中药基于AMPK及SIRT1信号通路治疗多囊卵巢综合征的研究进展
Research Progress on the Treatment of Polycystic Ovary Syndrome with Traditional Chinese Medicine Based on AMPK and SIRT1 Signaling Pathways
DOI: 10.12677/acm.2025.15113194, PDF, HTML, XML,   
作者: 任 佳:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;匡洪影*:黑龙江中医药大学附属第一医院妇科二科,黑龙江 哈尔滨
关键词: 多囊卵巢综合征AMPKSIRT1中医药Polycystic Ovary Syndrome AMPK SIRT1 Traditional Chinese Medicine
摘要: 多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)在生殖和内分泌代谢中存在着异常的症候,临床表现以排卵困难、高雄激素血症以及胰岛素抵抗为特征,其中育龄期女性发病率较其他年龄群体的比例增高,对女性生育力和心理造成极大压力。根据目前的研究,PCOS的发生发展与多种信号通路存在联系,其中腺苷酸活化蛋白激酶(AMP-Activated Protein Kinase, AMPK)及沉默信息调节因子1 (Silencing Information Regulatory Factor 1, SIRT1)可以感知细胞的能量状态,它们也是调控PCOS的两个核心作用靶点,二者在PCOS的不同发病部位发挥着不可或缺的调节作用。最近这些年,中医药因为有成分丰富、能作用的靶点较多等特点,在实际临床治疗中应用得越来越广泛。研究人员围绕PCOS的发病机制,以及中医药在治疗和改善PCOS具体发挥作用的机制,做了很多相关研究。从研究结果能看出,在中药对PCOS进行干预的过程中,AMPK和SIRT1相关的信号通路起到了关键作用。本文对中药在干预AMPK与SIRT1及其相关通路、进而治疗PCOS方面取得的研究成果进行了整理总结,目的是为PCOS的临床治疗工作以及相关的基础研究项目提供有实际价值的参考。
Abstract: Polycystic Ovary Syndrome (PCOS) presents abnormal symptoms in reproductive and endocrine metabolic processes. Its clinical manifestations include difficulties in ovulation, hyperandrogenemia, and insulin resistance. The incidence of PCOS is higher among women of childbearing age compared to other age groups, and it has a significant impact on female fertility and mental health. According to current research, the occurrence and development of PCOS are associated with multiple signaling pathways. Among them, adenosine monophosphate-activated protein kinase (AMPK) and silencing information regulatory factor 1 (SIRT1) can sense the energy state of cells. They are also two core regulatory targets for PCOS. Both play indispensable regulatory roles in different lesion sites of PCOS. In recent years, traditional Chinese medicine has been increasingly widely used in clinical treatment due to its rich components and more targetable effects. Researchers have conducted many related studies on the pathogenesis of PCOS and the specific mechanisms by which traditional Chinese medicine treats and improves PCOS. From the research results, it can be seen that the signaling pathways related to AMPK and SIRT1 play a crucial role in the intervention of PCOS by traditional Chinese medicine. This article summarizes the research achievements in the intervention of AMPK, SIRT1 and their related pathways, and the subsequent treatment of PCOS, with the aim of providing practical references for clinical treatment of PCOS and related basic research projects.
文章引用:任佳, 匡洪影. 中药基于AMPK及SIRT1信号通路治疗多囊卵巢综合征的研究进展[J]. 临床医学进展, 2025, 15(11): 1078-1086. https://doi.org/10.12677/acm.2025.15113194

1. 引言

多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)是一种普遍存在的生殖内分泌疾病,育龄期妇女的患病率为5%至10%;根据2008年至2014年的统计数据,中国PCOS的患病率约为2%至11% [1]。常伴有胰岛素抵抗、高雄激素血症、糖脂代谢等异常的代谢性疾病。近年来,有研究表明,多囊患者血清中白细胞介素6 (IL-6)及肿瘤细胞因子α (TNF-α)和C反应蛋白(CRP)等炎症细胞因子表达水平显著升高,处于一种慢性炎症的状态[2],给患者带来了很大的生理和心理的影响。目前,多囊卵巢综合征(PCOS)的病理机制尚未明确,在现有研究认知中,多数观点认为胰岛素抵抗是该病症发病过程中的核心环节,并且这一环节还与细胞自噬、氧化应激、线粒体功能异常等多个病理过程存在关联。中医方面,PCOS根据其临床表现属于“月经后期”、“不孕”等疾病范畴,多数医者认为其病机核心以肾虚为根本,而痰湿与瘀血则属于病症的标证范畴;在具体治疗思路上,临床多运用温肾健脾、化痰祛瘀这类方法来开展干预[3]。目前临床上针对PCOS的药物大多具有副作用和使用局限大等问题。天然植物提取物具有安全毒性低的优势,在提高女性代谢和改善生殖障碍方面拥有极大潜力。研究发现中药可以通过改善糖脂代谢、胰岛素抵抗,调节细胞自噬,减少氧化应激水平等各个方面延缓PCOS进程。AMPK和SIRT1可以看作是调节细胞能量的关键调节靶点。本文重点整理了中药通过调节AMPK及SIRT1相关通路,改善PCOS发病状况并开展相关机制分析的内容,从而为PCOS的治疗工作提供相应的思路。

