|
[1]
|
Fleckenstein, M., Keenan, T.D.L., Guymer, R.H., Chakravarthy, U., Schmitz-Valckenberg, S., Klaver, C.C., et al. (2021) Age-Related Macular Degeneration. Nature Reviews Disease Primers, 7, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tan, W., Zou, J., Yoshida, S., Jiang, B. and Zhou, Y. (2020) The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 16, 2989-3001. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Garcia-Garcia, J., Usategui-Martin, R., Sanabria, M.R., Fernandez-Perez, E., Telleria, J.J. and Coco-Martin, R.M. (2022) Pathophysiology of Age-Related Macular Degeneration: Implications for Treatment. Ophthalmic Research, 65, 615-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wong, J.H.C., Ma, J.Y.W., Jobling, A.I., Brandli, A., Greferath, U., Fletcher, E.L., et al. (2022) Exploring the Pathogenesis of Age-Related Macular Degeneration: A Review of the Interplay between Retinal Pigment Epithelium Dysfunction and the Innate Immune System. Frontiers in Neuroscience, 16, Article 1009599. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Stepp, M.A. and Menko, A.S. (2021) Immune Responses to Injury and Their Links to Eye Disease. Translational Research, 236, 52-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fursova, A.Z., Derbeneva, A.S., Vasilyeva, M.S., Niculich, I.F., Tarasov, M.S., Gamza, Y.A., et al. (2022) New Findings on Pathogenetic Mechanisms in the Development of Age-Related Macular Degeneration. Vestnik oftal’mologii, 138, 120-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tang, S., Yang, J., Xiao, B., Wang, Y., Lei, Y., Lai, D., et al. (2024) Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 65, 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wilke, G.A. and Apte, R.S. (2024) Complement Regulation in the Eye: Implications for Age-Related Macular Degeneration. Journal of Clinical Investigation, 134, e178296. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Datta, S., Cano, M., Ebrahimi, K., Wang, L. and Handa, J.T. (2017) The Impact of Oxidative Stress and Inflammation on RPE Degeneration in Non-Neovascular AMD. Progress in Retinal and Eye Research, 60, 201-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhan, P., Cui, Y., Cao, Y., Bao, X., Wu, M., Yang, Q., et al. (2022) PGE2 Promotes Macrophage Recruitment and Neovascularization in Murine Wet-Type AMD Models. Cell Communication and Signaling, 20, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, X., Guo, A., Tu, Y., Li, W., Li, L., Liu, W., et al. (2020) Fruquintinib Inhibits VEGF/VEGFR2 Axis of Choroidal Endothelial Cells and M1-Type Macrophages to Protect against Mouse Laser-Induced Choroidal Neovascularization. Cell Death & Disease, 11, Article No. 1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Klettner, A. and Roider, J. (2021) Retinal Pigment Epithelium Expressed Toll-Like Receptors and Their Potential Role in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 22, Article 8387. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, Q. and Lai, K. (2024) Role of Immune Inflammation Regulated by Macrophage in the Pathogenesis of Age-Related Macular Degeneration. Experimental Eye Research, 239, Article ID: 109770. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nielsen, M.K., Subhi, Y., Falk, M., Singh, A., Sørensen, T.L., Nissen, M.H., et al. (2023) Complement Factor H Y402H Polymorphism Results in Diminishing CD4+ T Cells and Increasing C-Reactive Protein in Plasma. Scientific Reports, 13, Article No. 19414. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ermakova, N.A. (2018) The Role of Inflammation in Age-Related Macular Degeneration. Vestnik oftal’mologii, 134, 116-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fabre, M., Mateo, L., Lamaa, D., Baillif, S., Pagès, G., Demange, L., et al. (2022) Recent Advances in Age-Related Macular Degeneration Therapies. Molecules, 27, Article 5089. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cao, Y., Li, X., Tchivelekete, G.M., Li, X., Zhou, X., He, Z., et al. (2022) Bioinformatical and Biochemical Analyses on the Protective Role of Traditional Chinese Medicine against Age-Related Macular Degeneration. Current Eye Research, 47, 1450-1462. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gauldie, J. (2020) Acute and Chronic Inflammation. In: Snape, J. and Collins, S.M., Eds., Effects of Immune Cells and Inflammation on Smooth Muscle and Enteric Nerves, CRC Press, 1-9. [Google Scholar] [CrossRef]
|
|
[19]
|
