呼出气一氧化氮在学龄儿童哮喘诊疗中的价值
The Value of Fractional Exhaled Nitric Oxide in the Diagnosis and Management of Asthma in School-Age Children
摘要: 哮喘是儿童常见的慢性呼吸系统疾病,气道炎症是其核心病理特征。呼出气一氧化氮(FeNO)作为一种重要的非侵入性生物标志物,在评估气道炎症方面具有重要价值。本综述旨在整合当前证据,探讨FeNO在学龄儿童哮喘诊断与治疗管理中的临床价值。文中系统阐述了FeNO的生理基础与测量方法,指出FeNO作为传统诊疗手段的有效补充工具,不仅有助于提升学龄儿童哮喘的诊断准确性,也能较好地预测患儿对吸入性糖皮质激素的治疗反应,并为个体化治疗方案的调整提供了客观依据,但是,FeNO的最佳诊断阈值仍需进一步明确,其结果解读也需关注共患病的影响,其在哮喘治疗管理中的应用价值还需更多研究证明。未来应致力于建立标准化的、针对特定年龄的阈值,并构建多指标的预测模型,以促进儿童哮喘个体化治疗。
Abstract: Asthma is a common chronic respiratory disease in children, with airway inflammation serving as its core pathological feature. As an important non-invasive biomarker, fractional exhaled nitric oxide (FeNO) holds significant value in assessing airway inflammation. This review aims to synthesize current evidence and explore the clinical utility of FeNO in the diagnosis and management of asthma in school-age children. It systematically elaborates on the physiological basis and measurement techniques of FeNO, highlighting its role as a complementary tool to conventional diagnostic methods. FeNO not only aids in improving diagnostic accuracy for asthma in school-age children but also effectively predicts treatment response to inhaled corticosteroids and provides an objective basis for adjusting individualized treatment regimens. However, the optimal diagnostic threshold for FeNO requires further clarification, and the interpretation of its results must consider the impact of comorbidities. Additionally, its application value in asthma management warrants more research validation. Future efforts should focus on establishing standardized, age-specific FeNO thresholds and developing integrated predictive models to advance personalized treatment for childhood asthma.
文章引用:梅诗逸, 代继宏. 呼出气一氧化氮在学龄儿童哮喘诊疗中的价值[J]. 临床医学进展, 2025, 15(11): 964-972. https://doi.org/10.12677/acm.2025.15113180

1. 引言

哮喘是儿童常见的慢性呼吸系统疾病,近年来,我国儿童哮喘患病率逐渐上升,从1984年的0.69%上升到2021年的5.3%。根据全球疾病负担(GBD) 2021年数据显示,15岁以下儿童具有更高的哮喘患病风险,在5~14岁儿童的残疾调整寿命年(DALY)病因排名中,哮喘位列前十[1],这对家庭和社会造成了沉重的负担。哮喘患儿常表现为喘息、咳嗽、呼吸困难等多变性和非特异性症状,且儿童自我表达能力有限,因此需要依靠客观的检测手段来协助哮喘的诊断和评估。

气道炎症是哮喘的核心病理特征,呼出气一氧化氮(FeNO)是一种常用的非侵入性的气道炎症生物标志物,可以间接反映气道炎症的程度,具有操作简便、无创、重复性好等优点,已广泛应用于哮喘患儿的诊断、病情评估、治疗监测等方面。本文旨在探讨FeNO在学龄期哮喘患儿诊断和治疗过程中的临床应用价值。

2. 哮喘的病理生理机制

哮喘是一种慢性气道炎症性疾病,气道炎症作为哮喘病理生理学中的一个主要特征,即使在没有明显症状的情况下也可能存在。其炎症反应涉及多种免疫细胞的浸润,包括嗜酸性粒细胞、肥大细胞、T淋巴细胞、嗜碱性粒细胞和中性粒细胞等,这些细胞释放多种炎症介质,从而驱动和维持炎症。当气道黏膜接触到吸入性过敏原时,T细胞进行活化与分化,嗜酸性粒细胞、肥大细胞、中性粒细胞等效应细胞浸润气道,同时释放细胞因子、组胺、白三烯等多种炎症介质,作用于气道上皮细胞、气道平滑肌细胞等,同时这些细胞接受到炎症信号刺激后,自身也可产生多种细胞因子、趋化因子等,放大和维持炎症状态[2]