2. AMPK与SIRT1

2.1. AMPK结构和功能

AMPK是一种保守的丝氨酸–苏氨酸蛋白激酶复合物,属于Ca2+钙调蛋白依赖性蛋白激酶,是一种异源三聚体复合物,包括一个催化亚基AMPKα,(α1和α2)和两个调节亚基AMPKβ (β1和β2)和AMPKγ (γ1、γ2和γ3) [4]-[8],这些亚基组合形成12种AMPK复合物。AMPK可以通过整合营养和激素信号来响应营养和环境变化,以维持细胞能量稳态。当缺氧、饥饿、某些药物、某些疾病、葡萄糖剥夺或肌肉收缩,体内AMP:ATP/ADP:ATP升高,上游激酶诱导Thr172磷酸化,从而激活AMPK,这是经典途径[9]-[11]。非经典途径是当体内Ca+水平增加,上游激酶Cakkβ可以磷酸化AMPK的Thr172残基。激活后,AMPK可以通过磷酸化下游靶点直接或者间接调控限速代谢酶、转录翻译因子和表观遗传调控因子的活性。重新调整代谢以促进分解代谢或抑制合成代谢,从而抑制细胞增殖和生长。AMPK激活分解代谢途径产生ATP,并使消耗ATP的生物合成途径失活。激活后,AMPK抑制ATP消耗的生物合成途径,如mTOR、ACC1/胆固醇调节元件结合蛋白-1c/HMGCR和TIF-1A途径和糖原合成,从而抑制蛋白质合成、脂肪生成、糖原合成和rRNA合成。此外,AMPK激活产生ATP的分解代谢途径,如ACC2、ULK1、GLUT4和PGC-1α/SIRT1,以增强脂肪酸氧化、自噬、糖酵解和线粒体生物合成[12]-[18]。所以,AMPK被激活后,能促进糖、脂质、核苷酸和蛋白质这类营养物质的分解,同时还会抑制这些物质的生成与储存;另外,它也能调节细胞的整体代谢,进而帮助细胞自噬的发生。

2.2. SIRT1的结构和功能

SIRT1是Ⅲ类组蛋白去乙酰化酶家族,其反应需要烟酰胺腺嘌呤(NAD+)同时对参与代谢过程和应激反应的蛋白质中的组蛋白和非组蛋白进行去乙酰化。它在哺乳动物细胞中广泛表达,包括大脑、脂肪组织、肾脏、胰腺、内皮、脾脏、骨骼肌和肝脏。此外,已知其表达与多种疾病有关,包括代谢性疾病和年龄相关性疾病,以及CVD。SIRT1介导的去乙酰化深刻地影响了多个生物学过程,包括细胞衰老[19]、细胞凋亡[20]、糖[21]和脂质代谢[22]、氧化应激[23] [24]和炎症[23]。因此,即使SIRT1表达和功能的微小变化也会显著影响细胞的反应。

腺苷酸激活蛋白激酶(AMPK)是一种能量传感器蛋白激酶,可以监测ATP水平的变化,直接磷酸化代谢酶,作为能量代谢的关键调节因子[25]。AMPK可借助提升细胞内NAD+水平,来推动SIRT1活性的增强[26]。值得注意的是,在慢性代谢适应过程中,SIRT1能够间接实现AMPK信号的激活[27]。从另一角度来看,AMPK还能直接引导SIRT1发生磷酸化,进而促进SIRT1去乙酰化酶活性的发挥[28]。由此可见,AMPK是调控SIRT1活性的关键因子。

