|
[1]
|
(2024) Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2024 Report. https://goldcopd.org/2024-gold-report/
|
|
[2]
|
Celli, B.R. and Wedzicha, J.A. (2019) Update on Clinical Aspects of Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 381, 1257-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lynch, D.A., Huang, A.J., Sandbo, N., Sieren, J., Stinson, D. and Stocker, W. (2018) Quantitative CT of COPD: Advances in Analysis and Clinical Applications. Radiology, 288, 695-715.
|
|
[4]
|
Humphries, S.M., Notary, A.M., Centeno, J.P., Strand, M.J., Crapo, J.D., Silverman, E.K., et al. (2020) Deep Learning Enables Automatic Classification of Emphysema Pattern at Ct. Radiology, 294, 434-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fischer, A.M., Varghese, C., Charbonnier, J.P., Nikkho, S., Lu, H. and Galban, C.J. (2021) Deep Learning Quantification of Emphysema: Reproducibility across CT Protocols. American Journal of Roentgenology, 217, 1369-1379.
|
|
[6]
|
Ferri, J., Ma, H., Yang, Y., Guo, J., Balakrishnan, V. and O’Connell, T. (2022) Impact of Deep Learning Reconstruction on Quantitative CT Metrics in COPD. European Radiology, 32, 6098-6110.
|
|
[7]
|
Zhu, Z., Li, F., Wang, Y., Zhang, Y., Wang, J. and Liang, C. (2023) Deep Radiomics-Based CT Analysis for COPD Severity Assessment. European Respiratory Journal, 61, Article ID: 2201152.
|
|
[8]
|
Amudhu, P., Thangaraj, R., Chidambaram, S., Palanisamy, M., Subramanian, K. and Gopalan, R. (2023) Radiomic Texture Analysis of Inspiratory CT Images for COPD Detection. Diagnostics, 13, Article 1142.
|
|
[9]
|
Lynch, D.A., Moore, C., Barr, R.G., et al. (2018) Visual CT Phenotyping and Outcomes in COPD. Radiology, 288, 859-870.
|
|
[10]
|
Porazzi, E., Cattaneo, S.M., Gotti, M., et al. (2020) Neural Network-Based Prediction of Lung Function from CT Radiomics. Respiratory Research, 21, Article No. 67.
|
|
[11]
|
Koo, H.K., Vasilescu, D.M., Booth, S., et al. (2019) Texture-Based Assessment of Gas Trapping on Expiratory CT. Chest, 156, 1166-1175.
|
|
[12]
|
Castaldi, P.J., Boueiz, A., Yun, J.H., et al. (2019) Machine Learning Characterization of COPD Subtypes. American Journal of Respiratory and Critical Care Medicine, 199, 447-456.
|
|
[13]
|
Subramanian, R., Dhara, A.K., Mukhopadhyay, S., et al. (2020) Deep Autoencoder Clustering for COPD Subtyping. Medical Image Analysis, 64, Article ID: 101731.
|
|
[14]
|
Mets, O.M., Schmidt, M., Camps, S.M., et al. (2020) Integration of Radiomics and Biomarkers for COPD Phenotyping. European Radiology, 30, 3765-3776.
|
|
[15]
|
Xu, Y., Lu, X., Wu, H., et al. (2021) Multimodal Deep Learning for COPD Subtype Classification. IEEE Transactions on Medical Imaging, 40, 3366-3379.
|
|
[16]
|
Han, M.K., Quibrera, P.M., Timens, W., et al. (2021) Immune Profiles Across Emphysema Subtypes. American Journal of Respiratory Cell and Molecular Biology, 65, 302-313.
|
|
[17]
|
Xu, J., Zhang, Z., Zhao, Y., Wang, L., Chen, Y. and Li, S. (2022) LSTM-Based Progression Prediction in COPD. Computerized Medical Imaging and Graphics, 96, Article ID: 102024.