Sierawska, O., Małkowska, P., Taskin, C., Hrynkiewicz, R., Mertowska, P., Grywalska, E., et al. (2022) Innate Immune System Response to Burn Damage—Focus on Cytokine Alteration. International Journal of Molecular Sciences, 23, Article 716. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Keenan, T.D.L., Toso, M., Pappas, C., Nichols, L., Bishop, P.N. and Hageman, G.S. (2015) Assessment of Proteins Associated with Complement Activation and Inflammation in Maculae of Human Donors Homozygous Risk at Chromosome 1 CFH-to-F13B. Investigative Opthalmology & Visual Science, 56, 4870-4879. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lurier, E.B., Dalton, D., Dampier, W., Raman, P., Nassiri, S., Ferraro, N.M., et al. (2017) Transcriptome Analysis of Il-10-Stimulated (M2c) Macrophages by Next-Generation Sequencing. Immunobiology, 222, 847-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sasaki, F., Koga, T., Ohba, M., Saeki, K., Okuno, T., Ishikawa, K., et al. (2018) Leukotriene B4 Promotes Neovascularization and Macrophage Recruitment in Murine Wet-Type AMD Models. JCI Insight, 3, e96902. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., et al. (2021) Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduction and Targeted Therapy, 6, Article No. 263. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yang, Y., Zhou, H., Huang, X., Wu, C., Zheng, K., Deng, J., et al. (2024) Innate Immune and Proinflammatory Signals Activate the Hippo Pathway via a Tak1-Stripak-Tao Axis. Nature Communications, 15, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bhumika, Bora, N.S. and Bora, P.S. (2024) Genetic Insights into Age-Related Macular Degeneration. Biomedicines, 12, Article 1479. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ochoa Hernández, M.E., Lewis-Luján, L.M., Burboa Zazueta, M.G., Del Castillo Castro, T., De La Re Vega, E., Gálvez-Ruiz, J.C., et al. (2025) Role of Oxidative Stress and Inflammation in Age Related Macular Degeneration: Insights into the Retinal Pigment Epithelium (RPE). International Journal of Molecular Sciences, 26, Article 3463. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, Y., Fang, Z., Yi, X., Wei, X. and Jiang, D. (2023) The Interaction between Ferroptosis and Inflammatory Signaling Pathways. Cell Death & Disease, 14, Article No. 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cao, B., Zhao, Y., Luo, Q., Chen, Y., Xu, T. and Sun, Y. (2023) Vinculin B Inhibits NF-κB Signaling Pathway by Targeting MyD88 in Miiuy Croaker, Miichthys miiuy. Fish & Shellfish Immunology, 135, Article ID: 108683. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kureshi, C.T. and Dougan, S.K. (2025) Cytokines in Cancer. Cancer Cell, 43, 15-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, J., Zhai, Y. and Tang, M. (2024) Integrative Function of Histone Deacetylase 3 in Inflammation. Molecular Biology Reports, 51, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wei, T., Zhang, M., Zheng, X., Xie, T., Wang, W., Zou, J., et al. (2021) Interferon‐γ Induces Retinal Pigment Epithelial Cell Ferroptosis by a JAK1‐2/STAT1/SLC7A11 Signaling Pathway in Age‐Related Macular Degeneration. The FEBS Journal, 289, 1968-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zou, M., Ke, Q., Nie, Q., Qi, R., Zhu, X., Liu, W., et al. (2022) Inhibition of cGAS-STING by JQ1 Alleviates Oxidative Stress-Induced Retina Inflammation and Degeneration. Cell Death & Differentiation, 29, 1816-1833. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, Y., Xu, R., Gu, H., Zhang, E., Qu, J., Cao, W., et al. (2021) Metabolic Reprogramming in Macrophage Responses. Biomarker Research, 9, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. and Castegna, A. (2019) The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 10, Article 1462. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, Y. and Wong, W.T. (2021) Innate Immunity in Age-Related Macular Degeneration. In: Chew, E.Y. and Swaroop, A., Eds., Age-Related Macular Degeneration: From Clinic to Genes and Back to Patient Management, Springer, 121-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chapman, N.M. and Chi, H. (2022) Metabolic Adaptation of Lymphocytes in Immunity and Disease. Immunity, 55, 14-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Thomas, C.J., Mirza, R.G. and Gill, M.K. (2021) Age-Related Macular Degeneration. Medical Clinics of North America, 105, 473-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Vecino, E., Rodriguez, F.D., Ruzafa, N., Pereiro, X. and Sharma, S.C. (2016) Glia-Neuron Interactions in the Mammalian Retina. Progress in Retinal and Eye Research, 51, 1-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, W., Lin, P., Wang, S., Zhang, G., Chen, C., Lu, X., et al. (2023) In-Depth Mining of Single-Cell Transcriptome Reveals the Key Immune-Regulated Loops in Age-Related Macular Degeneration. Frontiers in Molecular Neuroscience, 16, Article 1173123. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Behnke, V., Wolf, A. and Langmann, T. (2020) The Role of Lymphocytes and Phagocytes in Age-Related Macular Degeneration (AMD). Cellular and Molecular Life Sciences, 77, 781-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lee, K., Flores, R.R., Jang, I.H., Saathoff, A. and Robbins, P.D. (2022) Immune Senescence, Immunosenescence and Aging. Frontiers in Aging, 3, Article 900028. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Heloterä, H. and Kaarniranta, K. (2022) A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells, 11, Article 3453. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Park, Y.G., Park, Y.S. and Kim, I. (2021) Complement System and Potential Therapeutics in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 22, Article 6851. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kauppinen, A., Kaarniranta, K. and Salminen, A. (2020) Potential Role of Myeloid-Derived Suppressor Cells (MDSCs) in Age-Related Macular Degeneration (AMD). Frontiers in Immunology, 11, Article 384. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Allingham, M.J., Loksztejn, A., Cousins, S.W. and Mettu, P.S. (2021) Immunological Aspects of Age-Related Macular Degeneration. In: Chew, E.Y. and Swaroop, A., Eds., Age-Related Macular Degeneration, Springer, 143-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chaudhuri, M., Hassan, Y., Bakka Vemana, P.P.S., Bellary Pattanashetty, M.S., Abdin, Z.U. and Siddiqui, H.F. (2023) Age-related Macular Degeneration: An Exponentially Emerging Imminent Threat of Visual Impairment and Irreversible Blindness. Cureus, 15, e39624. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Weaver, C., Cyr, B., de Rivero Vaccari, J.C. and de Rivero Vaccari, J.P. (2020) Inflammasome Proteins as Inflammatory Biomarkers of Age-Related Macular Degeneration. Translational Vision Science & Technology, 9, 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Romero-Vazquez, S., Llorens, V., Soler-Boronat, A., Figueras-Roca, M., Adan, A. and Molins, B. (2021) Interlink between Inflammation and Oxidative Stress in Age-Related Macular Degeneration: Role of Complement Factor H. Biomedicines, 9, Article 763. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Marneros, A.G. (2013) NLRP3 Inflammasome Blockade Inhibits VEGF-A-Induced Age-Related Macular Degeneration. Cell Reports, 4, 945-958. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ilhan, N., Daglioglu, M.C., Ilhan, O., Coskun, M., Tuzcu, E.A., Kahraman, H., et al. (2014) Assessment of Neutrophil/Lymphocyte Ratio in Patients with Age-Related Macular Degeneration. Ocular Immunology and Inflammation, 23, 287-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, B., Wang, D., Ji, T., Shi, L. and Yu, J. (2016) Overexpression of LncRNA ANRIL Up-Regulates VEGF Expression and Promotes Angiogenesis of Diabetes Mellitus Combined with Cerebral Infarction by Activating NF-κB Signaling Pathway in a Rat Model. Oncotarget, 8, 17347-17359. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Khan, A.H., Chowers, I. and Lotery, A.J. (2023) Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells, 12, Article 1708. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Armento, A., Ueffing, M. and Clark, S.J. (2021) The Complement System in Age-Related Macular Degeneration. Cellular and Molecular Life Sciences, 78, 4487-4505. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zeng, Y., Yin, X., Chen, C. and Xing, Y. (2021) Identification of Diagnostic Biomarkers and Their Correlation with Immune Infiltration in Age-Related Macular Degeneration. Diagnostics, 11, Article 1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Xu, G., Zhang, J. and Tang, L. (2023) Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regeneration Research, 18, 976-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Jun, S., Datta, S., Wang, L., Pegany, R., Cano, M. and Handa, J.T. (2019) The Impact of Lipids, Lipid Oxidation, and Inflammation on AMD, and the Potential Role of miRNAs on Lipid Metabolism in the RPE. Experimental Eye Research, 181, 346-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Urbańska, K., Stępień, P.W., Nowakowska, K.N., Stefaniak, M., Osial, N., Chorągiewicz, T., et al. (2022) The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration. International Journal of Molecular Sciences, 23, Article 7761. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, L., Lee, A., Wigg, J., Peshavariya, H., Liu, P. and Zhang, H. (2016) miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. International Journal of Molecular Sciences, 17, Article 895. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhao, S., Lu, L., Liu, Q., Chen, J., Yuan, Q., Qiu, S., et al. (2019) miR‐505 Promotes M2 Polarization in Choroidal Neovascularization Model Mice by Targeting Transmembrane Protein 229B. Scandinavian Journal of Immunology, 90, e12832. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Han, D. and He, X. (2023) Screening for Biomarkers in Age-Related Macular Degeneration. Heliyon, 9, e16981. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Guo, H., Li, J. and Lu, P. (2023) Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Ocular Fluids to Assess Potential Biomarkers of Age-Related Macular Degeneration. BMC Ophthalmology, 23, Article No. 507. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ren, J., Ren, A., Deng, X., Huang, Z., Jiang, Z., Li, Z., et al. (2022) Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. Journal of Inflammation Research, 15, 865-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Jaffe, G.J., Westby, K., Csaky, K.G., Monés, J., Pearlman, J.A., Patel, S.S., et al. (2021) C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology, 128, 576-586. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Potilinski, M.C., Tate, P.S., Lorenc, V.E. and Gallo, J.E. (2021) New Insights into Oxidative Stress and Immune Mechanisms Involved in Age-Related Macular Degeneration Tackled by Novel Therapies. Neuropharmacology, 188, Article ID: 108513. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, Y., Gao, S., Cao, F., Yang, H., Lei, F. and Hou, S. (2024) Ocular Immune‐related Diseases: Molecular Mechanisms and Therapy. MedComm, 5, e70021. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Nielsen, J., MacLaren, R.E., Heier, J.S., Steel, D., Ivanova, T., Sivaprasad, S., et al. (2022) Preliminary Results from a First-In-Human Phase I/II Gene Therapy Study (FOCUS) of Subretinally Delivered GT005, an Investigational AAV2 Vector, in Patients with Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 63, 1504.
|
|
[67]
|
Guimaraes, T.A.C.D., Georgiou, M., Bainbridge, J.W.B. and Michaelides, M. (2020) Gene Therapy for Neovascular Age-Related Macular Degeneration: Rationale, Clinical Trials and Future Directions. British Journal of Ophthalmology, 105, 151-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Wang, X., Wang, T., Lam, E., Alvarez, D. and Sun, Y. (2023) Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. International Journal of Molecular Sciences, 24, Article 12090. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Placha, D. and Jampilek, J. (2021) Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics, 13, Article 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Shen, J., Chen, L., Lv, X., Liu, N., Miao, Y., Zhang, Q., et al. (2024) Emerging Co‐Assembled and Sustained Released Natural Medicinal Nanoparticles for Multitarget Therapy of Choroidal Neovascularization. Advanced Materials, 36, Article ID: 2314095. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ke, X., Wu, Y., Yu, X., Yang, S., Luo, S., Qing, X., et al. (2024) Combined Complement Inhibitors and Anti-VEGF Therapy for the Treatment of Dry Age-Related Macular Degeneration (AMD). Investigative Ophthalmology & Visual Science, 65, 5317.
|
|
[72]
|
Heier, J.S., Brown, D.M., Chong, V., Korobelnik, J., Kaiser, P.K., Nguyen, Q.D., et al. (2012) Intravitreal Aflibercept (VEGF Trap-Eye) in Wet Age-Related Macular Degeneration. Ophthalmology, 119, 2537-2548. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Holz, F.G., Tadayoni, R., Beatty, S., Berger, A., Cereda, M.G., Cortez, R., et al. (2014) Multi-Country Real-Life Experience of Anti-Vascular Endothelial Growth Factor Therapy for Wet Age-Related Macular Degeneration. British Journal of Ophthalmology, 99, 220-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Liao, D.S., Grossi, F.V., El Mehdi, D., Gerber, M.R., Brown, D.M., Heier, J.S., et al. (2020) Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial. Ophthalmology, 127, 186-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Patel, S.S., Lally, D.R., Hsu, J., Wykoff, C.C., Eichenbaum, D., Heier, J.S., et al. (2023) Avacincaptad Pegol for Geographic Atrophy Secondary to Age-Related Macular Degeneration: 18-Month Findings from the GATHER1 Trial. Eye, 37, 3551-3557. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Lin, J.B., Serghiou, S., Miller, J.W. and Vavvas, D.G. (2022) Systemic Complement Activation Profiles in Nonexudative Age-Related Macular Degeneration: A Systematic Review. Ophthalmology Science, 2, Article ID: 100118. [Google Scholar] [CrossRef] [PubMed]
|