3. AMPK、SIRT1与PCOS的关系

在雌性动物中,生殖功能的改善极大地依赖能量代谢的成功调控。在女性中,当生殖和代谢之间平衡被打破,就会出现生殖障碍,肥胖和厌食是当今重要的健康问题,在生殖障碍中占有重要地位,它们与无排卵,月经紊乱,不孕,辅助生殖困难和不良妊娠结局有关。许多研究都已经强调了AMPK,SIRT1在2型糖尿病、非酒精性脂肪肝与代谢综合征等多种人类疾病中的重要性。AMPK和SIRT1可以当作细胞能量代谢的关键调节物质,控制着能量与生殖之间的平衡情况,而且这两种物质和PCOS的发病有着紧密的关系。它们的受体在PCOS发病的关键部位出现了高表达的情况,可能会通过自噬、胰岛素抵抗等方式,对PCOS的发生和发展造成影响。

3.1. AMPK与PCOS

在小鼠下丘脑GnRh神经元细胞系(GT1-7细胞)中,AMPK的激活被证明可以在体外抑制GnRh的分泌,下丘脑的激活AICAR侧脑室内注射后体内的AMPK已被证明可以改变成年雌性大鼠的动情周期,从而导致动情周期间隔缩短[29]。在大鼠中,AMPK的不同亚基在垂体中都有表达。在大鼠垂体细胞中,二甲双胍介导的AMPK激活降低了GnRh介导的FSH诱导的促性腺激素[30];AMPK的激活降低了小鼠LHβ亚基基因的转录活性[31]。AMPK蛋白存在于不同哺乳动物的卵巢细胞中,有资料显示,AMPK参与调控原始卵泡的激活。p-AMPKα和AMPKα在子宫内膜上皮细胞和基质细胞中均广泛表达,介导上皮细胞增殖、子宫内膜容受性及妊娠期蜕膜化[32]

3.2. SIRT1与PCOS

SIRT1在下丘脑参与代谢调节的不同神经元均有表达[33],在生殖功能方面,SIRT1敲除小鼠表现出下丘脑GnRH表达减少,进一步降低血清LH和FSH水平,且SIRT1在下丘脑kiss1中神经元表达,并抑制kiss1表达[34]。SIRT1k0小鼠的垂体比野性小鼠型小[35],在卵巢中,SIRT1在间质、大卵泡中表达,尤其是在卵母细胞和颗粒细胞中,SIRT1的缺失导致小卵巢有早期卵泡发育,但没有排卵的证据[36]

4. 中药通过调控AMPK/SIRT1相关通路改善及治疗PCOS

PCOS会从“经、胎、产”这些阶段,还有绝经后女性出现2型糖尿病、高血压、子宫内膜癌发病率上升等多个方面,对女性的一生产生影响。现在,找到预防和治疗PCOS及其并发症的有效方法,需求非常迫切。中药复方以及它的有效成分,能把AMPK和SIRT1信号网络当作作用靶点,通过调节卵巢、胰腺等多个部位的胰岛素抵抗、糖脂代谢、自噬等病理机制,来达到改善PCOS的效果。

4.1. 中药复方作用于AMPK、SIRT1相关通路

4.1.1. 健脾益肾化浊方

健脾益肾化浊方中党参、黄芪、白术、茯苓、健脾化湿,益气补血;桑寄生、菟丝子、淫羊藿、仙茅益精血补肾壮阳;香附、陈皮、苍术燥湿化痰,理气助调经;配以荷叶升清降浊,凉血化瘀。健脾益肾化浊方有着“健脾益肾、化浊助运(孕)”的作用,且具备中医药自身的优势。相关研究发现,通过提高AMPK和SIRT1的表达水平,能够抑制PCOS大鼠体内雄激素的分泌,同时减轻颗粒细胞线粒体受到的损伤,进而延缓PCOS的发展[37]。经过磷酸化处理的AMPK,能促使SIRT1被激活,接着引发细胞自噬,对能量的稳定状态进行调节[38]。在这次研究中,PCOS大鼠卵巢组织中AMPK、p-AMPK、SIRT1的表达水平和空白组相比显著降低;而用健脾益肾化浊方治疗后,AMPK、p-AMPK、SIRT1的表达有所上升。这一结果说明,该方剂能够激活AMPK/SIRT1/SIRT3通路,对细胞自噬进行调控,让卵巢颗粒细胞线粒体功能保持更稳定的状态,最终达到维持卵巢正常功能的效果[39]