在哮喘涉及的多种免疫细胞中,嗜酸性粒细胞是哮喘气道炎症,特别是Th2型炎症中的关键效应细胞。它通过释放毒性颗粒蛋白、脂类介质和细胞因子,导致气道上皮损伤、气道高反应性、黏液分泌过多,并与其他免疫细胞相互作用,对炎症形成正反馈,加剧炎症反应,同时促进气道重塑[3]。嗜酸性粒细胞活化及其相关的Th2细胞因子可诱导气道上皮细胞表达诱导型一氧化氮合酶(iNOS),催化产生大量一氧化氮(NO),从而使得FeNO水平升高。因此,FeNO被视为气道嗜酸性炎症的无创生物标志物,其水平与痰和组织中的嗜酸性粒细胞计数具有良好的相关性。

3. FeNO的生理学基础与检测方法

3.1. FeNO的生理学基础与发展历程

NO作为一种重要的气体信号分子,在血管舒张、神经传递和免疫调节中发挥重要作用。1991年学者首次在动物及人类中证实呼出气中存在NO [4],随后,Alving,K等人也证明在哮喘患者呼出气中NO水平显著高于健康人,这是第一次将FeNO与哮喘疾病联系起来[5]。随着研究深入,FeNO的临床价值获得了广泛认可,自2014年起,GINA指南正式将FeNO纳入哮喘诊断与管理的评估工具。

NO的生成依赖于一氧化氮合酶(NOS),主要包括神经元型NOS (nNOS)、诱导型NOS (iNOS)、内皮型NOS (eNOS),NO在气道中的作用具有浓度依赖性,既发挥生理保护作用,也参与病理性炎症损伤。在生理状态下,nNOS和eNOS持续低水平表达,催化产生少量的NO,维持气道基础张力、调节血流和神经传递。而在炎症状态下,特别是Th2型炎症中,NO的产生主要源于iNOS的诱导表达,一旦被诱导,iNOS活性不依赖于细胞内Ca2+浓度,可持续产生大量NO,加重炎症,导致呼出气中NO浓度显著升高[6] [7]。FeNO水平可反映气道上皮iNOS的活性和Th2炎症的强度,本质上是对iNOS活性的无创性测量,其升高特异性地反映Th2型嗜酸性气道炎症的活性。

3.2. FeNO的“两区室模型”和流速依赖性

FeNO的浓度受呼气流速影响,目前解释FeNO流速依赖性最常用的理论是“两区室模型”,该模型将肺内NO的来源分为两个功能和解剖上的区室:大气道(中央气道)区室、肺泡及小气道区室[8] [9]。大气道区室的气道上皮细胞是iNOS表达的主要部位,是Th2炎症时NO主要的产生源;肺泡及小气道区室正常情况下NO生成极少,当呼气开始时,呼出的气体首先来自肺泡区,其NO浓度很低,当气流经过大气道时,高浓度NO会从气道壁扩散到气流中。

呼气流速直接决定了气体在气道中的停留时间,从而影响呼出气一氧化氮的浓度[10]。当以低流速呼气(如50 ml/s)时,气体在气道内流动缓慢,停留时间长,NO有充足的时间从气道壁扩散到气流中,因此测得的呼出气一氧化氮浓度较高,主要反应中央大气道的炎症情况;当以高流速呼气(如100~350 ml/s)时,气体在气道内流动迅速,停留时间短,限制了NO的扩散,因此测得的呼出气一氧化氮浓度通常较低,反应小气道炎症。多流速FeNO分析更深入地探讨了气道炎症的部位,为个体化治疗提供依据。

3.3. FeNO的测量技术

FeNO的测量技术主要基于其流速依赖性的特点,核心依据为“两区室模型”理论,为了确保结果的可比性,需采用固定的呼气流速进行测量。

3.3.1. 操作流程

FeNO的测量方法目前主要包括化学发光法(金标准)和电化学法(便携设备),两个方法被证实具有高度一致性[11]。测量需严格遵循美国胸科学会(ATS)与欧洲呼吸学会(ERS)制定的标准化流程[12] [13],学龄儿童推荐使用单次呼吸在线测量法,当患儿吸气至接近肺总量(TLC)时,以50 ml/s的恒定速率呼气(FeNO50),直到至少在4 s的呼气过程中识别出至少2 s的NO平台期,并维持足够的口腔压力以排除鼻腔NO干扰,通常取3次有效测量的中位数作为报告值。

