超声引导下闭孔神经关节支射频消融治疗慢性内侧髋关节疼痛:病例报告及文献研究
Ultrasound-Guided Radiofrequency Ablation of the Articular Branch of the Obturator Nerve for Chronic Medial Hip Pain: A Case Report and Literature Review
摘要: 背景:闭孔神经关节支射频消融术(Radiofrequency Ablation, RFA)是治疗非手术候选慢性内侧髋关节疼痛(Chronic Medial Hip Pain, CMHP)的常用手段,传统操作依赖透视或超声联合透视,单纯超声引导的相关研究匮乏。目的:评价超声引导下闭孔神经关节支RFA治疗CMHP的有效性与可行性。方法:纳入2例CMHP患者(1例股骨头缺血性坏死Ficat-Arlet IV期、1例髋关节骨关节炎Tonnis III期),术前以1%利多卡因2 mL行诊断性阻滞,48小时后行超声引导下RFA,术后随访3个月。结果:术后3个月,2例患者的NRS评分分别从基线8分、7分降至2分、0分;WOMAC评分分别从92分、72分降至33分、6分;镇痛药物用量减少,1例完全停用,无并发症。结论:在本研究纳入的2例患者中,超声引导下闭孔神经关节支RFA初步显示出一定的精准性、微创性及无辐射优势,可能适用于非手术候选CMHP患者,或对缓解疼痛、改善功能具有潜在帮助,但该技术的有效性与安全性仍需大样本、长期随访研究进一步验证。目前结论仅为探索性发现,不能推广至更广泛的人群。
Abstract: Background: Radiofrequency ablation (RFA) of the articular branches of the obturator nerve is a common approach for treating chronic medial hip pain (CMHP) in patients who are not candidates for surgery. Traditional procedures rely on fluoroscopy or a combination of ultrasound and fluoroscopy, while studies on ultrasound-guided RFA alone are scarce. Objective: To evaluate the effectiveness and feasibility of ultrasound-guided RFA of the articular branches of the obturator nerve in treating CMHP. Methods: Two patients with CMHP (one with Ficat-Arlet stage IV avascular necrosis of the femoral head and one with Tonnis stage III hip osteoarthritis) were included. A diagnostic block was performed with 2 mL of 1% lidocaine before surgery. Ultrasound-guided RFA was carried out 48 hours later, and the patients were followed up for 3 months post-operatively. Results: At 3 months post-operatively, the NRS scores of the two patients decreased from 8 and 7 at baseline to 2 and 0, respectively. The WOMAC scores dropped from 92 and 72 to 33 and 6, respectively. The dosage of analgesic medications was reduced, with one patient completely discontinuing the use. No complications occurred. Conclusion: In the two patients included in this study, ultrasound-guided RFA of the articular branches of the obturator nerve initially showed certain advantages of accuracy, minimal invasiveness and no radiation. It may be suitable for non-surgical CMHP patients and may have potential help in relieving pain and improving function. However, the effectiveness and safety of this technology still need to be further verified by large-sample and long-term follow-up studies. At present, the conclusions are only exploratory findings and cannot be extended to a wider population.
文章引用:李路明, 顾俊, 唐卉, 何中灿, 段越华. 超声引导下闭孔神经关节支射频消融治疗慢性内侧髋关节疼痛:病例报告及文献研究[J]. 亚洲外科手术病例研究, 2025, 13(1): 1-12. https://doi.org/10.12677/acrs.2025.131001

1. 引言

慢性内侧髋关节疼痛(CMHP)是一种病因复杂的常见临床病症,其成因涉及髋关节骨性关节炎、股骨头缺血性坏死、髋部骨折、类风湿性关节炎及术后并发症等多种因素,其中髋关节骨性关节炎是最主要的致病原因[1]。传统治疗手段包括物理治疗、药物干预及关节内皮质类固醇注射,但多难以实现持续镇痛[2]-[4]。对于因合并症或禁忌症不适合接受全髋关节置换术(Total Hip Arthroplasty, THA)等手术治疗的患者,微创技术已成为关键替代方案。

经皮射频消融术(RFA)通过选择性作用于支配髋关节的感觉神经分支(尤其闭孔神经关节支),破坏痛觉纤维以缓解疼痛[5]-[7]。早期研究已证实其安全性与有效性,但传统透视引导RFA存在依赖放射设备、医患均暴露于电离辐射的局限[7]-[9]