4.1.2. 启宫丸

启宫丸是“足太阴厥阴药也。则壅者通,塞者启矣。启宫丸燥湿化痰,化解痰浊启宫助孕的功效。本研究结果显示,启宫丸可以通过调节PCOS子宫AdipoR/AMPK信号通路,改善PCOS子宫内膜IR及异常糖脂代谢,进而缓解PCOS子宫内膜局部的胰岛素抵抗问题,为临床上PCOS的预防和治疗提供新的理论支持[40]

4.1.3. 金匮肾气丸

金匮肾气丸最早在《金匮要略》里有记载,被称作“千古补肾的经典药方”。关于这个药方治疗妇科疾病的相关说法,最早能在《妇人杂病脉证并治第二十二》中看到,它有着温暖肾脏阳气、推动气血运行和排出体内多余水分的功效[41]。研究发现,它可改善糖尿病模型大鼠胰岛素抵抗[42]据我们目前已知,LKB1/AMPK信号通路和胰岛素抵抗有关联,而LKB1、AMPK这两种蛋白的表达水平下降,是导致胰岛素抵抗出现的关键因素[43]。这次研究的结果显示,PCOS模型大鼠卵巢组织中,LKB1、AMPK蛋白以及mRNA的表达水平都明显降低,这就说明LKB1/AMPK信号通路的作用被抑制了。用其进行干预后,大鼠卵巢组织里LKB1、AMPK蛋白和mRNA的表达水平都出现了明显上升。这一情况表明,金匮肾气丸可以通过增强LKB1/AMPK信号通路的作用,来改善PCOS模型大鼠性激素水平异常、胰岛素抵抗以及卵巢囊性改变的问题,从而减缓PCOS的发展速度[44]

4.2. 中药有效成分

4.2.1. 柚皮素

柚皮素是一种富含生物活性成分的黄酮类化合物,广泛存在于柑橘类水果和中草药中。Li等通过分析显示,柚皮素通过激活AMPK/SIRT1信号通路,减少ROS产生,防止线粒体损伤和氧化应激;经过治疗后,PCOS大鼠模型动情周期改善,血清T、LH、LH/FSH水平下降,而E2、FSH水平升高,调节血清性激素[45]

4.2.2. 茯苓多糖

茯苓多糖(Poria cocos Polysaccharides, PPC)是茯苓的有效成分,有抗氧化、抗炎、增强免疫力等多种生物活性[46]。已经有的研究显示,PPC可降血糖和血脂,还可以改善2型糖尿病大鼠的胰岛素抵抗问题[47] [48]。本研究发现,SIRT1、AMPK在PCOS大鼠中表达明显降低,SIRT1、p-AMPK/AMPK在PCOS大鼠卵巢组织中表达也同样有所下降,而PPC能让SIRT1、p-AMPK/AMPK的表达显著升高,另外,PPC还有减轻炎症反应、调节激素水平、改善PCOS大鼠卵巢功能的作用,它发挥这些作用的机制,可能和激活SIRT1/AMPK信号通路有关[49]

4.2.3. 黄酮类

黄芩苷是中草药黄芩中活性最强、含量最高的黄酮类化合物,具有抗炎、抗氧化、调节肠道菌群等功效,应用于治疗糖尿病、非酒精性脂肪肝等代谢性疾病[50]。黄芩苷可激活AMPK表达从而抑制卵巢炎症[50]

4.2.4. 枸杞多糖

枸杞多糖是中草药枸杞中提取出的多糖类成分,可通过减少氧化应激损伤、逆转糖异生、调控GLUT4转位等多种途径保护胰岛β细胞,促进葡萄糖吸收[51]。在卵巢组织中各剂量枸杞多糖均可从蛋白水平上调肝脏激酶B1 (LKB1)、AMPK表达,改善胰岛素抵抗及PCOS大鼠病理结构[52]

4.2.5. 龙血素

龙血素B是从中药复方龙血竭中分离得到的活性成分之一[53]。它具有多种药理作用,包括抗菌、抗炎、增加胰岛素敏感性、降低胰岛素抵抗[54] [55]。在本研究中,我们发现LrB可以上调PCOS-IR大鼠卵巢中GPR120、LKB1和AMPK,下调NLRP3和Caspase-i1,减轻胰岛素抵抗,缓解慢性炎症,改善PCOS-IR大鼠的症状,恢复动情周期,减少囊性卵泡数量,正常化激素水平[56]

