ARDS血清细胞因子与病情严重程度及炎性衰老的相关性研究
Study on the Correlation between Serum Cytokines in ARDS and Disease Severity as Well as Inflammaging
DOI: 10.12677/acm.2025.15113197, PDF, HTML, XML,    科研立项经费支持
作者: 罗 琳:绍兴文理学院医学院,浙江 绍兴;严一核*:绍兴文理学院附属第一医院(绍兴市人民医院)重症医学科,浙江 绍兴
关键词: 急性呼吸窘迫综合征(ARDS)炎性衰老生物标记物C反应蛋白白介素-6Acute Respiratory Distress Syndrome (ARDS) Inflammaging Biomarkers C-Reactive Protein Interleukin-6
摘要: 目的:探讨急性呼吸窘迫综合征(ARDS)老年患者血清细胞因子表达水平与ARDS病情严重程度及炎性衰老标志物C反应蛋白(CRP)的相关性分析。方法:回顾性选取2023年8月至2025年3月在绍兴市人民医院重症监护室收住的152例ARDS老年患者为研究对象,比较不同病情严重程度下白介素-6 (IL-6)、白介素-10 (IL-10)、血清肿瘤坏死因子-α (TNF-α)、干扰素-γ (IFN-γ)表达水平,另收集入组的ARDS老年患者出院后在我院随访的炎性衰老标志物CRP值和同期于我院健康体检的160例非ARDS的健康老年人CRP值,应用倾向性评分匹配法对组间混杂因素进行校正,比较两组血清CRP水平差异。并进一步分析细胞因子表达水平与炎性衰老标志物CRP的相关性。结果:病情严重程度越高的ARDS老年患者IL-6、TNF-α、干扰素γ均值越高,而IL-10表达水平随病情严重程度加重而降低。ARDS老年幸存者CRP水平较非ARDS的健康老年人显著升高,差异有统计学意义(P < 0.05)。Spearman相关分析发现,炎性衰老标志物CRP表达水平与IL-6、TNF-α、干扰素γ均呈正相关(r = 0.4896, 0.6307, 0.5352, P < 0.001),与IL-10未见显著相关性(r = 0.1904, P = 0.2391)。结论:急性呼吸窘迫综合征老年患者的IL-6、TNF-α、干扰素γ的过度表达与病情严重程度、炎性衰老标志物CRP水平均呈正相关。ARDS可能通过细胞因子过度表达导致炎性衰老,可能是ARDS患者病情加重及不良预后的重要机制,密切监测指标变化,可为病情严重程度及预后评估提供一定依据。
Abstract: Objective: To investigate the correlation between serum cytokine levels and disease severity as well as the inflammaging biomarker C-reactive protein (CRP) in elderly patients with Acute Respiratory Distress Syndrome (ARDS). Methods: A retrospective study was conducted on 152 elderly ARDS patients admitted to the ICU of Shaoxing People’s Hospital between August 2023 and March 2025. The expression levels of interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were compared across different levels of disease severity. Additionally, follow-up CRP values (the inflammaging biomarker) from the enrolled elderly ARDS patients after discharge were collected, along with CRP values from 160 non-ARDS healthy elderly individuals who underwent health checkups at our hospital during the same period. Propensity score matching was applied to adjust for confounding factors between the groups, and serum CRP levels were compared. Furthermore, the correlation between cytokine expression levels and the inflammaging biomarker CRP was analyzed. Results: Elderly ARDS patients with higher disease severity exhibited higher mean levels of IL-6, TNF-α, and IFN-γ, while IL-10 expression decreased with increasing severity. CRP levels were significantly elevated in elderly ARDS survivors compared to the non-ARDS healthy elderly controls, and the difference was statistically significant (P < 0.05). Spearman correlation analysis revealed that CRP levels were positively correlated with IL-6 (r = 0.4896), TNF-α (r = 0.6307), and IFN-γ (r = 0.5352) (all P < 0.001), but no significant correlation was found with IL-10 (r = 0.1904, P = 0.2391). Conclusions: In elderly patients with ARDS, the overexpression of IL-6, TNF-α, and IFN-γ is positively correlated with both disease severity and the level of the inflammaging biomarker CRP. ARDS may contribute to inflammaging through cytokine overexpression, which could be a significant mechanism underlying disease progression and poor prognosis. Close monitoring of these indicators may provide a basis for assessing disease severity and prognosis.
文章引用:罗琳, 严一核. ARDS血清细胞因子与病情严重程度及炎性衰老的相关性研究[J]. 临床医学进展, 2025, 15(11): 1108-1116. https://doi.org/10.12677/acm.2025.15113197