超声引导技术凭借无辐射、实时可视化优势革新介入疼痛治疗,但目前仅多用于股神经关节支消融,单纯超声引导闭孔神经关节支RFA的研究仍较匮乏,现有文献多将超声作为辅助工具而非独立引导方式[10]-[12]。本研究设计新型实时超声引导闭孔神经关节支RFA方案,旨在为CMHP提供更优治疗选择。

2. 病例报告

本研究经北川医学院附属医院伍盛医院机构审查委员会批准(批准号:20040820002)。所有患者数据均已匿名化处理,且每位患者均签署了书面知情同意书,同意在本出版物中使用其临床数据(包括病史、检查结果、治疗记录、影像资料及随访信息)。

2.1. 病例1

72岁女性患者,20年类风湿关节炎病史,无糖尿病及感染征象,右侧髋关节前内侧疼痛8年(重活动时NRS评分8/10分)。基线WOMAC评分:疼痛18/20分、僵硬6/8分、功能68/68分、总分92/96分。长期双联镇痛治疗(塞来昔布200 mg,每日2次;曲马多100 mg,每12小时1次),仍需拄拐行走。体格检查:“4”字试验(Patrick征)阳性,患肢屈曲、外展、外旋时右髋内侧疼痛。影像学检查确诊股骨头缺血性坏死(Ficat-Arlet IV期)。

先行超声引导闭孔神经关节支诊断性阻滞:注射1%利多卡因2 mL,疼痛缓解80%,判定阻滞阳性。48小时后行超声引导闭孔神经关节支RFA (操作详见“3手术操作”)。术后随访:NRS评分分别为:1/10 (1天)、1/10 (1周)、2/10 (1月)、2/10 (3月);WOMAC评分(疼痛/僵硬/功能/总分)分别为:4/3/28/35 (1天)、4/2/26/32 (1周)、6/2/24/32 (1月)、6/3/24/33 (3月)。镇痛药调整为塞来昔布100 mg,每日1次。(NRS和WOMAC评分变化分别见图1图2)。

2.2. 病例2

78岁男性患者,左髋关节内侧疼痛1年余(走时NRS评分7/10分,静息时4/10分),伴晨僵(持续>1小时),无糖尿病及感染征象。基线WOMAC评分:疼痛15/20分,僵硬5/8分,功能52/68分,总评72/96分。长期药物治疗(洛芬待因片426 mg,每日2次;乙哌立松片50 mg,每日3次),需间歇性口服曲马多100 mg (按需)。体格检查:左髋前内侧及腹股沟区压痛,被动活动范围正常,“4”字试验(Patrick征)阳性,无神经病变迹象。髋关节CT确诊髋关节骨关节炎(Tonnis III期)。

超声引导闭孔神经关节支诊断性阻滞:缓慢注射1%利多卡因2 mL,疼痛缓解100% (NRS降至0分),48小时后行RFA治疗。术后随访:NRS评分0/10分(3个月);WOMAC评分(疼痛/僵硬/功能/总分)分别为:0/3/20/23分(1天)、0/1/12/13分(1周)、0/1/8/9分(1月)、0/0/6/6分(3月)。所有镇痛药物均停用。(NRS和WOMAC评分变化分别见图1图2)。

Figure 1. Changes in NRS scores (0 = no pain, 10 = most severe pain imaginable) in Cases 1 and 2. Both cases showed a decrease in NRS scores from baseline at 3 months after surgery (Case 1: from 8 to 2; Case 2: from 7 to 0)

1. 病例1和病例2 NRS评分变化(0 = 无疼痛,10 = 可以想象到的最严重疼痛)。两个病例术后3个月NRS评分均较基线值降低(病例1:8分降至2分;病例2:7分降至0分)

Figure 2. Changes in the MOMAC score between Case 1 and Case 2 (0 = no dysfunction, 96 = most severe dysfunction). Both cases showed significant improvement in their WOMAC scores compared to baseline at 3 post-operative days (Case 1: from 92 to 33; Case 2: from 72 to 6)

2. 病例1和病例2之间的MOMAC评分变化(0 = 无功能障碍,96 = 最严重功能障碍)。两个病例术后3天时WOMAC评分均较基线显著改善(病例1:92分降至33分;病例2:72分降至6分)

