原发性中枢神经系统淋巴瘤诊断及治疗的研究进展
Research Progress in the Treatment of Primary Central Nervous System Lymphoma
DOI: 10.12677/acm.2025.15113191, PDF, HTML, XML,   
作者: 刘敏女:西安医学院研究生工作部/研究生处,陕西 西安;胡 军*:陕西省人民医院神经内一科,陕西 西安
关键词: 中枢神经系统淋巴瘤恶性肿瘤Central Nervous System Lymphoma Malignant Tumor
摘要: 原发性中枢神经系统淋巴瘤(PCNSL)是一种罕见且高度侵袭性的恶性肿瘤,主要累及大脑、脊髓或眼部。其常见症状包括头痛、癫痫、认知和运动障碍等。该病的发生与免疫系统功能异常密切相关,尤其在免疫抑制患者中更为常见,如器官移植后患者和艾滋病毒感染者。诊断通常依赖神经影像学检查和脑脊液分析,最终确诊则需通过脑组织活检。治疗方案主要包括高剂量化疗和放疗,近年来,靶向治疗和免疫疗法也取得了一定进展。然而,PCNSL的预后较差,治疗困难,复发率高,长期生存率低。因此,早期诊断和个体化治疗对改善患者预后至关重要。
Abstract: Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive malignant tumor that primarily involves the brain, spinal cord, or eyes. Common symptoms include headache, seizures, cognitive and motor impairments. The development of this disease is closely associated with immune system dysfunction, particularly among immunocompromised patients, such as those who have undergone organ transplantation or are infected with the human immunodeficiency virus (HIV). Diagnosis typically relies on neuroimaging and cerebrospinal fluid analysis, with definitive confirmation requiring a brain biopsy. Treatment regimens primarily consist of high-dose chemotherapy and radiotherapy. In recent years, targeted therapy and immunotherapy have also shown some progress. However, PCNSL carries a poor prognosis, poses significant treatment challenges, and is characterized by high recurrence rates and low long-term survival. Therefore, early diagnosis and personalized treatment are crucial for improving patient outcomes.
文章引用:刘敏女, 胡军. 原发性中枢神经系统淋巴瘤诊断及治疗的研究进展[J]. 临床医学进展, 2025, 15(11): 1055-1062. https://doi.org/10.12677/acm.2025.15113191

1. 引言

原发性中枢神经系统淋巴瘤(Primary Central Nervous System Lymphoma, PCNSL)是一种高度恶性的结外非霍奇金淋巴瘤,主要局限于中枢神经系统,通常不伴全身浸润[1]。它是一种罕见的恶性肿瘤,占所有结外肿瘤的4%~6%,占新诊断恶性肿瘤的4% [1]。它可发生在任何年龄,中位发病年龄为56~61岁[2]。在PCNSL的组织学类型中,B细胞淋巴瘤是最常见的,占约90%。相比之下,T细胞淋巴瘤较为罕见,仅占约2%左右[3]。其它罕见的组织学类型包括血管内DLBCL、低恶性度B细胞淋巴瘤、NK/T细胞淋巴瘤以及黏膜相关淋巴组织(MALT)淋巴瘤。它可以分为继发于免疫缺陷状态和发生于免疫功能正常状态的两种类型。

近年来,随着医学技术的不断进步,该病的检出率显著提高,治疗方面也取得了重大进展。然而,以往的文献多以病例报告形式呈现,对该病的探讨较为简单,缺乏系统性和深入分析。因此,本文将对免疫功能正常PCNSL的临床特征、诊断、治疗及预后进行综述,以期帮助临床工作者对该病有更全面、深入的认识。

2. 临床特征

免疫功能正常的PCNSL临床表现多样,取决于颅脑病变的部位,常见症状包括意识混乱、认知障碍、失语、步态不稳、肢体无力、视力减退、面部瘫痪、吞咽困难、眩晕、发热、癫痫及情绪异常等[4]。增强MRI作为敏感的影像学工具,可显示具体病变部位,如脑膜增厚或神经根异常[5]。发热、盗汗、体重减轻等全身症状在免疫功能正常的PCNSL极少见。由于临床表现缺乏特异性,故诊断时容易被忽视或发生误诊。

既往研究表明免疫缺陷是免疫功能正常的PCNSL已知危险因素,获得性免疫缺陷综合征患者中发生率较高[6]。EBV感染在大多ENKTCL肿瘤细胞中检测到[7],故推断EVB是NK/T-PCNSL较为确切的病因之一。