5. 总结和展望

局限性

目前中医药治疗干预PCOS的信号通路研究多停留在动物和细胞实验研究阶段,临床研究相对较少,急需加快研究进度。多数信号通路研究仅集中于单一特异性蛋白上,且对于同一种治疗手段仅进行单一的信号通路研究,关于中医药对其他活性蛋白、完整信号通路的作用机制的探索及信号通路之间的交互性研究有待深入挖掘。

PCOS的发病机制比较复杂,和多个信号通路之间的相互作用有关,而AMPK与SIRT1作为调节细胞能量的关键物质,和女性生殖功能的关系十分密切[57]。这两种物质在PCOS相关发病部位(像HPO轴、子宫内膜)的多个病理环节中发挥重要作用,是PCOS病理机制里的两个核心靶点。本文对中药复方及其有效成分通过AMPK或SIRT1相关通路改善PCOS的研究成果进行了系统整理,中医药是我国的伟大宝库,在今后的研究中应积极探究发现中医药治疗PCOS的信号通路及作用靶点,继续深入发掘中医药的巨大潜力,为更深层次的探索及新药研发提供新思路。

NOTES

*通讯作者。

参考文献

[1] Jin, J., Ma, Y., Tong, X., Yang, W., Dai, Y., Pan, Y., et al. (2020) Metformin Inhibits Testosterone-Induced Endoplasmic Reticulum Stress in Ovarian Granulosa Cells via Inactivation of p38 MAPK. Human Reproduction, 35, 1145-1158. [Google Scholar] [CrossRef] [PubMed]
[2] Ebejer, K. and Calleja-Agius, J. (2013) The Role of Cytokines in Polycystic Ovarian Syndrome. Gynecological Endocrinology, 29, 536-540. [Google Scholar] [CrossRef] [PubMed]
[3] 孙淼, 王玉艳, 孟小钰, 等. 基于“肾虚、痰湿、血瘀”的现代生物学基础探讨PCOS中医病机的科学内涵[J]. 时珍国医国药, 2022, 33(6): 1412-1415.
[4] Yan, Y., Zhou, X.E., Xu, H.E. and Melcher, K. (2018) Structure and Physiological Regulation of AMPK. International Journal of Molecular Sciences, 19, Article No. 3534. [Google Scholar] [CrossRef] [PubMed]
[5] Dërmaku-Sopjani, M. and Sopjani, M. (2019) Intracellular Signaling of the AMP-Activated Protein Kinase. In: Advances in Protein Chemistry and Structural Biology, Elsevier, 171-207. [Google Scholar] [CrossRef] [PubMed]
[6] Garcia, D. and Shaw, R.J. (2017) AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 66, 789-800. [Google Scholar] [CrossRef] [PubMed]
[7] Kim, J., Yang, G., Kim, Y., Kim, J. and Ha, J. (2016) AMPK Activators: Mechanisms of Action and Physiological Activities. Experimental & Molecular Medicine, 48, e224-e224. [Google Scholar] [CrossRef] [PubMed]
[8] Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., et al. (2010) AMPK Inhibition in Health and Disease. Critical Reviews in Biochemistry and Molecular Biology, 45, 276-295. [Google Scholar] [CrossRef] [PubMed]
[9] Russell, F.M. and Hardie, D.G. (2020) AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? International Journal of Molecular Sciences, 22, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
[10] Steinberg, G.R. and Hardie, D.G. (2022) New Insights into Activation and Function of the AMPK. Nature Reviews Molecular Cell Biology, 24, 255-272. [Google Scholar] [CrossRef] [PubMed]
[11] Hardie, D.G., Schaffer, B.E. and Brunet, A. (2016) AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends in Cell Biology, 26, 190-201. [Google Scholar] [CrossRef] [PubMed]
[12] Brookens, S.K. and Boothby, M.R. (2021) AMPK Metabolism in the B Lineage Modulates Humoral Responses. Immunometabolism, 3, e210011. [Google Scholar] [CrossRef] [PubMed]
[13] Herzig, S. and Shaw, R.J. (2017) AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135. [Google Scholar] [CrossRef] [PubMed]
[14] Wu, S. and Zou, M. (2020) AMPK, Mitochondrial Function, and Cardiovascular Disease. International Journal of Molecular Sciences, 21, Article No. 4987. [Google Scholar] [CrossRef] [PubMed]
