|
[1]
|
Jin, J., Ma, Y., Tong, X., Yang, W., Dai, Y., Pan, Y., et al. (2020) Metformin Inhibits Testosterone-Induced Endoplasmic Reticulum Stress in Ovarian Granulosa Cells via Inactivation of p38 MAPK. Human Reproduction, 35, 1145-1158. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ebejer, K. and Calleja-Agius, J. (2013) The Role of Cytokines in Polycystic Ovarian Syndrome. Gynecological Endocrinology, 29, 536-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
孙淼, 王玉艳, 孟小钰, 等. 基于“肾虚、痰湿、血瘀”的现代生物学基础探讨PCOS中医病机的科学内涵[J]. 时珍国医国药, 2022, 33(6): 1412-1415.
|
|
[4]
|
Yan, Y., Zhou, X.E., Xu, H.E. and Melcher, K. (2018) Structure and Physiological Regulation of AMPK. International Journal of Molecular Sciences, 19, Article No. 3534. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dërmaku-Sopjani, M. and Sopjani, M. (2019) Intracellular Signaling of the AMP-Activated Protein Kinase. In: Advances in Protein Chemistry and Structural Biology, Elsevier, 171-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Garcia, D. and Shaw, R.J. (2017) AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 66, 789-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kim, J., Yang, G., Kim, Y., Kim, J. and Ha, J. (2016) AMPK Activators: Mechanisms of Action and Physiological Activities. Experimental & Molecular Medicine, 48, e224-e224. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., et al. (2010) AMPK Inhibition in Health and Disease. Critical Reviews in Biochemistry and Molecular Biology, 45, 276-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Russell, F.M. and Hardie, D.G. (2020) AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? International Journal of Molecular Sciences, 22, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Steinberg, G.R. and Hardie, D.G. (2022) New Insights into Activation and Function of the AMPK. Nature Reviews Molecular Cell Biology, 24, 255-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hardie, D.G., Schaffer, B.E. and Brunet, A. (2016) AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends in Cell Biology, 26, 190-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Brookens, S.K. and Boothby, M.R. (2021) AMPK Metabolism in the B Lineage Modulates Humoral Responses. Immunometabolism, 3, e210011. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Herzig, S. and Shaw, R.J. (2017) AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, S. and Zou, M. (2020) AMPK, Mitochondrial Function, and Cardiovascular Disease. International Journal of Molecular Sciences, 21, Article No. 4987. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chuang, H., Chou, C., Kulp, S. and Chen, C. (2014) AMPK as a Potential Anticancer Target—Friend or Foe? Current Pharmaceutical Design, 20, 2607-2618. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fouqueray, P., Bolze, S., Dubourg, J., Hallakou-Bozec, S., Theurey, P., Grouin, J., et al. (2021) Pharmacodynamic Effects of Direct AMP Kinase Activation in Humans with Insulin Resistance and Non-Alcoholic Fatty Liver Disease: A Phase 1b Study. Cell Reports Medicine, 2, Article ID: 100474. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hsu, C., Zhang, X., Wang, G., Zhang, W., Cai, Z., Pan, B., et al. (2021) Inositol Serves as a Natural Inhibitor of Mitochondrial Fission by Directly Targeting AMPK. Molecular Cell, 81, 3803-3819.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Alexander, A. and Walker, C.L. (2011) The Role of LKB1 and AMPK in Cellular Responses to Stress and Damage. FEBS Letters, 585, 952-957. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., et al. (2020) SIRT1 Is Downregulated by Autophagy in Senescence and Ageing. Nature Cell Biology, 22, 1170-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
He, F., Li, Q., Sheng, B., Yang, H. and Jiang, W. (2021) SIRT1 Inhibits Apoptosis by Promoting Autophagic Flux in Human Nucleus Pulposus Cells in the Key Stage of Degeneration via ERK Signal Pathway. BioMed Research International, 2021, Article ID: 8818713. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, Q., Su, H., Qi, B., Wang, Y., Yan, K., Wang, X., et al. (2021) A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. Journal of the American Chemical Society, 143, 1416-1427. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qiang, L., Lin, H.V., Kim-Muller, J.Y., Welch, C.L., Gu, W. and Accili, D. (2011) Proatherogenic Abnormalities of Lipid Metabolism in Sirt1 Transgenic Mice Are Mediated through Creb Deacetylation. Cell Metabolism, 14, 758-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rada, P., Pardo, V., Mobasher, M.A., García-Martínez, I., Ruiz, L., González-Rodríguez, Á., et al. (2018) SIRT1 Controls Acetaminophen Hepatotoxicity by Modulating Inflammation and Oxidative Stress. Antioxidants & Redox Signaling, 28, 1187-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liang, D., Zhuo, Y., Guo, Z., He, L., Wang, X., He, Y., et al. (2020) SIRT1/PGC-1 Pathway Activation Triggers Autophagy/Mitophagy and Attenuates Oxidative Damage in Intestinal Epithelial Cells. Biochimie, 170, 10-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Carling, D. (2017) AMPK Signalling in Health and Disease. Current Opinion in Cell Biology, 45, 31-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhao, W., Kruse, J., Tang, Y., Jung, S.Y., Qin, J. and Gu, W. (2008) Negative Regulation of the Deacetylase SIRT1 by Dbc1. Nature, 451, 587-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., et al. (2008) Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 8, 347-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nin, V., Escande, C., Chini, C.C., Giri, S., Camacho-Pereira, J., Matalonga, J., et al. (2012) Role of Deleted in Breast Cancer 1 (Dbc1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase a and AMP-Activated Protein Kinase. Journal of Biological Chemistry, 287, 23489-23501. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Coyral‐Castel, S., Tosca, L., Ferreira, G., Jeanpierre, E., Rame, C., Lomet, D., et al. (2008) The Effect of AMP‐Activated Kinase Activation on Gonadotrophin‐Releasing Hormone Secretion in GT1‐7 Cells and Its Potential Role in Hypothalamic Regulation of the Oestrous Cyclicity in Rats. Journal of Neuroendocrinology, 20, 335-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tosca, L., Froment, P., Rame, C., McNeilly, J.R., McNeilly, A.S., Maillard, V., et al. (2010) Metformin Decreases Gnrh-and Activin-Induced Gonadotropin Secretion in Rat Pituitary Cells: Potential Involvement of Adenosine 5’ Monophosphate-Activated Protein Kinase (PRKA). Biology of Reproduction, 84, 351-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Moriyama, R., Iwamoto, K., Hagiwara, T., Yoshida, S., Kato, T. and Kato, Y. (2020) AMP-Activated Protein Kinase Activation Reduces the Transcriptional Activity of the Murine Luteinizing Hormone Β-Subunit Gene. Journal of Reproduction and Development, 66, 97-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Griffiths, R.M., Pru, C.A., Behura, S.K., Cronrath, A.R., McCallum, M.L., Kelp, N.C., et al. (2020) AMPK Is Required for Uterine Receptivity and Normal Responses to Steroid Hormones. Reproduction, 159, 707-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yamamoto, M. and Takahashi, Y. (2018) The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Frontiers in Endocrinology, 9, Article No. 605. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kolthur-Seetharam, U., Teerds, K., de Rooij, D.G., Wendling, O., McBurney, M., Sassone-Corsi, P., et al. (2009) The Histone Deacetylase SIRT1 Controls Male Fertility in Mice through Regulation of Hypothalamic-Pituitary Gonadotropin Signaling. Biology of Reproduction, 80, 384-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lemieux, M.E., Yang, X., Jardine, K., He, X., Jacobsen, K.X., Staines, W.A., et al. (2005) The Sirt1 Deacetylase Modulates the Insulin-Like Growth Factor Signaling Pathway in Mammals. Mechanisms of Ageing and Development, 126, 1097-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tatone, C., Di Emidio, G., Vitti, M., Di Carlo, M., Santini, S., D’Alessandro, A.M., et al. (2015) Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 659687. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mihanfar, A., Nouri, M., Roshangar, L. and Khadem-Ansari, M.H. (2021) Therapeutic Potential of Quercetin in an Animal Model of PCOS: Possible Involvement of AMPK/SIRT-1 Axis. European Journal of Pharmacology, 900, Article ID: 174062. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019) Sirt1 Promotes Autophagy and Inhibits Apoptosis to Protect Cardiomyocytes from Hypoxic Stress. International Journal of Molecular Medicine, 43, 2033-2043. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
陈苗, 马会明, 陈冬梅, 等. 基于AMPK/SIRT1/SIRT3信号通路探讨健脾益肾化浊方治疗多囊卵巢综合征大鼠的机制[J]. 中华中医药杂志, 2024, 39(10): 5452-5456.
|
|
[40]
|
董双千, 汤怡倩, 徐浩田, 等. 启宫丸对多囊卵巢综合征-胰岛素抵抗大鼠AdipoR/AMPK信号通路的影响[J]. 中成药, 2025, 47(2): 584-589.
|
|
[41]
|
钟旭, 曹睿, 蒋洪梅, 等. 金匮肾气丸对多囊卵巢综合征患者内分泌代谢的影响[J]. 世界中医药, 2018, 13(10): 2492-2495, 2499.