绝大多数的免疫功能正常的PCNSL为非生发中心亚型的DLBCL [8]。致癌事件包括细胞周期失调以及通过TLR和BCR信号传导异常激活NF-κB,促进细胞存活和增殖。细胞周期失调常见于80%的病例,通常由CDKN2A纯合缺失驱动,并可能导致基因组不稳定[9]。MYD88基因突变激活TLR通路可发生在80%的病例中[10]。BCR信号激活通常由CD79B突变介导[11],导致BCR在细胞表面表达增加,从而引发自身抗原激活[12]

异常体细胞超突变(Aberrant Somatic Hypermutation)也是一个重要的发病机制[9] [10] [13]。aSHM的一个关键驱动因素是激活诱导的胞苷脱氨酶(AID)表达失调[10]。它在免疫功能正常的PCNSL中的作用靶点包括癌基因PIM1、PAX5、BTG2和OSBPL10,以及参与BCR信号传导的基因和非蛋白编码基因[10]

免疫功能正常的PCNSL拷贝数异常包括CDKN2A(细胞周期依赖激酶抑制因子2A)缺失[9] [14]、HLA(人类白细胞抗原)缺失[7] [8]、NFKBIZ (NF-κB抑制因子zeta)扩增等[8],尤其是CDKN2A缺失与MYD88突变的共同存在被认为是PCNSL肿瘤原性的关键驱动基因异常,通常出现在克隆进化初期[14]

最后,免疫功能正常的PCNSL已出现免疫逃逸。它包括HLA表达缺失15以及9p24.1拷贝数改变导致PD-L1和PD-L2表达增加[8]

3. 诊断

由于病例的罕见性,免疫功能正常的PCNSL的诊断仍具挑战性。立体定向或开放性脑组织活检为金标准,术中磁共振成像和术中组织学检查可提高活检率。研究表明,术中磁共振成像在确认中枢神经系统淋巴瘤活检阳性的敏感度和特异性方面优于组织学检查[15]。准确的术中诊断对区分免疫功能正常的PCNSL与其他CNS实体至关重要。国外学者使用便携式拉曼散射显微镜对未处理、无标记的组织样本进行成像,三分钟内生成类似H&E的虚拟图像,并基于自我监督学习开发了名为RapidLymphoma的深度学习管道。其研究结果表明,在免疫功能正常的PCNSL和非免疫功能正常的PCNSL实体的前瞻性测试队列中(n = 160),RapidLymphoma实现了97.81% ± 0.91的总体平衡准确率,在检测免疫功能正常的PCNSL方面不劣于冰冻切片分析(100% vs. 77.77%) [16]。关于术中组织学检查方式,研究发现术中细胞学、冰冻切片和快速免疫细胞化学诊断的结合可以显著提高免疫功能正常的PCNSL术中诊断准确性,并纠正仅依靠冰冻切片可能出现的错误[17]。皮质类固醇治疗(CST)的淋巴毒性可能掩盖病理结果,导致假阴性[18]。最新荟萃分析显示,术前CST降低了免疫功能正常的PCNSL立体定向活检的诊断率,但是活检前逐渐减少使用CST未提高诊断率[19]

对于无法活检的特殊部位(如脑膜、蛛网膜腔和神经根),脑脊液(CSF)分析作为“液体活检”在原发性中枢神经系统淋巴瘤中具有重要意义[20]。其中流式细胞术(FCM)可分析细胞来源、分化和表型异常,用于肿瘤诊断与亚型分析[21];还用于评估免疫功能正常的PCNSL对化疗药物的敏感性及耐药性,优化治疗方案。

由于CSF分析仅在少数的病例中进行准确诊断,而且脑组织活检具有一定局限性,因此需要非侵入工具来协助诊断。细胞游离DNA (Cell Free DNA, cfDNA)是指进入循环系统的所有未被包裹的DNA。既往研究表明免疫功能正常的PCNSL患者脑脊液cf DNA分析具有较高的特异性,且与预后相关[22]。故国外学者利用数字微滴PCR (Digital Droplet PCR, ddPCR)检测免疫功能正常的PCNSL患者血浆中cfDNA中MYD88 L265P和CD79B Y196热点突变组合。结果表明该方法的突变检出率较低,不适合常规使用;但在复杂情况下,可以考虑分析血浆cfDNA中的MYD88 L265P突变[23]

