R., et al. (2016) Clinical Characteristics of Patients with Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. JAMA Neurology, 73, 1099-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhao, G., Wang, X., Yu, X., Zhang, X., Guan, Y. and Jiang, J. (2015) Clinical Application of Clustered-AChR for the Detection of SNMG. Scientific Reports, 5, Article No. 10193. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cossins, J., Belaya, K., Zoltowska, K., Koneczny, I., Maxwell, S., Jacobson, L., et al. (2012) The Search for New Antigenic Targets in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1275, 123-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tsonis, A.I., Zisimopoulou, P., Lazaridis, K., Tzartos, J., Matsigkou, E., Zouvelou, V., et al. (2015) MuSK Autoantibodies in Myasthenia Gravis Detected by Cell Based Assay—A Multinational Study. Journal of Neuroimmunology, 284, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Leite, M.I., Jacob, S., Viegas, S., Cossins, J., Clover, L., Morgan, B.P., et al. (2008) IgG1 Antibodies to Acetylcholine Receptors in ‘Seronegative’ Myasthenia Gravis. Brain, 131, 1940-1952. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gilhus, N.E., Skeie, G.O., Romi, F., Lazaridis, K., Zisimopoulou, P. and Tzartos, S. (2016) Myasthenia Gravis—Autoantibody Characteristics and Their Implications for Therapy. Nature Reviews Neurology, 12, 259-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Klein, C.J., Beecher, G., Lamb, C., Naddaf, E., Milone, M., Liewluck, T., et al. (2022) LRP4-IgG Service Line Testing in Seronegative Myasthenia Gravis and Controls. Journal of Neuroimmunology, 368, Article 577895. [Google Scholar] [CrossRef] [PubMed]
|