1. 引言

急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS)是指一种发病因素复杂,临床表现为呼吸衰竭和难以纠正的低氧血症的一组临床综合征。该病发病急、预后差、并且致死率高,是ICU患者死亡的主要原因之一。老年患者因高龄、较高炎症水平及合并更多呼吸系统基础疾病等危险因素,更容易发生ARDS并发症、休克及死亡[1]。离开ICU 5年后,从ARDS中康复的患者有长期的身心后遗症,包括运动受限和身体生活质量下降[2]。尽管过去几十年中,预期寿命显着增加,但老年人在生命的最后几年往往伴随着合并症、残疾和依赖,这些问题恶化了生活质量,影响长期健康状态,研究发现以慢性、进行性升高的细胞因子为主要特征的炎性衰老在导致长期不良预后上发挥重要作用[3]。过度分泌的促炎细胞因子影响ARDS的发生、进展及预后,因此探索相关细胞因子影响ARDS患者的长期健康状态的潜在机制及进行早期评估有重要的临床意义,并为可能减少ARDS长期影响的早期干预做好准备。本研究以我院病例资源为研究对象,对比老年ARDS患者病情严重程度与细胞因子(IL-6、IL-10、TNF-α、干扰素γ)表达水平的相关性、比较ARDS老年幸存者和非ARDS的健康老年人的炎性衰老标志物CRP (C-reactive protein, CRP)水平差异,并进一步分析相关细胞因子与炎性衰老的关系。

2. 资料与方法

2.1. 一般资料和分组

选取2023年8月至2025年3月绍兴市人民医院重症监护室收住的152例ARDS老年患者,纳入标准:① ARDS诊断标准参照《急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006)》[4];② 年龄大于60岁;③病例资料和随访资料完整;④ 病人及家属签署知情同意书。排除标准:① 可用心力衰竭或体液超负荷解释的呼吸衰竭;② 入院后存活时间 < 48 h者;③ 长期服用激素及免疫抑制剂类药物。

分组:(1) 根据老年ARDS患者氧合指数(PaO2/FiO2)分为轻度组、中度组、重度组[4],比较组间细胞因子(IL-6、IL-10、TNF-α、干扰素γ)表达水平。(2) 另收集同期于我院健康体检的年龄大于60岁的160例老年人为对照组,由于衰老相关疾病(ARDs)与炎性衰老密切相关[5],对两组患者心血管疾病、糖尿病、高脂血症等疾病通过倾向性评分匹配(propensity score matching, PSM)法进行基线匹配,排除相关混杂因素后,比较两组血清CRP水平差异。

2.2. 数据收集

本研究是一项回顾性研究,收集本院在设定时间段内入组的ARDS患者和非ARDS的健康老年人的相关资料。(1) 完成病史采集,记录患者的姓名、性别、年龄、病历号、基础疾病史(心脑血管事件、糖尿病、冠心病、高脂血症等)。(2) 同步记录患者的呼吸机参数(吸氧浓度)、血气分析指标(PaO2)和生物标记物(IL-6、IL-10、TNF-α、干扰素γ)等,并计算患者的氧合指数。(3) 在ARDS老年患者出院后3个月 ± 2周进行随访,随访方式包括门诊复查、电话访谈及查阅住院记录。收集ARDS老年幸存者CRP水平,排除标准:① 白细胞计数 > 10 × 109/L;② 接受激素及免疫抑制剂类药物治疗。收集在本院健康体检中心的非ARDS的健康老年人基线资料及血清CRP检测结果,排除标准:① 有明确的ARDS病史;② 体检前4周内有急性感染、外科手术、创伤或其他需要医疗干预的急性炎症性疾病史;③ 白细胞计数 > 10 × 109/L;④ 接受激素及免疫抑制剂类药物治疗。本研究获得绍兴市人民医院学术伦理委员会批准(审批号2020-K-Y-302-01)。