3.3.2. 多流速测量

根据“两区室模型”,在多次恒定呼气流速下(如50 ml/s、100 ml/s等),通过模型参数分解可得到三个与流量无关的参数来描述气道及肺泡的NO5 [8]:J’awNO代表气道壁NO通量,DawNO代表气道壁向气道腔内转运NO的有效扩散能力,两者用于描述气道腔室的NO,而CaNO代表肺泡/远端小气道NO浓度,用于描述肺泡区的NO。通过这三个参数,“两区室模型”可以预测任何所需呼气流速下的呼气浓度,并且定位炎症部位,提高儿童哮喘的管理及个体化治疗。

3.3.3. 结果解读与影响因素

根据ATS临床实践指南推荐的切点[12]:儿童 < 20 ppb用于表明嗜酸性粒细胞炎症和对皮质类固醇的反应性较小;>35 ppb用于表明嗜酸性粒细胞性炎症,并且在有症状的患者中可能对皮质类固醇有反应;25~35 ppb之间的值应参考临床情况来解释。FeNO受年龄、性别、身高、体重及饮食(富含硝酸盐)等因素的影响,故需严格遵守FeNO测量的标准化流程,且在解释FeNO结果时需考虑患儿的综合情况。

3.3.4. 小结

“两区室模型”很好地解释了FeNO的流速依赖性及测量原理,呼气流速50 ml/s下测量的FeNO (FeNO50)作为临床标准监测中央气道炎症,而多流速测量下的参数(J’awNO, DawNO, CaNO)可实现炎症定位,识别远端小气道受累,提升个体化治疗。FeNO的测量需在ATS/ERS制定的标准化流程下进行,才能使结果具有可比性,其结果的解读也需综合考虑患儿的情况。

4. 学龄儿童FeNO的生理变异

多项研究表明,FeNO水平在儿童生长发育过程中会发生变化,其受多种因素影响,包括年龄、性别、身高、体重以及生活方式、环境影响等。

4.1. 年龄和性别

在青春期之前,男孩和女孩的FeNO水平通常随着年龄的增长而增长,且通常男性的FeNO水平高于女性,呈非线性增长,在年龄较大(约11.5岁后)的男性中FeNO增长幅度大于同年龄女性,这可能和激素分泌有关[14] [15]

4.2. 体格指标

身高一直被认为是儿童中FeNO最强的独立预测因子,由于儿童时期身高增长迅速,因此该年龄组可能不适合单一的哮喘诊断临界值[16]。一般我们认为肥胖与FeNO有关,但有研究发现学龄儿童的BMI和FeNO之间没有显著关联[17],而我们所看到的肥胖使FeNO增加,可能是因为肥胖是哮喘、特应性的独立危险因素。

4.3. 生活方式

体力活动会影响儿童FeNO水平,一些研究发现体育锻炼会降低FeNO [18]。同时父母有特应性疾病、养宠物等家庭因素都会影响FeNO水平,通常是通过其对特应性和呼吸系统的影响所实现。

4.4. 环境因素

在不同的环境中,空气污染(PM2.5、PM10、NO2、SO2、臭氧等)和室内暴露(霉菌、潮湿等)与FeNO增加均显示出相关性[19] [20],并且在调整哮喘和过敏状态等混杂因素后仍然显着,而环境烟草烟雾(ETS)通常与较低的FeNO有关[21]

5. FeNO在学龄期哮喘患儿诊断中的价值

5.1. FeNO辅助诊断哮喘

哮喘的诊断是一个基于综合评估的过程,缺乏单一的“金标准”测试,依赖于病史、肺功能检测(舒张试验、激发试验)等,但咳嗽、喘息、胸闷等症状并非哮喘特异性症状,对于学龄期患儿来说肺功能配合度较差,且激发试验具有一定风险,正因如此FeNO检测因其操作简便、无创、耐受性好、重复性佳,并能特异性地反映Th2型嗜酸性气道炎症,而成为优化儿童哮喘诊疗流程的重要工具。