3. 手术操作

3.1. 术前准备

患者送至介入室,建立静脉通路,连接无创血压(Non-Invasive Blood Pressure, NIBP)、脉搏血氧仪等常规监测设备。取仰卧位,患侧髋关节轻度外展(15˚)、外旋(10˚),术区常规消毒,超声探头(2~5 MHz凸阵探头,Labat型号,华声医疗科技有限公司,深圳)经无菌套处理。

3.2. 超声定位与穿刺

3.2.1. 解剖定位

沿股骨颈长轴垂直放置探头于腹股沟韧带旁,清晰显示髋臼(Acetabulum, ACE)、股骨头(Femoral Head, FH)及股骨颈(Femoral Neck, FN) (图3(A));逐步向内侧移动探头,股骨颈(图3(B))、股骨头(图3(C))依次消失,显现髋臼“山峰状”特征;继续内侧移动,闭孔处见骨皮质不连续(图3(D));微调探头至外侧恢复皮质连续性,确定靶点区域(图4(A))。

3.2.2. 血管规避

右侧逆时针旋转探头、左侧顺时针旋转,直至股动脉(Femoral Artery, FA)、股静脉(Femoral Vein, FV)移出视野(图4(B)),确保穿刺路径避开血管鞘。

3.2.3. 靶点确认

以髋臼“山峰状”标志的2点钟方向为闭孔神经关节支为消融靶点。

3.3. 射频消融操作

3.3.1. 局部麻醉

注射1%利多卡因2 mL行局部浸润麻醉。

3.3.2. 穿刺置针

采用超声引导平面内技术,将10 cm长、22 G射频针(活性端10 mm,Inomed公司,德国)从尾侧向头侧穿刺至靶点(图4(C))。

Figure 3. Ultrasound-guided localization of the articular branches of the obturator nerve. Figure legend: (A) Initial probe positioning clearly shows the acetabulum (ACE), femoral head (FH), and femoral neck (FN) in the ultrasound plane; (B) When the probe is moved medially, the outline of the femoral neck disappears, but the ACE and FH can still be clearly visualized; (C) As the probe is further moved medially, the signal of the femoral neck completely disappears, and the characteristic “mountain-shaped” morphology of the ACE is visible; (D) With the probe continuing to move medially, this positioning shows the pubic symphysis (Pu) and the obturator foramen (OF, with a loss of cortical continuity). Abbreviations: ACE, acetabulum; AHR, anterior hip joint capsule; AL, acetabular labrum; AM, adductor muscle group; FA, femoral artery; FH, femoral head; FN, femoral neck; FS, femoral shaft; ILP, iliopsoas muscle; IS, ischium; OF, obturator foramen; PM, psoas major muscle; Pu, pubis; RF, rectus femoris muscle; SART, sartorius muscle; VL, vastus lateralis muscle; VI, vastus intermedius muscle

3. 超声引导下闭孔神经关分支定位。图注:(A) 初始探头定位可清晰显示超声平面内的髋臼(ACE)、股骨头(FH)及股骨颈(FN);(B) 探头向内侧移动,但股骨颈轮廓消失,仍能清晰显示ACE和FH;(C) 探头继续向内侧移,此时股骨颈信号完全消失,可见ACE特征性的“山峰状”形态;(D) 探头继续向内侧移,此定位显示耻骨联合(Pu)与闭孔(OF,皮质连续性缺失)。缩写:ACE,髋臼;AHR,前髋关节囊;AL,髋臼唇;AM,内收肌群;FA,股动脉;FH,股骨头;FN,股骨颈;FS,股骨干;ILP,髂腰肌;IS,坐骨;OF,闭孔;PM,大腰肌;Pu,耻骨;RF,股直肌;SART,缝匠肌;VL,股外侧肌;VI,股中间肌

Figure 4. Ultrasound-guided localization protocol for the articular branches of the obturator nerve and verification with X-ray fluoroscopy. Figure legend: (A) Fine-tuning the probe to move laterally to restore cortical continuity at the position for accurate localization of the target (☆); (B) Rotating the probe to avoid blood vessels; (C) Path of the puncture needle under ultrasound guidance (in-plane technique); (D) Fluoroscopic verification showing the needle tip at the “tear drop sign” of the acetabular notch (IA). Abbreviations: ACE, acetabulum; AM, adductor muscles; FH, femoral head; FN, femoral neck; IA, acetabular notch; IS, ischium; Pu, pubis; ☆, articular branches of the obturator nerve