2.3. 数据处理

采用SPSS 25.0软件对本研究的数据进行处理。对连续变量进行正态分布检验,符合正态分布的计量资料以x ± s表示,多组间比较采用单因素方差分析,两两比较采用LSD检验;不符合正态分布的计量资料以M (P25, P75)表示,通过Mann-Whitney U检验对组间差异进行检验;多组间采用Kruskal-wallis H检验,两两比较采用Bonferroni校正法;分类变量采用频数及百分比表示,分类变量采用卡方检验或Fisher精确检验对组间差异进行检验。ARDS老年幸存者CRP与IL-6、IL-10、TNF-α、干扰素γ表达水平相关性采用Spearman分析法。对于ARDS老年幸存者和非ARDS的健康老年人两组间存在统计学差异的因素,采用PSM法进行矫正。PSM法进行矫正时,设置匹配容差为0.02,1:1无放回匹配。P < 0.05为差异有统计学意义。

3. 结果

3.1. 轻度组、中度组、重度组临床特征及一般参数比较

轻度ARDS患者60人,中度ARDS患者46人,重度患者46人。三组患者的年龄、性别和基础疾病等资料,差异均无统计学意义(p > 0.05)。中重度组IL-6、TNF-α、干扰素γ表达水平均高于轻度组,且IL-6、TNF-α表达水平在重度组较中度组明显升高,差异均有统计学意义(P < 0.001)。结果显示随着ARDS疾病严重程度加重,IL-10表达水平逐渐降低,重度组IL-10表达水平低于轻度组,差异有统计学意义(P = 0.016)。见表1表2

Table 1. Comparison of baseline characteristics among elderly ARDS patients stratified by disease severity

1. 不同病情严重程度的ARDS老年患者基础资料比较

组别

n

性别(例)

年龄(岁,x ± s)

基础疾病(例)

糖尿病

冠心病

高脂血症

脑卒中

轻度组

60

32

28

74.23 ± 8.01

23

13

8

13

中度组

46

27

19

77.50 ± 9.03

17

15

3

18

重度组

46

29

18

75.85 ± 7.00

13

6

2

12

F/χ2

0.793

2.151

1.416

5.098

3.036

4.072

P值

0.673

0.120

0.493

0.078

0.219

0.131

Table 2. Comparison of serum levels of IL-6, IL-10, TNF-α, and IFN-γ among elderly patients with ARDS in the mild, moderate, and severe groups [M (P25, P75)]

2. 轻度组、中度组、重度组老年ARDS患者IL-6、IL-10、TNF-α、INF-γ表达水平比较[M (P25, P75)]

组别

n

IL-6 (pg/ml)

IL-10 (pg/ml)

TNF-α (pg/ml)

INF-γ (pg/ml)

轻度组

60

15.39 (8.12, 23.78)

10.96 (5.05, 15.57)

1.29 (0.73, 1.87)

4.14 (2.73, 4.98)

中度组

46

47.62 (29.01, 53.62)1

8.30 (6.17, 13.00)

2.92 (1.34, 6.69)1

10.23 (4.26, 18.53)1

重度组

46

122.64 (82.49, 140.48)12

7.81 (4.74, 8.32)1

13.26 (6.29, 13.26)12

18.53 (6.50, 19.45)1

H值

91.558

8.279

59.179

47.163

P值

<0.001

0.016

<0.001

<0.001

注:1与轻度组相比,P < 0.05,2与中度组相比,P < 0.05。

3.2. PSM后ARDS老年幸存者和非ARDS的健康老年人炎性衰老标志物CRP水平比较

本研究共纳入40例ARDS老年幸存者和160例非ARDS的健康老年人。两组老人在性别、吸烟史、饮酒史、是否参与运动等方面无显著差异。在合并衰老相关疾病(ARDs)方面,ARDS老年幸存者合并有糖尿病、脑卒中、心衰[32.5% (13/40)对13.8% (22/160)、32.5% (13/40)对11.3% (18/160)、22.5% (9/40)对9.4% (15/160), P < 0.05]比例显著高于非ARDS的健康老年人组,见表3。采用PSM法平衡组间混杂变量分布后,共匹配出30对患者,通过非参数Mann-Whitney U检验秩和检验比较两组患者炎性衰老标志物CRP水平组间差异,结果发现ARDS老年幸存者CRP水平的中位数(P25, P75)为2.10 (1.18, 5.47),非ARDS的健康老年人炎性衰老标志物CRP水平的中位数(P25, P75)为0.99 (0.50, 1.63),ARDS老年幸存者炎性衰老标志物CRP水平较非ARDS的健康老年人显著升高,差异有统计学意义(P < 0.001)。见表4