研究表明,增加FeNO用于哮喘儿童的诊断将诊断正确率提高了5.85~16.95倍[22],但不同指南中关于学龄期儿童FeNO诊断哮喘的参考值存在一定的差异。ATS指南指出在儿童中FeNO > 35 ppb用于表明嗜酸性粒细胞性炎症,并且在有症状的患者中可能对皮质类固醇有反应[12],最新的GINA指南以及国家健康与护理卓越研究所(NICE)指南也支持ATS标准[23] [24],一项为期8年的研究显示该阈值诊断哮喘敏感性为40%,特异性为98.6% [25]。而ERS建议对有哮喘症状的儿童,FeNO值 ≥ 25 ppb可支持哮喘诊断[26]。此外,多项研究表明,FeNO在15~25 ppb区间仍具有较好的诊断效能,但其最佳临界值尚存争议:有研究发现学龄期有哮喘非特异性症状的儿童FeNO值为19 ppb时诊断哮喘具有80%的敏感性和92%的特异性[27];C. Murray等的研究指出FeNO ≥ 15 ppb对于儿童哮喘诊断性能优于指南中推荐的阈值[28];还有研究对比了哮喘现有的客观检查诊断效能,发现FeNO ≥ 21 ppb时总体准确度最好[29];一项Meta分析表明FeNO > 20 ppb为相对较新的研究中使用的合理临界值,该研究也提示FeNO在检测儿童哮喘方面的诊断性能处于中等水平[30]

适当的阈值可提高诊断准确性,从而减少不必要的其他检查或直接启动抗炎治疗,提高诊疗效率。FeNO水平受到多种因素的影响,如年龄、性别、身高、种族、环境等 ,这些因素增加了FeNO阈值确定的难度。未来需要进行更多的大样本研究,综合考虑各种影响因素,制定更加科学合理的FeNO阈值,以提高哮喘的诊断和管理水平。

5.2. 共患病对于FeNO的影响

哮喘的合并症会显著影响患儿FeNO水平,其中最常见的合并症是过敏性鼻炎,鼻粘膜炎症产生的高浓度NO可以直接扩散到下气道,导致FeNO升高,其次合并特应性皮炎也会因全身性Th2免疫激活而引起FeNO升高,慢性鼻窦炎、鼻息肉和一些全身性炎症疾病均会引起FeNO升高,而肥胖、抑郁症等会导致FeNO降低[31]-[33]。所以在解读FeNO结果时,我们必须详细询问合并症情况,特别是评估是否存在过敏性鼻炎等常见合并症,这是至关重要的。

6. FeNO在学龄期哮喘患儿治疗管理中的价值

6.1. 指导吸入性糖皮质激素(ICS)的启用与调整

FeNO水平有助于识别可能对ICS治疗反应较好的患儿,研究表明,FeNO升高者经过ICS治疗后炎症指标改善更显著[34]。因此,在启用ICS治疗前,可以先进行FeNO检测,以预测ICS治疗的疗效。然而,关于FeNO指导哮喘治疗是否能优化ICS用量及临床结局,目前研究结论不一:有研究显示使用FeNO指导哮喘治疗,更有助于气道高反应性和炎症的改善,进一步减少ICS使用剂量,且不会影响哮喘控制情况[35]-[37]。但另一些研究显示使用FeNO来指导治疗,不能减少ICS使用剂量,甚至会导致患儿ICS剂量过大,并且不能减少哮喘患儿的病情恶化,故依旧认为哮喘症状是指导治疗决策的唯一工具[38]-[40]

大量研究证实,FeNO作为生物标志物,在预测患儿对ICS的治疗反应方面具有很好的价值,但用于长期治疗方案的调整时,结果尚有争议,这种争议可能源于各研究的异质性,如在样本人群特征、FeNO参考值等方面存在差异,同时哮喘炎症通路的复杂性,也可能使FeNO和临床表现以及其他检测指标不一致。因此,FeNO可以被视为哮喘评估的一个补充指标,而非代替传统哮喘治疗调整方案的独立决策标准。

6.2. 评估哮喘控制情况及急性发作风险

FeNO因其无创、快速且能客观反映气道炎症情况也被用于哮喘控制情况的评估,在临床症状不明显的哮喘患儿中,约有一半的患儿FeNO和肺功能测定异常,这表明依据症状可能会错过一些有不良结局风险的患儿[41]。通常认为经过治疗后高FeNO水平与哮喘控制较差有关,但这种关系并不是绝对,一些研究表明,较低的FeNO与哮喘控制较好存在很强的相关性,而另一些研究仅在两者之间发现中等相关或不相关[42]-[45]。与单独使用FeNO相比,连续多次测量FeNO值或FeNO联合其他客观检测指标可提高识别控制不佳哮喘的能力[46]