4. 超声引导下闭孔神经关节分支定位方案及X线透视验证。图注:(A) 微调探头向外侧移动,位置恢复皮质连续性以准确定位目标(☆);(B) 探头旋转方向规避血管;(C) 超声引导下的穿刺针路径(平面内技术);(D) 透视验证针尖位于髋臼切迹“泪滴征”(IA)。缩写:ACE,髋臼;AM,内收肌;FH,股骨头;FN,股骨颈;IA,髋臼切迹;IS,坐骨;Pu,耻骨;☆,闭孔神经关节分支

3.3.3. 定位验证

西门子Artis zee III型透视机正位片确认针尖位于髋臼切迹(Incisura Acetabuli, IA)“泪滴征”处(图4(D))。

3.3.4. 神经刺激与消融

连接射频仪(R2000B M1型,北琪医疗科技有限公司,北京),2 Hz、2 mA运动刺激无肌肉收缩,50 Hz、0.5 mA感觉刺激诱发髋部疼痛且无下肢放射痛。回抽无血后注射1%利多卡因1 mL,85℃行标准射频消融180秒。

3.3.5. 术后给药

消融后注射混合镇痛液2 mL (含2%利多卡因1 mL、曲安奈德20 mg、维生素B12 1 mL,生理盐水稀释至5 mL);诊断性阻滞时,到达靶点时仅注射1%利多卡因2 mL。

4. 结果

本研究纳入的2例患者均接受诊断性神经阻滞后行超声引导下闭孔神经关节支射频消融术。股骨头缺血性坏死患者术前评估显示:其NRS评分8分,WOMAC总分72/96。术后RFA治疗效果持续改善:NRS评分从1/10 (第1天)逐步下降至1/10 (第1周)、2/10 (第1个月)和2/10 (第3个月);同时WOMAC各分项评分(疼痛/僵硬/功能/总分)分别为4/3/28/35 (第1天)、4/2/26/32 (第1周)、6/2/24/32 (第1个月)和6/3/24/33 (第3个月)。镇痛方案调整为塞来昔布100 mg,每日一次。

髋关节骨性关节炎患者术前NRS评分为7分,基线WOMAC总评分为72/96。术后治疗效果显著,NRS评分在3个月随访期间保持0/10分,WOMAC各分项评分(疼痛/僵硬/功能/总分)分别为0/3/20/23 (第1天)、0/1/12/13 (第1周)、0/0/6/6 (第1个月)和0/0/6/6 (第3个月)。值得注意的是,随访时2例患者均未出现血管损伤、下肢肌力减退或感觉异常等并发症。

5. 讨论

慢性内侧髋关节疼痛是一种常见的临床病症,其病因复杂多样,主要包括髋关节骨性关节炎、类风湿性关节炎、股骨头缺血性坏死、创伤后疼痛以及全髋关节置换术后持续性疼痛。该病症的发病机制涉及退行性改变、机械应力、炎症反应、代谢紊乱、创伤损伤、免疫调节异常、缺血性病变及遗传易感性等多重因素,形成复杂的病理生理过程[1]。其典型临床表现包括持续性疼痛、关节僵硬、活动受限、肌肉萎缩及关节稳定性下降等症状。

随着全球人口老龄化进程的加速,慢性髋关节疼痛的发病率显著升高,主要累及老年人群。Jordan等学者的流行病学研究表明,20%~40%的成年个体存在髋关节骨关节炎的影像学证据,其中10%~30%的患者出现临床症状[13]。该病症不仅严重损害老年患者的健康状态与生活质量,更因医疗资源消耗剧增及功能依赖程度加重,对社会经济构成沉重负担。

针对该病症的初始治疗策略主要采用保守疗法,包括休息、口服镇痛药物、物理治疗及关节内皮质类固醇注射[2]-[4]。然而,这些方法存在显著的局限性。例如,口服镇痛药物伴随明显的胃肠道及心血管不良事件风险,且长期疗效不佳。物理治疗虽易于实施,但疗程冗长且患者依从性欠佳,在难治性病例中效果有限。关节内皮质类固醇注射仅能提供短期症状缓解,且对合并糖尿病或缺血性坏死等基础疾病的患者存在禁忌[14]