Table 3. Baseline characteristics of elderly ARDS survivors and healthy controls before and after propensity score matching [n (%)]

3. 基于倾向性评分匹配前和匹配后ARDS老年幸存者和非ARDS的健康老年人的基线特征[(n%)]

Variables

Before Matching

After Matching

ARDS Survivors

(n = 40)

Healthy Controls

(n = 160)

χ2

p

ARDS Survivors

(n = 30)

Healthy Controls

(n = 30)

χ2

p

Male

21 (52.5)

80 (50.0)

0.080

0.777

15 (50.0)

16 (53.3)

0.067

0.796

Diabetes Mellitus

13 (32.5)

22 (13.8)

7.792

0.005

9 (30.0)

7 (23.3)

0.341

0.559

CAD

8 (20.0)

19 (11.9)

1.809

0.179

4 (13.3)

3 (10.0)

0.162

0.688

HTN

7 (17.5)

26 (16.3)

0.036

0.849

6 (20.0)

9 (30.0)

0.800

0.371

Hyperlipidemia

4 (10.0)

27 (16.9)

1.155

0.283

3 (10.0)

5 (16.7)

0.577

0.448

Stroke

13 (32.5)

18 (11.3)

11.033

0.001

5 (16.7)

7 (23.3)

0.417

0.519

HF

9 (22.5)

15 (9.4)

5.220

0.022

4 (13.3)

5 (16.7)

0.131

0.718

Cancer

7 (17.5)

12 (7.5)

3.722

0.054

3 (10.0)

4 (13.3)

0.162

0.688

Smoking

6 (15.0)

26 (16.3)

0.037

0.847

4 (13.3)

3 (10.0)

0.162

0.688

Drinking

10 (25.0)

31 (19.4)

0.621

0.431

7 (23.3)

7 (23.3)

0

1.000

Physical Activity

8 (20.0)

30 (18.8)

0.032

0.857

7 (23.3)

9 (30.0)

0.341

0.559

All data are n (%).

Table 4. CRP levels in elderly ARDS Survivors vs. healthy controls

4. ARDS老年幸存者和非ARDS的健康老年人CRP水平比较

Parameter

ARDS Survivors

(n = 30)

Healthy Controls

(n = 30)

Z值

P

CRP

0.99 (0.50, 1.63)

2.10 (1.18, 5.47)

3.504

<0.001

3.3. 炎性衰老标志物CRP与IL-6、IL-10、TNF-α、干扰素γ表达水平的相关性比较

对成功完成随访的40例ARDS老年幸存者的CRP水平与急性期细胞因子表达水平进行相关性分析,Spearman相关性分析结果显示,ARDS患者炎性衰老标志物CRP水平与IL-6 (r = 0.4896, 95% CI [0.2010, 0.7000], P = 0.0013)、干扰素γ (r = 0.5352, 95% CI [0.2595, 0.7302], P = 0.0004)呈中度正相关关系,CRP水平与TNF-α (r = 0.6307, 95% CI [0.3892, 0.7911], P < 0.0001)呈强正相关关系。CRP水平与IL-10表达水平未见显著相关性(r = 0.1904, 95% CI [−0.1381, 0.4812], P = 0.2391),见图1

Figure 1. Correlations of the inflamm-aging biomarker CRP with levels of IL-6, IL-10, TNF-α, and IFN-γ

1. 炎性衰老标志物CRP与IL-6、IL-10、TNF-α、INF-γ表达水平的相关性

4. 讨论

急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS)是一个全球性的健康问题,发病率和死亡率均很高,其特征是双侧肺浸润的严重肺泡损伤引起的低氧血症[6]。ARDS 的发病机制可归因于对肺部的直接和间接损伤,直接损伤包括感染性肺炎、误吸胃内容物和严重创伤,间接损伤是由肺外因素导致全身炎症反应引起的,例如非肺部感染、非胸部创伤、胰腺炎、严重烧伤、血制品输注引起的脓毒症[7]。这些因素经常诱发细胞因子高表达,导致机体促炎与抗炎反应失衡,对毛细血管内皮细胞和肺泡上皮细胞造成损害,并通过血液影响全身脏器功能[8]。同时ARDS幸存者会遭受长期的后遗症影响,表现出漫长的恢复期,大约10%的患者需要1个月以上的机械通气和并发肌肉无力、身体能力下降以及危重疾病引起的心理影响等问题[9],这种情况的严重性凸显了早期对ARDS长期健康状态进行评估的巨大重要性和实用价值。