[15] Chuang, H., Chou, C., Kulp, S. and Chen, C. (2014) AMPK as a Potential Anticancer Target—Friend or Foe? Current Pharmaceutical Design, 20, 2607-2618. [Google Scholar] [CrossRef] [PubMed]
[16] Fouqueray, P., Bolze, S., Dubourg, J., Hallakou-Bozec, S., Theurey, P., Grouin, J., et al. (2021) Pharmacodynamic Effects of Direct AMP Kinase Activation in Humans with Insulin Resistance and Non-Alcoholic Fatty Liver Disease: A Phase 1b Study. Cell Reports Medicine, 2, Article ID: 100474. [Google Scholar] [CrossRef] [PubMed]
[17] Hsu, C., Zhang, X., Wang, G., Zhang, W., Cai, Z., Pan, B., et al. (2021) Inositol Serves as a Natural Inhibitor of Mitochondrial Fission by Directly Targeting AMPK. Molecular Cell, 81, 3803-3819.e7. [Google Scholar] [CrossRef] [PubMed]
[18] Alexander, A. and Walker, C.L. (2011) The Role of LKB1 and AMPK in Cellular Responses to Stress and Damage. FEBS Letters, 585, 952-957. [Google Scholar] [CrossRef] [PubMed]
[19] Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., et al. (2020) SIRT1 Is Downregulated by Autophagy in Senescence and Ageing. Nature Cell Biology, 22, 1170-1179. [Google Scholar] [CrossRef] [PubMed]
[20] He, F., Li, Q., Sheng, B., Yang, H. and Jiang, W. (2021) SIRT1 Inhibits Apoptosis by Promoting Autophagic Flux in Human Nucleus Pulposus Cells in the Key Stage of Degeneration via ERK Signal Pathway. BioMed Research International, 2021, Article ID: 8818713. [Google Scholar] [CrossRef] [PubMed]
[21] Huang, Q., Su, H., Qi, B., Wang, Y., Yan, K., Wang, X., et al. (2021) A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. Journal of the American Chemical Society, 143, 1416-1427. [Google Scholar] [CrossRef] [PubMed]
[22] Qiang, L., Lin, H.V., Kim-Muller, J.Y., Welch, C.L., Gu, W. and Accili, D. (2011) Proatherogenic Abnormalities of Lipid Metabolism in Sirt1 Transgenic Mice Are Mediated through Creb Deacetylation. Cell Metabolism, 14, 758-767. [Google Scholar] [CrossRef] [PubMed]
[23] Rada, P., Pardo, V., Mobasher, M.A., García-Martínez, I., Ruiz, L., González-Rodríguez, Á., et al. (2018) SIRT1 Controls Acetaminophen Hepatotoxicity by Modulating Inflammation and Oxidative Stress. Antioxidants & Redox Signaling, 28, 1187-1208. [Google Scholar] [CrossRef] [PubMed]
[24] Liang, D., Zhuo, Y., Guo, Z., He, L., Wang, X., He, Y., et al. (2020) SIRT1/PGC-1 Pathway Activation Triggers Autophagy/Mitophagy and Attenuates Oxidative Damage in Intestinal Epithelial Cells. Biochimie, 170, 10-20. [Google Scholar] [CrossRef] [PubMed]
[25] Carling, D. (2017) AMPK Signalling in Health and Disease. Current Opinion in Cell Biology, 45, 31-37. [Google Scholar] [CrossRef] [PubMed]
[26] Zhao, W., Kruse, J., Tang, Y., Jung, S.Y., Qin, J. and Gu, W. (2008) Negative Regulation of the Deacetylase SIRT1 by Dbc1. Nature, 451, 587-590. [Google Scholar] [CrossRef] [PubMed]
[27] Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., et al. (2008) Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 8, 347-358. [Google Scholar] [CrossRef] [PubMed]
[28] Nin, V., Escande, C., Chini, C.C., Giri, S., Camacho-Pereira, J., Matalonga, J., et al. (2012) Role of Deleted in Breast Cancer 1 (Dbc1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase a and AMP-Activated Protein Kinase. Journal of Biological Chemistry, 287, 23489-23501. [Google Scholar] [CrossRef] [PubMed]