|
|
[42]
|
刘仙菊, 胡方林. 金匮肾气丸对2型糖尿病模型大鼠脂肪代谢及胰岛素抵抗的影响[J]. 中医药导报, 2011, 17(11): 22-25.
|
|
[43]
|
黄苏萍, 康文倩, 刘永进, 等. 丹瓜方对糖尿病大鼠肝脏LKB1、AMPK及SIRT1表达的影响[J]. 中华中医药杂志, 2019, 34(9): 4003-4007.
|
|
[44]
|
马丽亚, 杜婧雯, 张童, 等. 金匮肾气丸对多囊卵巢综合征模型大鼠的改善作用及机制研究[J]. 中国药房, 2022, 33(23): 2869-2873.
|
|
[45]
|
冀凡, 司振民, 刘承东, 等. 黄酮类中药单体对多囊卵巢综合征信号通路的调控作用[J]. 世界中医药, 2024, 19(23): 3709-3717.
|
|
[46]
|
Zhang, Y., Huang, J., Sun, M., Duan, Y., Wang, L., Yu, N., et al. (2023) Preparation, Characterization, Antioxidant and Antianemia Activities of Poria cocos Polysaccharide Iron (III) Complex. Heliyon, 9, e12819. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
李乔, 张博. 茯苓多糖对2型糖尿病大鼠丝裂原激活的蛋白激酶通路及胰岛素抵抗的影响[J]. 安徽医药, 2022, 26(12): 2379-2382.
|
|
[48]
|
Wang, J., Zheng, D., Huang, F., Zhao, A., Kuang, J., Ren, Z., et al. (2022) Theabrownin and Poria cocos Polysaccharide Improve Lipid Metabolism via Modulation of Bile Acid and Fatty Acid Metabolism. Frontiers in Pharmacology, 13, Article ID: 875549. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
瞿谆, 马惠荣, 冯丹, 等. 茯苓多糖调节SIRT1/AMPK信号通路对多囊卵巢综合征大鼠卵巢功能的影响[J]. 中国优生与遗传杂志, 2024, 32(6): 1144-1148.
|
|
[50]
|
Wang, W., Zheng, J., Cui, N., Jiang, L., Zhou, H., Zhang, D., et al. (2019) Baicalin Ameliorates Polycystic Ovary Syndrome through Amp-Activated Protein Kinase. Journal of Ovarian Research, 12, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
孟姣, 吕振宇, 孙传鑫, 等. 枸杞多糖药理作用研究进展[J]. 时珍国医国药, 2018, 29(10): 2489-2493.
|
|
[52]
|
刘军, 周玲, 盛燕, 等. 枸杞多糖对胰岛素抵抗型多囊卵巢综合征大鼠的改善作用及 LKB1/AMPK 通路的调节作用研究[J]. 中国优生与遗传杂志, 2022, 30(4): 587-591.
|
|
[53]
|
Wu, C., Cai, X., Chang, Y., Chen, C., Ho, T., Lai, S., et al. (2019) Rapid Identification of Dragon Blood Samples from Daemonorops draco, Dracaena cinnabari and Dracaena cochinchinensis by MALDI‐TOF Mass Spectrometry. Phytochemical Analysis, 30, 720-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Fan, J., Yi, T., Sze-To, C., Zhu, L., Peng, W., Zhang, Y., et al. (2014) A Systematic Review of the Botanical, Phytochemical and Pharmacological Profile of Dracaena cochinchinensis, a Plant Source of the Ethnomedicine “Dragon’s Blood”. Molecules, 19, 10650-10669. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Fang, H., Ding, Y., Xia, S., Chen, Q. and Niu, B. (2022) Loureirin B Promotes Insulin Secretion through GLP-1R and AKT/PDX1 Pathways. European Journal of Pharmacology, 936, Article ID: 175377. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, J., Huang, Z., Cao, Z., Luo, Y., Liu, Y., Cao, H., et al. (2024) Loureirin B Reduces Insulin Resistance and Chronic Inflammation in a Rat Model of Polycystic Ovary Syndrome by Upregulating GPR120 and Activating the LKB1/AMPK Signaling Pathway. International Journal of Molecular Sciences, 25, Article No. 11146. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Estienne, A., Bongrani, A., Ramé, C., Kurowska, P., Błaszczyk, K., Rak, A., et al. (2021) Energy Sensors and Reproductive Hypothalamo-Pituitary Ovarian Axis (HPO) in Female Mammals: Role of mTOR (Mammalian Target of Rapamycin), AMPK (AMP-Activated Protein Kinase) and SIRT1 (Sirtuin 1). Molecular and Cellular Endocrinology, 521, Article ID: 111113. [Google Scholar] [CrossRef] [PubMed]
|