4. 治疗方案

免疫功能正常的PCNSL治疗分为诱导缓解治疗和巩固治疗两个阶段。诱导缓解治疗旨在迅速缩小肿瘤、改善症状并实现缓解;巩固治疗则用于预防复发,针对诱导缓解治疗后达到完全缓解(CR)或未确认完全缓解(CRu)的患者。对于未获得充分疗效、存在残余肿瘤或已复发的患者,应考虑二线治疗。

4.1. 诱导缓解治疗

诱导缓解治疗一般采用以高剂量甲氨蝶呤(HD-MTX)为基础药物的多药联合化疗方案。由于肾脏清除了90%以上的MTX,其延迟消除会使患者面临严重的不良反应[24]。因此,安全的HD-MTX治疗需要将血MTX水平维持在有效范围内,并迅速降低至安全范围[25]。为此,国外学者发明了一种适用于测定极其复杂多组分混合物的2D-LC方法,它能够准确测定脑脊液和血浆中MTX的总浓度和游离浓度,并成功应用于PCNSL患者血浆和脑脊液水平的分析[26]

诱导缓解治疗中常用的联合方案包括:HD-MTX、利妥昔单抗和替莫唑胺(MT-R)、HD-MTX、甲基苄肼和长春新碱(R-MPV)和利妥昔单抗、HD-MTX、卡莫司汀、替尼泊苷和泼尼松龙(R-MBPV)。

4.2. 巩固治疗

传统的巩固策略包括全脑照射(WBRT),但是在老年患者中容易出现高神经毒性及长期认知功能障碍[27]。研究表明低剂量的WBRT可能减少长期的神经认知毒性[28]。以硫替派为基础的化疗联合自体干细胞移植(ASCT)已成为免疫功能正常的PCNSL的有效巩固策略,可避免WBRT相关的神经毒性。一项随机Ⅱ期试验在内的前瞻性研究报告了此方案在免疫功能正常的PCNSL患者中有较好的结果[29] [30]。对于达到完全缓解(CR)或未确认完全缓解(CRu)的患者,需要定期进行对比增强MRI或PET/CT检查,以监测病情进展。

4.3. 新的治疗手段

4.3.1. BTK

由于DLBCL对BCR信号通路依赖性特别高,因此布鲁顿酪氨酸激酶(BTK)抑制剂引起广泛关注。伊布替尼作为第一代BTK抑制剂,在复发/难治性免疫功能正常的PCNSL中的单药治疗已在临床试验中评估[31]。最新研究验证了其单药活性,并发现TBL1XR1突变可能与长期反应相关[32]。然而,第二代BTK抑制剂(如阿卡替尼、泽布替尼、奥布替尼)在选择性上优于其他激酶。特别是泽布替尼,在19例新诊断免疫功能正常的PCNSL患者中联合HD-MTX治疗,显示了良好的疗效,ORR为84%,2年PFS和OS率分别为75.6%和94.1% [33]。未来,第一代和第二代BTK抑制剂与BTK共价结合将具有更高的选择性,目前这一方向正在临床开发中[34]

4.3.2. 免疫调节剂

免疫调节剂已经FAD批准用于多种血液系统恶性肿瘤,包括DLBCL。一项Ⅱ期研究显示,利妥昔单抗联合来那度胺20~25 mg/d诱导治疗8个28 d周期后,用来那度胺维持治疗的RR为35%,中位PFS为7.8个月[35]。泊马度胺是第三代免疫调节剂,其中枢神经系统的穿透性较来那度胺有所改善。在25例r/r免疫功能正常的PCNSL患者接受3~10 mg泊马度胺治疗的Ⅰ期剂量递增研究中,结果表明全组中位PFS为5.3个月,应答者中位PFS为9个月[36]

4.3.3. 免疫检查点抑制剂

免疫功能正常的PCNSLs通过在9p24.1处的拷贝数增加激活免疫逃逸机制,导致PDLs表达增加[38]。一项临床研究对4例r/r免疫功能正常的PCNSL患者每2周给予5 mg/kg纳武单抗治疗,结果显示3例患者获得CR,1例获得PR;治疗后13~17个月,3例患者保持无进展,且反应持续[37]