FeNO水平的升高通常反映了气道内Th2型炎症的活动,很多时候,患儿的主观症状和客观炎症并不同步,患儿可能症状不明显,但FeNO已显著升高,这提示气道炎症正在积累,急性发作风险可能正在增加,这就是监测FeNO的关键所在。一些研究表明,检测期间较高的FeNO与学龄儿童哮喘急性加重的风险有关,但研究结果并不一致,一项Meta分析显示纳入研究中有58项研究表明FeNO水平与哮喘后续恶化的风险相关性较弱,另有14项随机对照试验显示检测FeNO的管理方法可以降低哮喘恶化风险[22]。对于患儿个体来说,动态监测FeNO值比单次测量更有意义,从7项随机对照试验中获得的数据得出,FeNO在3个月之内增加50%,则会将6个月后哮喘控制不佳的几率增加11%,增加哮喘急性发作的风险[47],有研究也强调了远端气道炎症的作用,表示肺泡一氧化氮浓度可以更好地预测哮喘急性发作[48],同时研究表明将FeNO与肺功能、临床症状评分相结合可以改善预测。

FeNO是评估哮喘控制和预测未来风险的重要补充指标,能更好地体现气道的炎症情况,但其预测能力仍存在争议,通过动态监测和多指标联合可以显著提升其在哮喘控制和风险预测方面的价值。未来研究应深入探讨动态FeNO检测在哮喘控制及风险预测方面的价值以及准确的临界值,并探索包括FeNO、肺功能、临床症状等多个指标的多元化预测模型,将更有利于儿童哮喘的管理。

7. 总结与展望

在学龄儿童中,FeNO作为反应2型炎症的无创、客观指标,在哮喘的诊疗工作中运用广泛,其中50 ml/s流速下测量的FeNO (FeNO50)作为临床标准用于学龄期哮喘患儿的诊疗与随访,同时结合多流速参数(J’awNO, DawNO, CaNO)有助于炎症定位。FeNO用于辅助诊断、ICS反应预测、治疗指导及风险评估具有很好的潜力,但由于学龄期患儿FeNO的生理异质性以及共患病的影响,其最佳阈值仍不能确定,将FeNO纳入管理对于指导治疗、减少急性发作的价值也存在争议。

未来还需要更多专门针对学龄期哮喘患儿的多中心研究,在考虑异质性的情况下,明确最佳诊断阈值,并评估FeNO指导哮喘治疗对于ICS用量及临床结局的附加价值。未来应系统评估多流速FeNO在学龄期患儿中的可行性、可靠性,明确其在表型分层、治疗决策与预后评估中的价值,不断优化FeNO在儿童哮喘诊疗中的应用策略,实现更精准、更有效的个体化治疗。