[29] Coyral‐Castel, S., Tosca, L., Ferreira, G., Jeanpierre, E., Rame, C., Lomet, D., et al. (2008) The Effect of AMP‐Activated Kinase Activation on Gonadotrophin‐Releasing Hormone Secretion in GT1‐7 Cells and Its Potential Role in Hypothalamic Regulation of the Oestrous Cyclicity in Rats. Journal of Neuroendocrinology, 20, 335-346. [Google Scholar] [CrossRef] [PubMed]
[30] Tosca, L., Froment, P., Rame, C., McNeilly, J.R., McNeilly, A.S., Maillard, V., et al. (2010) Metformin Decreases Gnrh-and Activin-Induced Gonadotropin Secretion in Rat Pituitary Cells: Potential Involvement of Adenosine 5’ Monophosphate-Activated Protein Kinase (PRKA). Biology of Reproduction, 84, 351-362. [Google Scholar] [CrossRef] [PubMed]
[31] Moriyama, R., Iwamoto, K., Hagiwara, T., Yoshida, S., Kato, T. and Kato, Y. (2020) AMP-Activated Protein Kinase Activation Reduces the Transcriptional Activity of the Murine Luteinizing Hormone Β-Subunit Gene. Journal of Reproduction and Development, 66, 97-104. [Google Scholar] [CrossRef] [PubMed]
[32] Griffiths, R.M., Pru, C.A., Behura, S.K., Cronrath, A.R., McCallum, M.L., Kelp, N.C., et al. (2020) AMPK Is Required for Uterine Receptivity and Normal Responses to Steroid Hormones. Reproduction, 159, 707-717. [Google Scholar] [CrossRef] [PubMed]
[33] Yamamoto, M. and Takahashi, Y. (2018) The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Frontiers in Endocrinology, 9, Article No. 605. [Google Scholar] [CrossRef] [PubMed]
[34] Kolthur-Seetharam, U., Teerds, K., de Rooij, D.G., Wendling, O., McBurney, M., Sassone-Corsi, P., et al. (2009) The Histone Deacetylase SIRT1 Controls Male Fertility in Mice through Regulation of Hypothalamic-Pituitary Gonadotropin Signaling. Biology of Reproduction, 80, 384-391. [Google Scholar] [CrossRef] [PubMed]
[35] Lemieux, M.E., Yang, X., Jardine, K., He, X., Jacobsen, K.X., Staines, W.A., et al. (2005) The Sirt1 Deacetylase Modulates the Insulin-Like Growth Factor Signaling Pathway in Mammals. Mechanisms of Ageing and Development, 126, 1097-1105. [Google Scholar] [CrossRef] [PubMed]
[36] Tatone, C., Di Emidio, G., Vitti, M., Di Carlo, M., Santini, S., D’Alessandro, A.M., et al. (2015) Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 659687. [Google Scholar] [CrossRef] [PubMed]
[37] Mihanfar, A., Nouri, M., Roshangar, L. and Khadem-Ansari, M.H. (2021) Therapeutic Potential of Quercetin in an Animal Model of PCOS: Possible Involvement of AMPK/SIRT-1 Axis. European Journal of Pharmacology, 900, Article ID: 174062. [Google Scholar] [CrossRef] [PubMed]
[38] Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019) Sirt1 Promotes Autophagy and Inhibits Apoptosis to Protect Cardiomyocytes from Hypoxic Stress. International Journal of Molecular Medicine, 43, 2033-2043. [Google Scholar] [CrossRef] [PubMed]
[39] 陈苗, 马会明, 陈冬梅, 等. 基于AMPK/SIRT1/SIRT3信号通路探讨健脾益肾化浊方治疗多囊卵巢综合征大鼠的机制[J]. 中华中医药杂志, 2024, 39(10): 5452-5456.
[40] 董双千, 汤怡倩, 徐浩田, 等. 启宫丸对多囊卵巢综合征-胰岛素抵抗大鼠AdipoR/AMPK信号通路的影响[J]. 中成药, 2025, 47(2): 584-589.