4.3.4. 细胞疗法

嵌合抗原受体(Chimeric Antigen Receptor, CAR) T细胞疗法是基于表达针对肿瘤细胞表面特定抗原的人工合成受体的T细胞[38]。抗CD19 CAR T细胞疗法在系统性弥漫性B细胞淋巴瘤的治疗中发挥了重要作用,并在临床上普遍使用。近年来研究表明CAR T细胞治疗在免疫功能正常的PCNSL患者中也是安全有效的。一项法国回顾性研究报道,21例同时累及脑实质和软脑膜的r/r免疫功能正常的PCNSL患者接受CAR-T细胞治疗,ORR为67%,其中CR为29%,PR为38% [39]

4.4. 特殊人群的治疗方案

在免疫功能正常的PCNSL中,老年及体弱患者的治疗面临疗效与耐受性平衡的挑战。高剂量甲氨蝶呤(HD-MTX)仍是治疗基石,但该人群常因肾功能下降及合并症需调整剂量或间隔;HD-MTX联合利妥昔单抗方案在保证疗效的同时可降低毒性,适用于轻中度体弱患者[40]。对于不耐受HD-MTX者,可采用替莫唑胺单药或与利妥昔单抗联合方案。传统强化方案如MATRix或HD-MTX联合阿糖胞苷虽缓解率高,但毒副作用明显,不推荐用于老年患者[41]。巩固阶段应避免全脑放疗引起的认知障碍,可选择低剂量定向放疗或化疗维持。近年来,BTK抑制剂及免疫调节药物在复发或不耐化疗患者中显示出一定疗效。总体而言,老年及体弱患者的治疗应坚持个体化原则,以可耐受的方案为核心,兼顾生存获益与生活质量。

免疫正常的PCNSL的治疗近年取得进展,但多种新兴疗法仍存显著争议。BTK抑制剂(如伊布替尼、替拉布替尼)在复发或难治病例中显示出较高缓解率,但其耐药机制、感染风险及穿越血脑屏障能力仍存在不确定性。免疫调节药物虽可提高早期缓解率,但对长期生存的改善证据不足,且毒副作用增加。免疫检查点抑制剂(PD-1/PD-L1抗体)在部分患者中可诱导缓解,但缺乏大样本验证,适应人群及预测标志物尚未明确。CAR-T细胞疗法在个别复发患者中取得积极结果,但存在严重神经毒性及复发风险,其适应症和安全界限仍待明确。总体来看,免疫功能正常的PCNSL治疗正从传统高强度化疗转向分子靶向与免疫联合的新模式,但需通过前瞻性临床试验进一步验证疗效与安全性,明确不同分子亚型及人群的最优策略。

5. 预后

18F-FDG PET/CT已被公认为中枢神经系统淋巴瘤治疗后疗效评估和复发监测的实用工具,因其与其他肿瘤相比,该肿瘤病灶的FDG摄取显著且均匀[42]。然而,尽管SUV和肿瘤代谢负荷已被确认为系统性淋巴瘤的预后指标,针对免疫功能正常的PCNSL的数据仍较为有限。因此,国外学者提出了一个简单的视觉代谢评分——脑桥–白质评分(PW Score),作为治疗反应的预后指标。研究表明,PW评分是免疫功能正常的PCNSL患者治疗后PET/CT的有效预后指标[43]

伊布替尼是复发/难治性免疫功能正常的PCNSL常用药物之一,既往研究报道脑脊液ct DNA测序可以作为伊布替尼治疗反应的预测指标[35]。在免疫功能正常PCNSL基因突变谱中,MYD88和CD79B是促进免疫优势部位淋巴瘤发病的关键突变[44]。R-MPV是常用的诱导方案之一。国外学者研究发现CD79B Y196突变是免疫功能正常的PCNSL对R-MPV反应良好的有效预测指标[45]

6. 结束与展望

免疫功能正常的原发性中枢神经系统淋巴瘤(PCNSL)是一种罕见且高度侵袭性的肿瘤,通常由B细胞淋巴瘤引起。临床上,免疫功能正常的PCNSL表现为快速进展的神经系统症状,且预后较差。尽管近年来在分子生物学、影像学和免疫治疗领域取得了进展,但免疫功能正常的PCNSL的早期诊断和治疗依然面临诸多挑战。