对于严重病例,全髋关节置换术(Total Hip Arthroplasty, THA)仍是常规外科干预手段,但其临床应用受限于并发症发生率高、费用高昂、术后持续性疼痛、康复周期长以及合并症患者禁忌等因素。为应对这些挑战,射频消融术等创新疗法应运而生。该微创技术通过靶向阻断关节感觉神经的痛觉信号传导,实现疼痛缓解及功能改善的持久效果。值得注意的是,多项研究表明射频消融术可使疼痛评分降低30%~80%,疗效可持续长达两年,突显其在难治性髋关节疼痛治疗中的临床价值[5]-[9]

目前对髋关节神经支配的认知主要基于尸体解剖学研究。髋关节前侧关节囊主要由股神经(Femoral Nerve, FN)、闭孔神经(Obturator Nerve, ON)及副闭孔神经(Accessory Obturator Nerve, AON)支配,其中股神经为主要支配神经[15]-[17]。依据四象限解剖模型,前囊神经支配区域可划分为上外侧、下外侧、上内侧及下内侧四个象限。股神经关节支主要支配上外侧、下外侧及上内侧象限,而闭孔神经主要供应内侧象限。值得注意的是,约40%的个体在上内侧区域存在闭孔神经与副闭孔神经的双重神经支配现象[18] [19]

髋关节后侧关节囊的神经支配主要来源于股方肌神经(Nerve to Quadratus Femoris, NQF)、臀上神经、坐骨神经(Sciatic Nerve, SN)及臀下神经的分支。其中,NQF主要支配后内侧关节囊,后外侧区域可能由臀上神经和梨状肌神经分支支配[20]。虽有假说认为臀上神经参与后下囊神经支配,但目前尚缺乏支持该假说的可靠解剖学证据[20]

近年来,关于髋关节射频消融技术的临床研究数量持续增加,多种影像引导下的治疗方案已被探索,旨在有效缓解髋关节相关疼痛的同时,充分考虑手术风险。目前临床应用最广泛的引导技术为X线透视和超声,而CT引导技术在实际操作中应用较少[21]-[24]

基于既往尸体研究所确立的射频消融解剖靶点,主要针对两个关键神经结构:位于髂腰肌腱下方、髂前下棘(Anterior Inferior Iliac Spine, AIIS)与髂耻隆起(Iiopectineal Eminence, IPE)之间的股神经关节分支(用于治疗外侧髋关节疼痛);以及位于耻骨–坐骨连接处前下方髋臼区域的闭孔神经关节分支(用于治疗内侧髋关节疼痛)。透视引导定位时,股神经分支靶点大致位于股骨头12点钟方向,而闭孔神经分支靶点则对应于髋臼切迹(泪滴状结构),并自该标志向外侧延伸[15] [25]-[28]

在一项超声引导研究中,4名因髋关节前侧和/或内侧疼痛就诊且被判定不适合接受THA的患者,在经皮射频神经切断术前通过诊断性神经阻滞确认疼痛源自髋关节感觉神经分支。手术采用75℃至80℃的电极对股神经关节分支进行90秒热凝处理。术后12周评估显示,患者的疼痛强度(NRS)、功能恢复情况及镇痛药物用量均显著改善[29]。另一项纳入11例难治性髋关节骨关节炎患者的前瞻性试点研究显示,靶向闭孔神经及其股动脉分支的冷冻消融术显著改善了髋关节残疾与骨关节炎结局评分(Hip disability and Osteoarthritis Outcome Score, HOOS),尤其在6个月随访时的疼痛和僵硬分量表,且未报告重大并发症[30]

尽管透视引导可清晰显示骨性标志,但诸如血管穿刺、血肿形成及神经损伤等操作风险仍不容忽视[8] [31] [32]。为降低风险,最新研究证实超声–透视联合引导技术可显著提升髋关节射频消融术的安全性[33]-[37]

在一项针对11岁女性感染性关节炎继发持续性右侧髋部疼痛的研究中,Khan团队应用超声–荧光透视引导下的射频热凝技术,精确定位了闭孔神经[38]。经80℃、持续90秒的热凝干预后,该疗法在18周随访期内有效缓解疼痛、改善关节活动度,并将阿片类药物用量降低20%。研究者特别指出闭孔神经关节支存在解剖学变异,并强调所有相关分支均起源于闭孔外侧及髋臼下方的髋臼窝区域。该研究倡导联合应用超声与荧光透视成像技术,以增强神经血管结构的可视化效果并建立安全的手术通路,该技术方案与现有文献描述相一致。