[41] 钟旭, 曹睿, 蒋洪梅, 等. 金匮肾气丸对多囊卵巢综合征患者内分泌代谢的影响[J]. 世界中医药, 2018, 13(10): 2492-2495, 2499.
[42] 刘仙菊, 胡方林. 金匮肾气丸对2型糖尿病模型大鼠脂肪代谢及胰岛素抵抗的影响[J]. 中医药导报, 2011, 17(11): 22-25.
[43] 黄苏萍, 康文倩, 刘永进, 等. 丹瓜方对糖尿病大鼠肝脏LKB1、AMPK及SIRT1表达的影响[J]. 中华中医药杂志, 2019, 34(9): 4003-4007.
[44] 马丽亚, 杜婧雯, 张童, 等. 金匮肾气丸对多囊卵巢综合征模型大鼠的改善作用及机制研究[J]. 中国药房, 2022, 33(23): 2869-2873.
[45] 冀凡, 司振民, 刘承东, 等. 黄酮类中药单体对多囊卵巢综合征信号通路的调控作用[J]. 世界中医药, 2024, 19(23): 3709-3717.
[46] Zhang, Y., Huang, J., Sun, M., Duan, Y., Wang, L., Yu, N., et al. (2023) Preparation, Characterization, Antioxidant and Antianemia Activities of Poria cocos Polysaccharide Iron (III) Complex. Heliyon, 9, e12819. [Google Scholar] [CrossRef] [PubMed]
[47] 李乔, 张博. 茯苓多糖对2型糖尿病大鼠丝裂原激活的蛋白激酶通路及胰岛素抵抗的影响[J]. 安徽医药, 2022, 26(12): 2379-2382.
[48] Wang, J., Zheng, D., Huang, F., Zhao, A., Kuang, J., Ren, Z., et al. (2022) Theabrownin and Poria cocos Polysaccharide Improve Lipid Metabolism via Modulation of Bile Acid and Fatty Acid Metabolism. Frontiers in Pharmacology, 13, Article ID: 875549. [Google Scholar] [CrossRef] [PubMed]
[49] 瞿谆, 马惠荣, 冯丹, 等. 茯苓多糖调节SIRT1/AMPK信号通路对多囊卵巢综合征大鼠卵巢功能的影响[J]. 中国优生与遗传杂志, 2024, 32(6): 1144-1148.
[50] Wang, W., Zheng, J., Cui, N., Jiang, L., Zhou, H., Zhang, D., et al. (2019) Baicalin Ameliorates Polycystic Ovary Syndrome through Amp-Activated Protein Kinase. Journal of Ovarian Research, 12, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
[51] 孟姣, 吕振宇, 孙传鑫, 等. 枸杞多糖药理作用研究进展[J]. 时珍国医国药, 2018, 29(10): 2489-2493.
[52] 刘军, 周玲, 盛燕, 等. 枸杞多糖对胰岛素抵抗型多囊卵巢综合征大鼠的改善作用及 LKB1/AMPK 通路的调节作用研究[J]. 中国优生与遗传杂志, 2022, 30(4): 587-591.
[53] Wu, C., Cai, X., Chang, Y., Chen, C., Ho, T., Lai, S., et al. (2019) Rapid Identification of Dragon Blood Samples from Daemonorops draco, Dracaena cinnabari and Dracaena cochinchinensis by MALDI‐TOF Mass Spectrometry. Phytochemical Analysis, 30, 720-726. [Google Scholar] [CrossRef] [PubMed]
[54] Fan, J., Yi, T., Sze-To, C., Zhu, L., Peng, W., Zhang, Y., et al. (2014) A Systematic Review of the Botanical, Phytochemical and Pharmacological Profile of Dracaena cochinchinensis, a Plant Source of the Ethnomedicine “Dragon’s Blood”. Molecules, 19, 10650-10669. [Google Scholar] [CrossRef] [PubMed]
[55] Fang, H., Ding, Y., Xia, S., Chen, Q. and Niu, B. (2022) Loureirin B Promotes Insulin Secretion through GLP-1R and AKT/PDX1 Pathways. European Journal of Pharmacology, 936, Article ID: 175377. [Google Scholar] [CrossRef] [PubMed]
[56] Wang, J., Huang, Z., Cao, Z., Luo, Y., Liu, Y., Cao, H., et al. (2024) Loureirin B Reduces Insulin Resistance and Chronic Inflammation in a Rat Model of Polycystic Ovary Syndrome by Upregulating GPR120 and Activating the LKB1/AMPK Signaling Pathway. International Journal of Molecular Sciences, 25, Article No. 11146. [Google Scholar] [CrossRef] [PubMed]
[57] Estienne, A., Bongrani, A., Ramé, C., Kurowska, P., Błaszczyk, K., Rak, A., et al. (2021) Energy Sensors and Reproductive Hypothalamo-Pituitary Ovarian Axis (HPO) in Female Mammals: Role of mTOR (Mammalian Target of Rapamycin), AMPK (AMP-Activated Protein Kinase) and SIRT1 (Sirtuin 1). Molecular and Cellular Endocrinology, 521, Article ID: 111113. [Google Scholar] [CrossRef] [PubMed]