免疫功能正常的PCNSL的早期诊断比较困难,主要依赖脑组织活检,因为其临床表现与其他中枢神经系统疾病相似,且缺乏特异性生物标志物。因此,开发敏感的非侵入性诊断方法,如血液或脑脊液中的标志物和高分辨率影像学技术,成为当前研究的重点。早期诊断不仅有助于及时治疗,还能为个性化治疗方案的制定提供依据。

在分子机制方面,免疫功能正常的PCNSL的研究揭示了多条信号通路的突变,如PI3K/AKT/mTOR通路,这为未来的靶向治疗提供了潜在靶点。尽管高剂量化疗和全脑放疗可以延长患者生存期,但其副作用大且复发率高。因此,探索更有效、低副作用的治疗方案势在必行。免疫治疗,如CAR-T细胞疗法和单克隆抗体治疗,已在临床前研究中显示出一定的疗效,未来的临床试验有望验证其在PCNSL中的应用。

总体而言,免疫功能正常的PCNSL的研究正朝着早期诊断、精准治疗和免疫治疗等方向发展,未来的研究将为改善患者预后提供新的希望。

随着对免疫功能正常的PCNSL分子特征、免疫微环境和肿瘤耐药机制的不断深入研究,未来有望实现更加精准的治疗,从而提高患者的长期生存率和生活质量。然而,由于该病较为罕见,样本量有限,临床研究仍面临较大挑战。因此,跨学科、多中心的国际合作将是推动免疫功能正常的PCNSL研究和治疗进展的关键。随着临床数据的不断积累和治疗方案的优化,免疫功能正常的PCNSL患者的预后有望显著改善。