NOTES

*通讯作者。

参考文献

[1] Li, N., Xu, Y., Xiao, X., Ding, Z., Sun, C. and Zhang, Q. (2025) Long-Term Trends in the Burden of Asthma in China: A Joinpoint Regression and Age-Period-Cohort Analysis Based on the GBD 2021. Respiratory Research, 26, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
[2] Hammad, H. and Lambrecht, B.N. (2021) The Basic Immunology of Asthma. Cell, 184, 2521-2522. [Google Scholar] [CrossRef] [PubMed]
[3] Bousquet, J., Chanez, P., Vignola, A.M., Lacoste, J. and Michel, F.B. (1994) Eosinophil Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 150, S33-S38. [Google Scholar] [CrossRef] [PubMed]
[4] Gustafsson, L.E., Leone, A.M., Persson, M.G., Wiklund, N.P. and Moncada, S. (1991) Endogenous Nitric Oxide Is Present in the Exhaled Air of Rabbits, Guinea Pigs and Humans. Biochemical and Biophysical Research Communications, 181, 852-857. [Google Scholar] [CrossRef] [PubMed]
[5] Alving, K., Weitzberg, E. and Lundberg, J. (1993) Increased Amount of Nitric Oxide in Exhaled Air of Asthmatics. European Respiratory Journal, 6, 1368-1370. [Google Scholar] [CrossRef
[6] Nathan, C. and Xie, Q. (1994) Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell, 78, 915-918. [Google Scholar] [CrossRef] [PubMed]
[7] Forstermann, U. and Sessa, W.C. (2011) Nitric Oxide Synthases: Regulation and Function. European Heart Journal, 33, 829-837. [Google Scholar] [CrossRef] [PubMed]
[8] George, S.C., Hogman, M., Permutt, S. and Silkoff, P.E. (2004) Modeling Pulmonary Nitric Oxide Exchange. Journal of Applied Physiology, 96, 831-839. [Google Scholar] [CrossRef] [PubMed]
[9] Tsoukias, N.M. and George, S.C. (1998) A Two-Compartment Model of Pulmonary Nitric Oxide Exchange Dynamics. Journal of Applied Physiology, 85, 653-666. [Google Scholar] [CrossRef] [PubMed]
[10] Silkoff, P.E., McClean, P.A., Slutsky, A.S., Furlott, H.G., Hoffstein, E., Wakita, S., et al. (1997) Marked Flow-Dependence of Exhaled Nitric Oxide Using a New Technique to Exclude Nasal Nitric Oxide. American Journal of Respiratory and Critical Care Medicine, 155, 260-267. [Google Scholar] [CrossRef] [PubMed]
[11] Alving, K., Janson, C. and Nordvall, L. (2006) Performance of a New Hand-Held Device for Exhaled Nitric Oxide Measurement in Adults and Children. Respiratory Research, 7, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
[12] Dweik, R.A., Boggs, P.B., Erzurum, S.C., Irvin, C.G., Leigh, M.W., Lundberg, J.O., et al. (2011) An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. American Journal of Respiratory and Critical Care Medicine, 184, 602-615. [Google Scholar] [CrossRef] [PubMed]
[13] American Thoracic Society and European Respiratory Society (2005) ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. American Journal of Respiratory and Critical Care Medicine, 171, 912-930.
[14] Zhang, H., Shu, L., Cai, X., Wang, Z., Jiao, X., Liu, F., et al. (2013) Gender and Age Affect the Levels of Exhaled Nitric Oxide in Healthy Children. Experimental and Therapeutic Medicine, 5, 1174-1178. [Google Scholar] [CrossRef] [PubMed]
[15] Garcia, E., Zhang, Y., Rappaport, E.B., Berhane, K., Muchmore, P., Silkoff, P.E., et al. (2020) Patterns and Determinants of Exhaled Nitric Oxide Trajectories in Schoolchildren over a 7-Year Period. European Respiratory Journal, 56, Article ID: 2000011. [Google Scholar] [CrossRef] [PubMed]
[16] Wang, R., Fowler, S.J., Turner, S.W., Drake, S., Healy, L., Lowe, L., et al. (2022) Defining the Normal Range of Fractional Exhaled Nitric Oxide in Children: One Size Does Not Fit All. ERJ Open Research, 8, Article ID: 00319-2022. [Google Scholar] [CrossRef] [PubMed]
[17] Cibella, F., Cuttitta, G., La Grutta, S., Melis, M.R., Bucchieri, S. and Viegi, G. (2011) A Cross-Sectional Study Assessing the Relationship between BMI, Asthma, Atopy, and Eno among Schoolchildren. Annals of Allergy, Asthma & Immunology, 107, 330-336. [Google Scholar] [CrossRef] [PubMed]