细胞因子风暴(cytokine storm, CS)概念的源自于对器官移植排斥产生炎症爆发的描述,当机体受到外界病毒或细菌等病原体刺激后发生的全身性过度免疫反应[10] [11],导致干扰素(INF)、白细胞介素(IL)、肿瘤坏死因子(TNF)及趋化因子在体内释放失衡。促炎因子过度释放并在感染部位累积,引起免疫系统对自身组织、器官的攻击,增加血管通透性、血管麻痹、低血容量性休克[12],造成ARDS甚至死亡[13]。细胞因子的过度表达是ARDS病程进展及不良预后的关键病理生理机制,该机制在老年患者中更为显著[14]。本研究结果显示,ARDS老年患者血清IL-6、TNF-α、干扰素γ表达水平与疾病严重程度呈正相关,这在一定程度上与上述结果一致。而IL-10是一种细胞因子合成抑制因子,IL-10与受体结合后可抑制细胞因子、趋化因子及细胞表面分子等炎性介质的转录表达,从而抑制炎症细胞的活化、迁移和聚集,抑制炎性反应[15]。在本研究中随着ARDS老年患者病情越严重,IL-10表达水平越低,当其表达水平显著下降时往往预示高炎症反应和更差的预后[16]

由于持续的组织损伤、环境压力、不健康的生活方式以及社会和心理压力导致的全身性、持续性慢性炎症定义为炎性衰老[17]。而炎性衰老可能是导致ARDS长期不良健康状态的重要潜在机制,炎性衰老与许多年龄相关的慢性病有关,如胰岛素抵抗、糖尿病[18]、脑血管病(cerebrovascular disease, CVD) [19]、高脂血症[20]、心衰[21]、脑卒中[22]、癌症[23]等,这些疾病的特征都是衰老细胞的积累[24]-[27]。炎性衰老导致年龄相关疾病的发病率增加和恶化[28]-[30],临床特征是炎性血清生物标志物水平较高,包括IL-6、INF-γ、TNF-α以及C反应蛋白等[19] [31]-[33]。多项研究表明,老年人的基础CRP水平显著高于青年人。本研究结果与Helle Brüünsgaard研究结论相似[34],但是ARDS高细胞因子水平是否会加速炎性衰老进程目前并不明确。CRP表达水平随年龄增加而显著增加,分析其原因可能是随年龄增加而ARDs发生率增高,慢性疾病导致免疫的慢性损伤和失衡,表现为CRP表达升高,本研究用PSM法平衡组间ARDs发病率等混杂变量的分布后,比较ARDS老年幸存者与非ARDS的健康老年人的血清CRP水平发现,ARDS老年幸存者炎性衰老标志物CRP水平较非ARDS的健康老年人显著升高,这背后的机制可能是高表达的细胞因子促进炎性衰老进程。有证据表明,从ARDS、SARS、细胞因子风暴综合征等严重感染后会出现长期不良后遗症[32] [35],然而这种急性事件引发长期功能下降过程的机制仍不清楚。在进一步分析ARDS老年患者IL-6、IL-10、TNF-α、干扰素γ与炎性衰老指标CRP的相关性,发现IL-6、TNF-α、干扰素γ与CRP呈现良好线性关系。但在本研究有限的样本量下,未发现CRP与IL-10之间存在统计学上显著的相关性,但这二者间的潜在关系仍需在更大规模的研究中进一步探讨。促炎细胞因子的高表达是“炎症衰老”和ARDS细胞因子风暴共同的关键因素,共同的风险因素表明,导致ARDS的高死亡率及不良预后的背后机制之一可能是炎性衰老。提示高表达的细胞因子促进炎性衰老指标物水平升高,这几种细胞因子可作为ARDS老年患者预后结局的评估指标。已知IL-6是诱导肝脏中CRP产生的最核心、最直接的信号,并通过相关信号通路启动开关,这一机制并不只在疾病炎性期发挥作用,在慢性炎症状态下也是不可忽视的要素。此外,不仅正如预期的那样,本研究中老年受试者的IL-6和CRP水平相关,同时TNF-α、干扰素γ等细胞因子对CRP浓度升高也是危险因素。但是本研究下细胞因子与CRP浓度之间缺乏完全对应关系的一个合理解释是,CRP的产生受到其他细胞因子的影响,例如IL-1和IL-17 [36],而本研究中没有测量这些细胞因子。ARDS幸存者较非ARDS的健康老年人CRP表达水平显著升高,对这种现象最可能的解释是,衰老的表型不仅取决于是否合并ARDs,也取决于炎症与抗炎之间的平衡。此外,这种平衡的效果可能会因其他条件而改变,例如饮食、体脂含量、体力活动水平、吸烟和其他疾病危险因素等[37],但本研究未对入组患者做进一步背景调查。