|
|
[18]
|
Zhang, L., Liu, C., Yang, X., Li, H., Wang, P. and Wu, Q. (2023) Transformer-Based Temporal Modeling for COPD Exacerbation Prediction. IEEE Access, 11, 12450-12462.
|
|
[19]
|
Bhatt, S.P., Kim, Y.I., Wells, J.M., et al. (2020) Predicting COPD Exacerbations Using Machine Learning. Chest, 158, 1598-1607.
|
|
[20]
|
Gonzalez, G., Ash, S.Y., Onieva, J., et al. (2021) Bayesian Network Model for COPD Risk Stratification. European Respiratory Journal, 57, Article ID: 2003111.
|
|
[21]
|
Yin, Y., Zhang, X., Li, Y., Zhang, J., Chen, H. and Wang, D. (2022) Deep Learning Early Prediction of COPD in Smokers. Radiology: AI, 4, e210210.
|
|
[22]
|
Ardila, D., Gonzalez, G., Atallah, D., et al. (2021) Predicting Lung Volume Reduction Outcomes Using DL. European Respiratory Journal, 57, Article ID: 2003678.
|
|
[23]
|
López-Campos, J.L., Calero, C., Caballero, S., et al. (2022) AI-Driven Prediction of Bronchodilator Response. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1493-1505.
|
|
[24]
|
Raschke, R., Schmidt, M., Karthik, S., et al. (2023) Deep Learning Respiratory Monitoring for COPD. NPJ Digital Medicine, 6, Article No. 77.
|
|
[25]
|
Smith, D., Jones, A., Brown, E., et al. (2024) Remote Monitoring and AI for COPD Management. The Lancet Digital Health, 6, e113-e124.
|
|
[26]
|
Topalovic, M., Das, N., Burgel, P., Daenen, M., Derom, E., Haenebalcke, C., et al. (2019) Artificial Intelligence Outperforms Pulmonologists in the Interpretation of Pulmonary Function Tests. European Respiratory Journal, 53, Article ID: 1801660. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kaplan, A., Cao, H., FitzGerald, J.M., Iannotti, N., Yang, E., Kocks, J.W.H., et al. (2021) Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis. The Journal of Allergy and Clinical Immunology: In Practice, 9, 2255-2261. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Smith, L.A., Brown, E., Li, Y., Johnson, R., Lee, T. and Williams, K. (2023) Machine Learning and Deep Learning Predictive Models for COPD: A Systematic Review and Meta-Analysis. The Lancet Digital Health, 5, e92-e106.
|
|
[29]
|
Estépar, R.S.J., Washko, G.R., Sieren, J., Ross, J.C., Diaz, A.A. and Lynch, D.A. (2020) Artificial Intelligence in COPD: New Venues to Study a Complex Disease. Journal of Thoracic Imaging, 35, S56-S62.
|
|
[30]
|
Wu, Y., Xia, S., Liang, Z., Chen, R. and Qi, S. (2024) Artificial Intelligence in COPD CT Images: Identification, Staging, and Quantitation. Respiratory Research, 25, Article No. 319. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, R.J., Wang, J.J., Williamson, D.F.K., Chen, T.Y., Lipkova, J., Lu, M.Y., et al. (2023) Algorithmic Fairness in Artificial Intelligence for Medicine and Healthcare. Nature Biomedical Engineering, 7, 719-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Goldin, J.G., Kim, G.H.J., Tseng, C.L., et al. (2021) Challenges in CT Standardization for AI Analysis. European Journal of Radiology, 140, Article ID: 109759.
|
|
[33]
|
Holzinger, A., Malle, B., Saranti, A., et al. (2022) Explainable AI for Medical Imaging. Nature Reviews Methods Primers, 2, 1-17.
|
|
[34]
|
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lee, J.H., Park, H.Y., Kim, S., et al. (2024) Federated Learning Framework for COPD Prediction. IEEE Journal of Biomedical and Health Informatics, 28, 57-68.
|