在Correia等开展的另一项研究中,26名罹患髋关节骨性关节炎且持续疼痛超过三个月的患者接受了超声引导下闭孔神经关节分支射频消融术[39]。在12个月随访时,超过75%的患者疼痛缓解幅度 > 50%,85%的患者镇痛剂用量显著减少。手术安全性良好,未报告血管损伤或神经功能缺损[39]

既往研究主要采用外侧至内侧或下外侧至上内侧方向的平面内穿刺路径[12] [39] [40]。虽然这些技术可在超声引导下精确定位股动脉(Femoral Artery, FA)和股静脉(Femoral Vein, FV),但穿刺针道不可避免会与股神经血管束交叉,难以完全规避血管鞘。关于内侧至外侧穿刺路径的报道较少,该路径可规避血管鞘重叠问题。然而,其操作难度较高,且存在损伤男性特有解剖结构(如输精管、睾丸动脉及睾丸血管系统)的潜在医源性风险[36]

本研究通过利用不同超声平面骨结构成像的固有差异,精准定位髋臼切迹。探头近端固定,远端向内调整使整个探头位于血管鞘内侧。采用头尾方向的穿刺路径,确保射频针全程位于血管鞘内侧,有效规避血管穿刺风险并显著提升手术安全性。在两名患者的4例手术操作(诊断性阻滞和射频消融)中,首次尝试即成功定位“泪滴”标志点。

相较于其他技术,该方法在解剖定位方面展现出更高的特异性和准确性。术后3个月随访时,NRS评分分别降至2分和0分,与现有文献报道结果一致。本病例中,穿刺操作的实时可视化显著缩短了手术时间。除确诊诊断及临床研究外,无需使用透视或CT检查,大幅降低了辐射暴露。此外,由于无血管干扰,消融后可重新定位针尖以扩大闭孔神经关节分支的消融范围,可能进一步优化临床疗效。

在本研究的超声引导闭孔神经关节支射频消融操作中,仍采用荧光透视验证,其目的在于验证射频针针尖的准确性,即确认抵达超声特征性标志“山峰状”位置是否对应透视下的“泪滴征”。尽管在本研究中,首次尝试便成功定位“泪滴”标志点,但必要的荧光透视验证依然不可或缺。

从解剖定位层面分析,闭孔神经关节支的靶点位置较深,且毗邻髋臼切迹、股血管等复杂解剖结构。超声虽能够实时观测软组织状况,然而对骨性标志的精准判断易受患者个体解剖变异(如髋臼形态差异、骨质增生)、超声探头角度以及操作经验等因素的影响,可能致使靶点定位出现偏差。而X线透视可直接呈现髋臼切迹“泪滴征”这一明确的骨性标志,能够直观地确认射频针尖是否处于预设靶点区域,从而避免因靶点偏移而导致治疗效果欠佳或对周围组织造成误损伤。

从临床安全角度考量,闭孔神经周围血管分布密集,若仅依靠超声引导,可能由于超声在血管显示方面存在局限性(如细小血管易被漏检),增加穿刺过程中血管损伤的风险。荧光透视造影验证可进一步明确针尖与血管的相对位置,降低并发症的发生几率。

此外,结合既往研究经验,超声与荧光透视联合应用能够实现优势互补。超声的实时动态监测有助于避免穿刺过程中对软组织造成损伤,荧光透视对骨性标志的清晰显示则确保了靶点定位的准确性。二者结合为手术的安全性与疗效提供了双重保障。尤其在单纯超声引导相关研究较为匮乏的背景下,荧光透视验证能够进一步提高本研究操作的可靠性与严谨性。

当然,本研究存在若干局限性。首先,样本量较小(仅2例患者、4例手术操作)限制了结果的外推性,需多中心、大样本RCT验证进行验证;其次,未设对照组(如透视引导组),无法量化辐射剂量与操作时间优势;第三,本试验未考虑解剖变异影响,约40%患者存在副闭孔神经[18],本研究未干预该分支,可能导致部分患者疗效不全,未来需探索联合消融方案;第四,未随访6个月以上,未讨论神经再生导致疼痛复发的潜在风险,需延长随访时间。