综上所述ARDS高水平细胞因子不仅在急性期与病情恶化相关,还有可能在促进炎性老化机制上影响长期健康状态。目前细胞因子在许多疾病,尤其针对急性重症疾病不良预后(如住院28 d死亡率[38]、病情严重程度及是否更容易合并并发症[39] [40]等方面)的预测上发挥重要作用,但是对细胞因子如何导致在急性事件(如COVID-19大流行)后幸存的老年人长期的生理和心理后遗症、运动限制和身体生活质量下降研究较少。本研究通过对ARDS中康复的老年人进行回访及检测炎性衰老指标,分析其与促炎细胞因子的相关性,将为ARDS后幸存者评估因加速衰老发生再次感染、残疾和虚弱等后果提供新的预测思路。

然而,这项研究有几个局限性。首先本研究为单中心回顾性小样本,期待多中心大样本数据补充加以验证。其次,仅依赖CRP作为炎性衰老标志物,未结合其他指标(如IL-1β、IL-8、SASP成分等)评估衰老程度,可建立相应生物样本数据库作为ARDS后幸存者进行纵向随访的基础。另一个局限性是,对于ARDS幸存者缺乏ARDs新发病率数据,使我们无法确定炎性衰老标志物CRP水平是否以及在多大程度上可以解释ARDS幸存者衰老相关疾病的新发病例之间的关联。

5. 结论

根据临床实验分析,分析不同严重程度的ARDS老年患者细胞因子表达水平,发现严重程度越高的ARDS老年患者,促炎细胞因子(IL-6、TNF-α、干扰素γ)表达水平越高,而L-10作为抑炎细胞因子表达水平与病情严重程度呈负相关。经历过ARDS的老年患者炎性衰老标志物CRP水平较非炎症急性期的健康老年人及中青年人显著增高,进一步分析衰老标志物CRP与IL-6、IL-10、TNF-α、干扰素γ表达水平的相关性,发现IL-6、TNF-α、干扰素γ的表达和炎性衰老标志物表达水平呈正相关。提示高细胞因子水平是促进炎性衰老的危险因素,使炎性衰老标志物CRP水平显著升高,进而加速患者衰老进程。通过深入了解炎性衰老机制与ARDS长期健康状态间的联系,密切监测炎性、免疫指标变化,建立相关数据库及预测模型,可为病情严重程度、长期健康预后评估提供一定依据。