NOTES

*通讯作者。

参考文献

[1] Hattori, K., Sakata-Yanagimoto, M., Suehara, Y., Yokoyama, Y., Kato, T., Kurita, N., et al. (2017) Clinical Significance of Disease-Specific myd88 Mutations in Circulating DNA in Primary Central Nervous System Lymphoma. Cancer Science, 109, 225-230. [Google Scholar] [CrossRef] [PubMed]
[2] Villano, J.L., Koshy, M., Shaikh, H., Dolecek, T.A. and McCarthy, B.J. (2011) Age, Gender, and Racial Differences in Incidence and Survival in Primary CNS Lymphoma. British Journal of Cancer, 105, 1414-1418. [Google Scholar] [CrossRef] [PubMed]
[3] Shiels, M.S., Pfeiffer, R.M., Besson, C., Clarke, C.A., Morton, L.M., Nogueira, L., et al. (2016) Trends in Primary Central Nervous System Lymphoma Incidence and Survival in the U.S. British Journal of Haematology, 174, 417-424. [Google Scholar] [CrossRef] [PubMed]
[4] Kang, M., Ahn, S., Ha, J., Park, S.H., Moon, J. and Chu, K. (2022) Natural Killer T-Cell Primary CNS Lymphoma Presenting as Lymphomatosis Cerebri: A Case Report and Literature Review. Journal of Neuropathology & Experimental Neurology, 82, 261-266. [Google Scholar] [CrossRef] [PubMed]
[5] Tosefsky, K., Rebchuk, A.D., Martin, K.C., Chen, D.W., Yip, S. and Makarenko, S. (2024) Preoperative Corticosteroids Reduce Diagnostic Accuracy of Stereotactic Biopsies in Primary Central Nervous System Lymphoma: A Systematic Review and Meta-Analysis. Neurosurgery, 95, 740-750. [Google Scholar] [CrossRef] [PubMed]
[6] Zhang, C., Huang, M.Z., Kehs, G.J., Braun, R.G., Cole, J.W. and Zhang, L. (2021) Intensive In-Bed Sensorimotor Rehabilitation of Early Subacute Stroke Survivors with Severe Hemiplegia Using a Wearable Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2252-2259. [Google Scholar] [CrossRef] [PubMed]
[7] Grommes, C., Rubenstein, J.L., DeAngelis, L.M., Ferreri, A.J.M. and Batchelor, T.T. (2018) Comprehensive Approach to Diagnosis and Treatment of Newly Diagnosed Primary CNS Lymphoma. Neuro-Oncology, 21, 296-305. [Google Scholar] [CrossRef] [PubMed]
[8] Tse, E. and Kwong, Y. (2017) The Diagnosis and Management of NK/T-Cell Lymphomas. Journal of Hematology & Oncology, 10, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
[9] Fukumura, K., Kawazu, M., Kojima, S., Ueno, T., Sai, E., Soda, M., et al. (2016) Genomic Characterization of Primary Central Nervous System Lymphoma. Acta Neuropathologica, 131, 865-875. [Google Scholar] [CrossRef] [PubMed]
[10] Gonzalez-Aguilar, A., Idbaih, A., Boisselier, B., Habbita, N., Rossetto, M., Laurenge, A., et al. (2012) Recurrent Mutations of myd88 and tbl1xr1 in Primary Central Nervous System Lymphomas. Clinical Cancer Research, 18, 5203-5211. [Google Scholar] [CrossRef] [PubMed]
[11] Radke, J., Ishaque, N., Koll, R., Gu, Z., Schumann, E., Sieverling, L., et al. (2022) The Genomic and Transcriptional Landscape of Primary Central Nervous System Lymphoma. Nature Communications, 13, Article No. 2558. [Google Scholar] [CrossRef] [PubMed]
[12] Nakamura, T., Tateishi, K., Niwa, T., Matsushita, Y., Tamura, K., Kinoshita, M., et al. (2015) Recurrent Mutations of cd79b and myd88 Are the Hallmark of Primary Central Nervous System Lymphomas. Neuropathology and Applied Neurobiology, 42, 279-290. [Google Scholar] [CrossRef] [PubMed]
[13] Wen, R. and Wang, D. (2022) MCD-DLBCL Arises from Germinal Center B Cells. Blood, 140, 1058-1059. [Google Scholar] [CrossRef] [PubMed]
[14] Grommes, C., Nayak, L., Tun, H.W. and Batchelor, T.T. (2018) Introduction of Novel Agents in the Treatment of Primary CNS Lymphoma. Neuro-Oncology, 21, 306-313. [Google Scholar] [CrossRef] [PubMed]
[15] Nayyar, N., White, M.D., Gill, C.M., Lastrapes, M., Bertalan, M., Kaplan, A., et al. (2019) MYD88 L265P Mutation and CDKN2A Loss Are Early Mutational Events in Primary Central Nervous System Diffuse Large B-Cell Lymphomas. Blood Advances, 3, 375-383. [Google Scholar] [CrossRef] [PubMed]
[16] Zhong, Y., Tan, G.W., Bult, J., Veltmaat, N., Plattel, W., Kluiver, J., et al. (2024) Detection of Circulating Tumor DNA in Plasma of Patients with Primary CNS Lymphoma by Digital Droplet PCR. BMC Cancer, 24, Article No. 407. [Google Scholar] [CrossRef] [PubMed]