[18] Lovinsky-Desir, S., Jung, K.H., Rundle, A.G., Hoepner, L.A., Bautista, J.B., Perera, F.P., et al. (2016) Physical Activity, Black Carbon Exposure and Airway Inflammation in an Urban Adolescent Cohort. Environmental Research, 151, 756-762. [Google Scholar] [CrossRef] [PubMed]
[19] Tsai, Y., Chio, C., Yang, K.D., Lin, C., Yeh, Y., Chang, Y., et al. (2024) Long-Term PM2.5 Exposure Is Associated with Asthma Prevalence and Exhaled Nitric Oxide Levels in Children. Pediatric Research, 97, 370-377. [Google Scholar] [CrossRef] [PubMed]
[20] Berhane, K., Zhang, Y., Linn, W.S., Rappaport, E.B., Bastain, T.M., Salam, M.T., et al. (2010) The Effect of Ambient Air Pollution on Exhaled Nitric Oxide in the Children’s Health Study. European Respiratory Journal, 37, 1029-1036. [Google Scholar] [CrossRef] [PubMed]
[21] Norbäck, D., Hashim, J.H., Hashim, Z., Jalaludin, J., Ismail, R., Wieslander, G., et al. (2024) Fractional Exhaled Nitric Oxide (FeNO) among School Children in Java and Sumatra, Indonesia: Associations with Respiratory Symptoms, House Dust Mite Sensitization and the Home Environment. Journal of Asthma, 61, 1772-1780. [Google Scholar] [CrossRef] [PubMed]
[22] Wang, Z., Pianosi, P., Keogh, K., et al. (2017) The Clinical Utility of Fractional Exhaled Nitric Oxide (FeNO) in Asthma Management. Agency for Healthcare Research and Quality (US).
[23] Global Initiative for Asthma (2024) Global Strategy for Asthma Management and Prevention.
[24] (2021) Asthma: Diagnosis, Monitoring and Chronic Asthma Management. National Institute for Health and Care Excellence (NICE).
[25] Barański, K. (2024) Predictive Value of Fractional Exhaled Nitric Oxide (FeNO) in the Diagnosis of Asthma for Epidemiological Purposes—An 8-Year Follow-Up Study. Advances in Respiratory Medicine, 92, 36-44. [Google Scholar] [CrossRef] [PubMed]
[26] Gaillard, E.A., Kuehni, C.E., Turner, S., Goutaki, M., Holden, K.A., de Jong, C.C.M., et al. (2021) European Respiratory Society Clinical Practice Guidelines for the Diagnosis of Asthma in Children Aged 5-16 Years. European Respiratory Journal, 58, Article ID: 2004173. [Google Scholar] [CrossRef] [PubMed]
[27] Sivan, Y., Gadish, T., Fireman, E. and Soferman, R. (2009) The Use of Exhaled Nitric Oxide in the Diagnosis of Asthma in School Children. The Journal of Pediatrics, 155, 211-216. [Google Scholar] [CrossRef] [PubMed]
[28] Murray, C., Drake, S., Foden, P., Lowe, L., Durrington, H., Custovic, A., et al. (2018) P129 Diagnosing Asthma in Symptomatic Children at Age 11: Evidence from a Birth Cohort Study. Thorax, 73, A172. [Google Scholar] [CrossRef
[29] de Jong, C.C.M., Pedersen, E.S.L., Mozun, R., Goutaki, M., Trachsel, D., Barben, J., et al. (2019) Diagnosis of Asthma in Children: The Contribution of a Detailed History and Test Results. European Respiratory Journal, 54, Article ID: 1901326. [Google Scholar] [CrossRef] [PubMed]
[30] Tang, S., Xie, Y., Yuan, C., Sun, X. and Cui, Y. (2016) Fractional Exhaled Nitric Oxide for the Diagnosis of Childhood Asthma: A Systematic Review and Meta-Analysis. Clinical Reviews in Allergy & Immunology, 56, 129-138. [Google Scholar] [CrossRef] [PubMed]
[31] Bertolini, F., Sprio, A.E., Baroso, A., Riccardi, E., Pizzimenti, S., Carriero, V., et al. (2022) Predictors of Low and High Exhaled Nitric Oxide Values in Asthma: A Real-World Study. Respiration, 101, 746-756. [Google Scholar] [CrossRef] [PubMed]
[32] Tudorache, E., Vastag, Z., Suppini, N., Oancea, C. and Fira-Mladinescu, O. (2022) Association between Nasal Polyposis and T2 Airway Inflammation in Severe Asthma. European Respiratory Journal, 60, Article 3198. [Google Scholar] [CrossRef
[33] Cepeda, M.S., Stang, P. and Makadia, R. (2016) Depression Is Associated with High Levels of C-Reactive Protein and Low Levels of Fractional Exhaled Nitric Oxide: Results from the 2007-2012 National Health and Nutrition Examination Surveys. The Journal of Clinical Psychiatry, 77, 1666-1671. [Google Scholar] [CrossRef] [PubMed]
[34] Kharitonov, S.A., Yates, D.H. and Barnes, P.J. (1996) Inhaled Glucocorticoids Decrease Nitric Oxide in Exhaled Air of Asthmatic Patients. American Journal of Respiratory and Critical Care Medicine, 153, 454-457. [Google Scholar] [CrossRef] [PubMed]