项目基金

SCNN1B基因介导肺成纤维细胞蛋白参与急性呼吸窘迫综合征的发病机制(NO.2021KY364)。

NOTES

*通讯作者。

参考文献

[1] 宋开心, 颜奇, 左培媛, 等. 武汉地区老年新型冠状病毒肺炎临床特征及危险因素分析[J]. 内科急危重症杂志, 2025, 31(1): 36-39+44.
[2] Herridge, M.S., Tansey, C.M., Matté, A., Tomlinson, G., Diaz-Granados, N., Cooper, A., et al. (2011) Functional Disability 5 Years after Acute Respiratory Distress Syndrome. New England Journal of Medicine, 364, 1293-1304. [Google Scholar] [CrossRef] [PubMed]
[3] Alberro, A., Iribarren-Lopez, A., Sáenz-Cuesta, M., Matheu, A., Vergara, I. and Otaegui, D. (2021) Inflammaging Markers Characteristic of Advanced Age Show Similar Levels with Frailty and Dependency. Scientific Reports, 11, Article No. 4358. [Google Scholar] [CrossRef] [PubMed]
[4] 中华医学会重症医学分会. 急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006) [J]. 中国实用外科杂志, 2007, 27(1): 1-6.
[5] Franceschi, C., Garagnani, P., Morsiani, C., Conte, M., Santoro, A., Grignolio, A., et al. (2018) The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Frontiers in Medicine, 5, Article ID: 61. [Google Scholar] [CrossRef] [PubMed]
[6] Matthay, M.A., Zemans, R.L., Zimmerman, G.A., Arabi, Y.M., Beitler, J.R., Mercat, A., et al. (2019) Acute Respiratory Distress Syndrome. Nature Reviews Disease Primers, 5, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
[7] Long, M.E., Mallampalli, R.K. and Horowitz, J.C. (2022) Pathogenesis of Pneumonia and Acute Lung Injury. Clinical Science, 136, 747-769. [Google Scholar] [CrossRef] [PubMed]
[8] Butt, Y., Kurdowska, A. and Allen, T.C. (2016) Acute Lung Injury: A Clinical and Molecular Review. Archives of Pathology & Laboratory Medicine, 140, 345-350. [Google Scholar] [CrossRef] [PubMed]
[9] Lu, Y., Song, Z., Zhou, X., Huang, S., Zhu, D., Yang C. Bai, X., et al. (2004) A 12-Month Clinical Survey of Incidence and Outcome of Acute Respiratory Distress Syndrome in Shanghai Intensive Care Units. Intensive Care Medicine, 30, 2197-2203. [Google Scholar] [CrossRef] [PubMed]
[10] Liu, Q., Zhou, Y. and Yang, Z. (2015) The Cytokine Storm of Severe Influenza and Development of Immunomodulatory Therapy. Cellular & Molecular Immunology, 13, 3-10. [Google Scholar] [CrossRef] [PubMed]
[11] Xie, J., Wang, M., Cheng, A., Zhao, X., Liu, M., Zhu, D., et al. (2020) Author Correction: Cytokine Storms Are Primarily Responsible for the Rapid Death of Ducklings Infected with Duck Hepatitis a Virus Type 1. Scientific Reports, 10, Article No. 5672. [Google Scholar] [CrossRef] [PubMed]
[12] Jose, R.J. and Manuel, A. (2020) COVID-19 Cytokine Storm: The Interplay between Inflammation and Coagulation. The Lancet Respiratory Medicine, 8, e46-e47. [Google Scholar] [CrossRef] [PubMed]
[13] Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., et al. (2020) Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. Journal of Clinical Investigation, 130, 2620-2629. [Google Scholar] [CrossRef] [PubMed]
[14] Cao, X. (2020) COVID-19: Immunopathology and Its Implications for Therapy. Nature Reviews Immunology, 20, 269-270. [Google Scholar] [CrossRef] [PubMed]
[15] Shih, L., Yang, C., Liao, M., Lu, K., Hu, W. and Lin, C. (2023) An Important Call: Suggestion of Using IL-10 as Therapeutic Agent for COVID-19 with ARDS and Other Complications. Virulence, 14, Article 2190650. [Google Scholar] [CrossRef] [PubMed]
[16] 俞颖婷, 曹樟全, 张洪波. IL-6/IL-10对急性呼吸窘迫综合征患者病情及预后的评估价值[J]. 中国现代医生, 2023, 61(9): 21-25.
[17] 夏世金, 孙涛, 郑松柏, 等. 炎性衰老的研究[J]. 成都医学院学报, 2012, 7(3): 336-343.
[18] Xing, H., Lu, J., Yoong, S.Q., Tan, Y.Q., Kusuyama, J. and Wu, X.V. (2022) Effect of Aerobic and Resistant Exercise Intervention on Inflammaging of Type 2 Diabetes Mellitus in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. Journal of the American Medical Directors Association, 23, 823-830.e13. [Google Scholar] [CrossRef] [PubMed]
[19] Ferrucci, L. and Fabbri, E. (2018) Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nature Reviews Cardiology, 15, 505-522. [Google Scholar] [CrossRef] [PubMed]