[17] Majovsky, M., Moravec, T., Komarc, M., Soukup, J., Sedlak, V., Balasubramaniam, N., et al. (2024) Surgical Results in Patients with CNS Lymphoma. Comparison of Predictive Value of Intraoperative MRI and Intraoperative Histological Examination for Diagnostic Biopsy Yield. Brain and Spine, 4, Article ID: 103926. [Google Scholar] [CrossRef] [PubMed]
[18] Hu, L., Tang, J., Su, X., Zheng, L., Hu, C., Wu, Q., et al. (2024) The Utilization of Cytology for Intraoperative Diagnosis of Primary Central Nervous System Lymphoma. Scientific Reports, 14, Article No. 26527. [Google Scholar] [CrossRef] [PubMed]
[19] Scheichel, F., Pinggera, D., Popadic, B., Sherif, C., Marhold, F. and Freyschlag, C.F. (2022) An Update on Neurosurgical Management of Primary CNS Lymphoma in Immunocompetent Patients. Frontiers in Oncology, 12, Article ID: 884724. [Google Scholar] [CrossRef] [PubMed]
[20] Omid-Fard, N., Puac-Polanco, P., Torres, C.H., Hamilton, L. and Nguyen, T.B. (2024) Imaging Features of Immunodeficiency-Associated Primary CNS Lymphoma: A Review. Canadian Association of Radiologists Journal, 76, 113-121. [Google Scholar] [CrossRef] [PubMed]
[21] Chen, X., Huang, M., Zhang, Z., Jing, H., Zou, Y. and Bu, H. (2022) Primary Meningeal Central Nervous System Lymphoma: A Case Report and Literature Review. Medicine, 101, e32567. [Google Scholar] [CrossRef] [PubMed]
[22] Kim, S.Y. and Huh, H.J. (2023) Toward Standardization of Flow-Cytometric Immunophenotyping for the Diagnosis and Monitoring of Hematologic Malignancies. Annals of Laboratory Medicine, 44, 193-194. [Google Scholar] [CrossRef] [PubMed]
[23] Rimelen, V., Ahle, G., Pencreach, E., Zinniger, N., Debliquis, A., Zalmaï, L., et al. (2019) Tumor Cell-Free DNA Detection in CSF for Primary CNS Lymphoma Diagnosis. Acta Neuropathologica Communications, 7, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
[24] Wang, S., Huang, K., Chou, Y., Lee, H., Wu, P., Chen, W., et al. (2023) Effect of Co-Medications and Potential Risk Factors of High-Dose Methotrexate-Mediated Acute Hepatotoxicity in Patients with Osteosarcoma. Cancer Medicine, 12, 12354-12364. [Google Scholar] [CrossRef] [PubMed]
[25] Yin, T., Liang, H., Huang, Q., Zhou, B., Tang, M., Lou, J., et al. (2023) A Survey of Therapeutic Drug Monitoring Status in China. Therapeutic Drug Monitoring, 45, 151-158. [Google Scholar] [CrossRef] [PubMed]
[26] Wang, Y.H., He, Q., Wang, F., Jiang, H., Shi, J., Ma, J., et al. (2024) Simultaneous Determination of Methotrexate Concentrations in Human Plasma and Cerebrospinal Fluid Using Two-Dimensional Liquid Chromatography: Applications in Primary Central Nervous System Lymphoma. World Journal of Oncology, 15, 825-836. [Google Scholar] [CrossRef] [PubMed]
[27] Schaff, L.R. and Grommes, C. (2022) Primary Central Nervous System Lymphoma. Blood, 140, 971-979. [Google Scholar] [CrossRef] [PubMed]
[28] Adhikari, N., Biswas, A., Gogia, A., Sahoo, R.K., Garg, A., Nehra, A., et al. (2018) A Prospective Phase II Trial of Response Adapted Whole Brain Radiotherapy after High Dose Methotrexate Based Chemotherapy in Patients with Newly Diagnosed Primary Central Nervous System Lymphoma-Analysis of Acute Toxicity Profile and Early Clinical Outcome. Journal of Neuro-Oncology, 139, 153-166. [Google Scholar] [CrossRef] [PubMed]
[29] Ferreri, A.J.M., Cwynarski, K., Pulczynski, E., Fox, C.P., Schorb, E., Celico, C., et al. (2022) Long-Term Efficacy, Safety and Neurotolerability of Matrix Regimen Followed by Autologous Transplant in Primary CNS Lymphoma: 7-Year Results of the IELSG32 Randomized Trial. Leukemia, 36, 1870-1878. [Google Scholar] [CrossRef] [PubMed]
[30] Houillier, C., Dureau, S., Taillandier, L., Houot, R., Chinot, O., Moluçon-Chabrot, C., et al. (2022) Radiotherapy or Autologous Stem-Cell Transplantation for Primary CNS Lymphoma in Patients Age 60 Years and Younger: Long-Term Results of the Randomized Phase II PRECIS Study. Journal of Clinical Oncology, 40, 3692-3698. [Google Scholar] [CrossRef] [PubMed]
[31] Grommes, C., Pastore, A., Palaskas, N., Tang, S.S., Campos, C., Schartz, D., et al. (2017) Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discovery, 7, 1018-1029. [Google Scholar] [CrossRef] [PubMed]