[35] Smith, A.D., Cowan, J.O., Brassett, K.P., Herbison, G.P. and Taylor, D.R. (2005) Use of Exhaled Nitric Oxide Measurements to Guide Treatment in Chronic Asthma. New England Journal of Medicine, 352, 2163-2173. [Google Scholar] [CrossRef] [PubMed]
[36] Wang, K., Verbakel, J.Y., Oke, J., Fleming-Nouri, A., Brewin, J., Roberts, N., et al. (2020) Using Fractional Exhaled Nitric Oxide to Guide Step-Down Treatment Decisions in Patients with Asthma: A Systematic Review and Individual Patient Data Meta-Analysis. European Respiratory Journal, 55, Article ID: 1902150. [Google Scholar] [CrossRef] [PubMed]
[37] Pijnenburg, M.W., Bakker, E.M., Hop, W.C. and De Jongste, J.C. (2005) Titrating Steroids on Exhaled Nitric Oxide in Children with Asthma: A Randomized Controlled Trial. American Journal of Respiratory and Critical Care Medicine, 172, 831-836. [Google Scholar] [CrossRef] [PubMed]
[38] Szefler, S.J., Mitchell, H., Sorkness, C.A., Gergen, P.J., O’Connor, G.T., Morgan, W.J., et al. (2008) Management of Asthma Based on Exhaled Nitric Oxide in Addition to Guideline-Based Treatment for Inner-City Adolescents and Young Adults: A Randomised Controlled Trial. The Lancet, 372, 1065-1072. [Google Scholar] [CrossRef] [PubMed]
[39] Turner, S., Cotton, S., Wood, J., Bell, V., Raja, E., Scott, N.W., et al. (2022) Reducing Asthma Attacks in Children Using Exhaled Nitric Oxide (RAACENO) as a Biomarker to Inform Treatment Strategy: A Multicentre, Parallel, Randomised, Controlled, Phase 3 Trial. The Lancet Respiratory Medicine, 10, 584-592. [Google Scholar] [CrossRef] [PubMed]
[40] Garg, Y., Kakria, N., Katoch, C.D.S. and Bhattacharyya, D. (2020) Exhaled Nitric Oxide as a Guiding Tool for Bronchial Asthma: A Randomised Controlled Trial. Medical Journal Armed Forces India, 76, 17-22. [Google Scholar] [CrossRef] [PubMed]
[41] Lo, D.K., Beardsmore, C.S., Roland, D., Richardson, M., Yang, Y., Danvers, L., et al. (2019) Lung Function and Asthma Control in School-Age Children Managed in UK Primary Care: A Cohort Study. Thorax, 75, 101-107. [Google Scholar] [CrossRef] [PubMed]
[42] Songnuy, T., Petchuay, P., Chutiyon, W. and Nurak, A. (2021) Correlation between Fractional Exhaled Nitric Oxide Level and Clinical Outcomes among Childhood Asthmatic Patients: Community Hospital-Based Perspective. Heliyon, 7, e06925. [Google Scholar] [CrossRef] [PubMed]
[43] Visitsunthorn, N., Prottasan, P., Jirapongsananuruk, O., et al. (2014) Is Fractional Exhaled Nitric Oxide (FeNO) Associated with Asthma Control in Children? Asian Pacific Journal of Allergy and Immunology, 32, 218-225. [Google Scholar] [CrossRef] [PubMed]
[44] Vargas Duque, P.D., Cleves, D., Acuña Cordero, R., Aguilera Otalvaro, P., Camargo, B., Aristizabal Duque, R., et al. (2023) Correlation between FeNO and Asthma Control in Pediatric Patients in a Developing Country. European Respiratory Journal, 62, PA2755. [Google Scholar] [CrossRef
[45] Meena, R.K., Raj, D., Lodha, R. and Kabra, S.K. (2016) Fractional Exhaled Nitric Oxide for Identification of Uncontrolled Asthma in Children. Indian Pediatrics, 53, 307-310. [Google Scholar] [CrossRef] [PubMed]
[46] Lin, L., Chang, Y., Yang, K.D., Lin, C., Chien, J., Kao, J., et al. (2022) Small Airway Dysfunction Measured by Impulse Oscillometry and Fractional Exhaled Nitric Oxide Is Associated with Asthma Control in Children. Frontiers in Pediatrics, 10, Article 877681. [Google Scholar] [CrossRef] [PubMed]
[47] Fielding, S., Pijnenburg, M., de Jongste, J.C., Pike, K.C., Roberts, G., Petsky, H., et al. (2019) Change in FEV1 and FeNO Measurements as Predictors of Future Asthma Outcomes in Children. Chest, 155, 331-341. [Google Scholar] [CrossRef] [PubMed]
[48] Paraskakis, E., Sarikloglou, E., Fouzas, S., Steiropoulos, P., Tsalkidis, A. and Bush, A. (2022) Improved Prediction of Asthma Exacerbations by Measuring Distal Airway Inflammation. European Respiratory Journal, 60, Article ID: 2101684. [Google Scholar] [CrossRef] [PubMed]