[20] Livshits, G. and Kalinkovich, A. (2019) Inflammaging as a Common Ground for the Development and Maintenance of Sarcopenia, Obesity, Cardiomyopathy and Dysbiosis. Ageing Research Reviews, 56, Article 100980. [Google Scholar] [CrossRef] [PubMed]
[21] Fang, Z., Raza, U., Song, J., Lu, J., Yao, S., Liu, X., et al. (2024) Systemic Aging Fuels Heart Failure: Molecular Mechanisms and Therapeutic Avenues. ESC Heart Failure, 12, 1059-1080. [Google Scholar] [CrossRef] [PubMed]
[22] Koutsaliaris, I.K., Moschonas, I.C., Pechlivani, L.M., Tsouka, A.N. and Tselepis, A.D. (2022) Inflammation, Oxidative Stress, Vascular Aging and Atherosclerotic Ischemic Stroke. Current Medicinal Chemistry, 29, 5496-5509. [Google Scholar] [CrossRef] [PubMed]
[23] Rodriguez, J.E., Naigeon, M., Goldschmidt, V., Roulleaux Dugage, M., Seknazi, L., Danlos, F.X., et al. (2022) Immunosenescence, Inflammaging, and Cancer Immunotherapy Efficacy. Expert Review of Anticancer Therapy, 22, 915-926. [Google Scholar] [CrossRef] [PubMed]
[24] Rea, I.M., Gibson, D.S., McGilligan, V., McNerlan, S.E., Alexander, H.D. and Ross, O.A. (2018) Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Frontiers in Immunology, 9, Article ID: 586. [Google Scholar] [CrossRef] [PubMed]
[25] Campisi, J. (2013) Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, 75, 685-705. [Google Scholar] [CrossRef] [PubMed]
[26] Zhu, Y., Armstrong, J.L., Tchkonia, T. and Kirkland, J.L. (2014) Cellular Senescence and the Senescent Secretory Phenotype in Age-Related Chronic Diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 17, 324-328. [Google Scholar] [CrossRef] [PubMed]
[27] McHugh, D., Durán, I. and Gil, J. (2025) Senescence as a Therapeutic Target in Cancer and Age-Related Diseases. Nature Reviews Drug Discovery, 24, 57-71. [Google Scholar] [CrossRef] [PubMed]
[28] Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., de Luca, M., Ottaviani, E., et al. (2000) Inflamm‐Aging: An Evolutionary Perspective on Immunosenescence. Annals of the New York Academy of Sciences, 908, 244-254. [Google Scholar] [CrossRef] [PubMed]
[29] Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., et al. (2007) Inflammaging and Anti-Inflammaging: A Systemic Perspective on Aging and Longevity Emerged from Studies in Humans. Mechanisms of Ageing and Development, 128, 92-105. [Google Scholar] [CrossRef] [PubMed]
[30] Franceschi, C. and Campisi, J. (2014) Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69, S4-S9. [Google Scholar] [CrossRef] [PubMed]
[31] Scheller, J., Chalaris, A., Schmidt-Arras, D. and Rose-John, S. (2011) The Pro-and Anti-Inflammatory Properties of the Cytokine Interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 878-888. [Google Scholar] [CrossRef] [PubMed]
[32] Koelman, L., Pivovarova-Ramich, O., Pfeiffer, A.F.H., Grune, T. and Aleksandrova, K. (2019) Cytokines for Evaluation of Chronic Inflammatory Status in Ageing Research: Reliability and Phenotypic Characterisation. Immunity & Ageing, 16, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
[33] 秦永生, 苏俊, 牟欣奕, 等. 血清中炎症因子与炎性衰老的相关性研究[J]. 广州医药, 2024, 55(12): 1407-1413.
[34] Brüünsgaard, H. and Pedersen, B.K. (2003) Age-Related Inflammatory Cytokines and Disease. Immunology and Allergy Clinics of North America, 23, 15-39. [Google Scholar] [CrossRef] [PubMed]
[35] Xia, S., Zhang, X., Zheng, S., Khanabdali, R., Kalionis, B., Wu, J., et al. (2016) An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. Journal of Immunology Research, 2016, 1-12. [Google Scholar] [CrossRef] [PubMed]
[36] Eklund, C.M. (2009) Proinflammatory Cytokines in CRP Baseline Regulation. Advances in Clinical Chemistry, 48, 111-136.
[37] Baylis, D., Bartlett, D.B., Patel, H.P. and Roberts, H.C. (2013) Understanding How We Age: Insights into Inflammaging. Longevity & Healthspan, 2, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
[38] 季明霞, 斯小水, 何建新, 等. NT-proBNP、TNF-α、IL-6在急性呼吸窘迫综合征严重程度及预后评估中的应用价值[J]. 浙江医学, 2016, 38(22): 1808-1810+1841.
[39] 郑新, 张颖. 血清TNF-α、IL-6、IL-8水平对ARDS患者病情的预测价值[J]. 医学信息, 2020, 33(4): 177-178.
[40] 惠亮亮, 章向成, 安旭生, 等. 血清降钙素原及白细胞介素-6对合并急性呼吸窘迫综合征的多器官功能不全患者的临床诊断价值[J]. 徐州医学院学报, 2016, 36(5): 296-300.