[32] Grommes, C., Nandakumar, S., Schaff, L.R., Gavrilovic, I., Kaley, T.J., Nolan, C.P., et al. (2024) A Phase II Study Assessing Long-Term Response to Ibrutinib Monotherapy in Recurrent or Refractory CNS Lymphoma. Clinical Cancer Research, 30, 4005-4015. [Google Scholar] [CrossRef] [PubMed]
[33] Wang, N., Chen, F., Pan, L., Teng, Y., Wei, X., Guo, H., et al. (2023) Clinical Outcomes of Newly Diagnosed Primary Central Nervous System Lymphoma Treated with Zanubrutinib-Based Combination Therapy. World Journal of Clinical Oncology, 14, 606-619. [Google Scholar] [CrossRef] [PubMed]
[34] Grommes, C., Tang, S.S., Wolfe, J., Kaley, T.J., Daras, M., Pentsova, E.I., et al. (2019) Phase 1b Trial of an Ibrutinib-Based Combination Therapy in Recurrent/Refractory CNS Lymphoma. Blood, 133, 436-445. [Google Scholar] [CrossRef] [PubMed]
[35] Ghesquieres, H., Chevrier, M., Laadhari, M., Chinot, O., Choquet, S., Moluçon-Chabrot, C., et al. (2019) Lenalidomide in Combination with Intravenous Rituximab (REVRI) in Relapsed/Refractory Primary CNS Lymphoma or Primary Intraocular Lymphoma: A Multicenter Prospective “Proof of Concept” Phase II Study of the French Oculo-Cerebral Lymphoma (LOC) Network and the Lymphoma Study Association (LYSA). Annals of Oncology, 30, 621-628. [Google Scholar] [CrossRef] [PubMed]
[36] Tun, H.W., Johnston, P.B., DeAngelis, L.M., Atherton, P.J., Pederson, L.D., Koenig, P.A., et al. (2018) Phase 1 Study of Pomalidomide and Dexamethasone for Relapsed/refractory Primary CNS or Vitreoretinal Lymphoma. Blood, 132, 2240-2248. [Google Scholar] [CrossRef] [PubMed]
[37] Nayak, L., Iwamoto, F.M., LaCasce, A., Mukundan, S., Roemer, M.G.M., Chapuy, B., et al. (2017) PD-1 Blockade with Nivolumab in Relapsed/Refractory Primary Central Nervous System and Testicular Lymphoma. Blood, 129, 3071-3073. [Google Scholar] [CrossRef] [PubMed]
[38] Singh, A.K. and McGuirk, J.P. (2020) CAR T Cells: Continuation in a Revolution of Immunotherapy. The Lancet Oncology, 21, e168-e178. [Google Scholar] [CrossRef] [PubMed]
[39] Lacan, C., Caron, J., Tarantino, N., Fouquet, B., Cherai, M., Parizot, C., et al. (2023) CAR T-Cell Therapy for Central Nervous System Lymphomas: Blood and Cerebrospinal Fluid Biology, and Outcomes. Haematologica, 108, 3485-3490. [Google Scholar] [CrossRef] [PubMed]
[40] Ferreri, A.J.M., Cwynarski, K., Pulczynski, E., Fox, C.P., Schorb, E., La Rosée, P., et al. (2017) Whole-Brain Radiotherapy or Autologous Stem-Cell Transplantation as Consolidation Strategies after High-Dose Methotrexate-Based Chemoimmunotherapy in Patients with Primary CNS Lymphoma: Results of the Second Randomisation of the International Extranodal Lymphoma Study Group-32 Phase 2 Trial. The Lancet Haematology, 4, e510-e523. [Google Scholar] [CrossRef] [PubMed]
[41] Morales-Martinez, A., Lozano-Sanchez, F., Duran-Peña, A., Hoang-Xuan, K. and Houillier, C. (2021) Primary Central Nervous System Lymphoma in Elderly Patients: Management and Perspectives. Cancers, 13, Article No. 3479. [Google Scholar] [CrossRef] [PubMed]
[42] Rozenblum, L., Houillier, C., Soussain, C., Bertaux, M., Choquet, S., Galanaud, D., et al. (2022) Role of Positron Emission Tomography in Primary Central Nervous System Lymphoma. Cancers, 14, Article No. 4071. [Google Scholar] [CrossRef] [PubMed]
[43] Li, Y., Mo, Y., Chen, M., Zhang, W., Li, S. and Zhang, X. (2024) The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients. Cancers, 16, Article No. 2708. [Google Scholar] [CrossRef] [PubMed]
[44] King, R.L., Goodlad, J.R., Calaminici, M., Dotlic, S., Montes-Moreno, S., Oschlies, I., et al. (2019) Lymphomas Arising in Immune-Privileged Sites: Insights into Biology, Diagnosis, and Pathogenesis. Virchows Archiv, 476, 647-665. [Google Scholar] [CrossRef] [PubMed]
[45] Yamaguchi, J., Ohka, F., Lushun, C., Motomura, K., Aoki, K., Takeuchi, K., et al. (2022) cd79by196 Mutation Is a Potent Predictive Marker for Favorable Response to R-MPV in Primary Central Nervous System Lymphoma. Cancer Medicine, 12, 7116-7126. [Google Scholar] [CrossRef] [PubMed]