|
[1]
|
Bruserud, Ø., Mosevoll, K.A., Bruserud, Ø., Reikvam, H. and Wendelbo, Ø. (2023) The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells, 12, Article 1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Liu, S., Yang, T., Jiang, Q., Zhang, L., Shi, X., Liu, X., et al. (2024) Lactate and Lactylation in Sepsis: A Comprehensive Review. Journal of Inflammation Research, 17, 4405-4417. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, T., Huang, X., Li, L., Li, Y., Liu, Y., Shi, X., et al. (2025) Lactylation of HADHA Promotes Sepsis-Induced Myocardial Depression. Circulation Research, 137, e65-e87. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Terpe, P., Ruhs, S., Dubourg, V., Bucher, M. and Gekle, M. (2024) The Synergism of Cytosolic Acidosis and Reduced NAD+/NADH Ratio Is Responsible for Lactic Acidosis-Induced Vascular Smooth Muscle Cell Impairment in Sepsis. Journal of Biomedical Science, 31, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sun, Z., Song, Y., Li, J., Li, Y., Yu, Y. and Wang, X. (2023) Potential Biomarker for Diagnosis and Therapy of Sepsis: Lactylation. Immunity, Inflammation and Disease, 11, e1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, J., Wu, D., Zeng, F., Gu, H., Li, C., Cata, J.P., et al. (2025) Lactate Metabolic Reprogramming and Histone Lactylation Modification in Sepsis. International Journal of Biological Sciences, 21, 5034-5055. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, T., Chen, L., Kueth, G., Shao, E., Wang, X., Ha, T., et al. (2024) Lactate’s Impact on Immune Cells in Sepsis: Unraveling the Complex Interplay. Frontiers in Immunology, 15, Article ID: 1483400. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, Y., Hu, H., Wang, C., Wu, J., Zan, J. and Liu, Y. (2025) Epigenetic Modulation by Lactylation in Sepsis: Linking Metabolism to Immune Dysfunction. Journal of Inflammation Research, 18, 7357-7367. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guo, Y., Chu, L., Shui, W., Hu, H., Hao, L., Wang, D., et al. (2025) Histone Lactylation in Immune Cells and Its Predictive Role in Sepsis Progression: A Prospective Observational Study. Shock. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., Wei, A., Su, Z., Shi, Y., Li, X. and He, L. (2025) Characterization of Lactylation-Based Phenotypes and Molecular Biomarkers in Sepsis-Associated Acute Respiratory Distress Syndrome. Scientific Reports, 15, Article No. 13831. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, C., He, M., Shi, P., Yao, L., Fang, X., Li, X., et al. (2025) A Novel, Rapid, and Practical Prognostic Model for Sepsis Patients Based on Dysregulated Immune Cell Lactylation. Frontiers in Immunology, 16, Article ID: 1625311. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Qiao, J., Tan, Y., Liu, H., Yang, B., Zhang, Q., Liu, Q., et al. (2024) Histone H3K18 and Ezrin Lactylation Promote Renal Dysfunction in Sepsis‐Associated Acute Kidney Injury. Advanced Science, 11, Article 2307216. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wu, D., Spencer, C.B., Ortoga, L., Zhang, H. and Miao, C. (2024) Histone Lactylation-Regulated METTL3 Promotes Ferroptosis via M6a-Modification on ACSL4 in Sepsis-Associated Lung Injury. Redox Biology, 74, Article 103194. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tang, F., Xiao, D., Li, X. and Qiao, L. (2024) The Roles of Lactate and the Interplay with M6a Modification in Diseases. Cell Biology and Toxicology, 40, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Raychaudhuri, D., Singh, P., Hennessey, M., et al. (2023) Histone Lactylation Drives CD8 T Cell Metabolism and Function. Cold Spring Harbor Laboratory.
|
|
[16]
|
Raychaudhuri, D., Singh, P., Chakraborty, B., Hennessey, M., Tannir, A.J., Byregowda, S., et al. (2024) Histone Lactylation Drives CD8+ T Cell Metabolism and Function. Nature Immunology, 25, 2140-2151. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, C., Xue, L., Lin, X., Shen, Y. and Wang, X. (2024) Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression. DNA and Cell Biology, 43, 605-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhou, X., Liu, D., Su, L., Yao, B., Long, Y., Wang, X., et al. (2017) Use of Stepwise Lactate Kinetics-Oriented Hemodynamic Therapy Could Improve the Clinical Outcomes of Patients with Sepsis-Associated Hyperlactatemia. Critical Care, 21, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Budidha, K., Mamouei, M., Baishya, N., Qassem, M., Vadgama, P. and Kyriacou, P.A. (2020) Identification and Quantitative Determination of Lactate Using Optical Spectroscopy—Towards a Noninvasive Tool for Early Recognition of Sepsis. Sensors, 20, Article 5402. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, S., Shen, Y., Wang, C., Yang, J., Chen, M. and Hu, Y. (2024) Exploring the Prognostic and Diagnostic Value of Lactylation-Related Genes in Sepsis. Scientific Reports, 14, Article No. 23130. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, M., Gu, L., Zhang, Y., Li, Y., Zhang, L., Xin, Y., et al. (2024) LKB1 Inhibits Telomerase Activity Resulting in Cellular Senescence through Histone Lactylation in Lung Adenocarcinoma. Cancer Letters, 595, Article 217025. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tian, Q., Li, J., Wu, B., Pang, Y., He, W., Xiao, Q., et al. (2025) APP Lysine 612 Lactylation Ameliorates Amyloid Pathology and Memory Decline in Alzheimer’s Disease. Journal of Clinical Investigation, 135, e184656. [Google Scholar] [CrossRef] [PubMed]
|