6. 小结

在本研究的2例非手术候选慢性内侧髋关节疼痛患者中,超声引导下闭孔神经关节支射频消融术初步展现出一定的应用潜力,可能在缓解疼痛、改善功能状态及减少镇痛药物依赖方面发挥作用,且具有无辐射、微创的特点。但需明确的是,本研究为小样本初步探索,结论仅能反映该技术在特定病例中的短期表现,尚不能证实其普遍有效性与安全性。未来需通过大样本、长期随访的临床研究进一步验证该技术的临床价值,为其在慢性内侧髋关节疼痛治疗中的合理应用提供更充分的证据支持。

基金项目

四川省广安市科技重点研发项目(2024SYF01)。

NOTES

*通讯作者。

参考文献

[1] Bhatia, A., Hoydonckx, Y., Peng, P. and Cohen, S.P. (2018) Radiofrequency Procedures to Relieve Chronic Hip Pain: An Evidence-Based Narrative Review. Regional Anesthesia and Pain Medicine, 43, 72-83. [Google Scholar] [CrossRef] [PubMed]
[2] Kolasinski, S.L., Neogi, T., Hochberg, M.C., Oatis, C., Guyatt, G., Block, J., et al. (2020) 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis & Rheumatology, 72, 220-233. [Google Scholar] [CrossRef] [PubMed]
[3] Ahuja, V., Thapa, D., Patial, S., Chander, A. and Ahuja, A. (2020) Chronic Hip Pain in Adults: Current Knowledge and Future Prospective. Journal of Anaesthesiology Clinical Pharmacology, 36, 450-457. [Google Scholar] [CrossRef] [PubMed]
[4] Forlenza, E.M., Nam, D., Fillingham, Y.A., et al. (2025) Pain Management in Total Hip and Knee Arthroplasty: Evidence-Based and Controversial Practices in 2024. Instructional Course Lectures, 74, 301-310.
[5] Choi, W., Hwang, S., Song, J., Leem, J., Kang, Y., Park, P., et al. (2011) Radiofrequency Treatment Relieves Chronic Knee Osteoarthritis Pain: A Double-Blind Randomized Controlled Trial. Pain, 152, 481-487. [Google Scholar] [CrossRef] [PubMed]
[6] Hunter, D.J., McDougall, J.J. and Keefe, F.J. (2008) The Symptoms of Osteoarthritis and the Genesis of Pain. Rheumatic Disease Clinics of North America, 34, 623-643. [Google Scholar] [CrossRef] [PubMed]
[7] Tinnirello, A., Todeschini, M., Pezzola, D., et al. (2018) Pulsed Radiofrequency Application on Femoral and Obturator Nerves for Hip Joint Pain: Retrospective Analysis with 12-Month Follow-Up Results. Pain Physician, 1, 407-414. [Google Scholar] [CrossRef
[8] Cheney, C.W., Ahmadian, A., Brennick, C., Zheng, P., Mattie, R., McCormick, Z.L., et al. (2021) Radiofrequency Ablation for Chronic Hip Pain: A Comprehensive, Narrative Review. Pain Medicine, 22, S14-S19. [Google Scholar] [CrossRef] [PubMed]
[9] Kallas, O.N., Nezami, N., Singer, A.D., Wong, P., Kokabi, N., Bercu, Z.L., et al. (2022) Cooled Radiofrequency Ablation for Chronic Joint Pain Secondary to Hip and Shoulder Osteoarthritis. RadioGraphics, 42, 594-608. [Google Scholar] [CrossRef] [PubMed]
[10] Guven Kose, S., Kose, H.C., Celikel, F. and Akkaya, O.T. (2022) Ultrasound-Guided Caudal Epidural Pulsed Radiofrequency for the Treatment of Failed Back Surgery Syndrome: Results of a Prospective Clinical Study. Interventional Pain Medicine, 1, Article 100145. [Google Scholar] [CrossRef] [PubMed]
[11] Hofmeister, M., Dowsett, L.E., Lorenzetti, D.L. and Clement, F. (2019) Ultrasound-Versus Fluoroscopy-Guided Injections in the Lower Back for the Management of Pain: A Systematic Review. European Radiology, 29, 3401-3409. [Google Scholar] [CrossRef] [PubMed]
[12] Petroni, G.M., Cofini, V., Necozione, S., De Sanctis, F., Commissari, R., Nazzarro, E., et al. (2024) Hip Chronic Pain: Ultrasound Guided Ablation of Anterior Articular Branches Plus Posterior Neurolysis of the Nerve to the Quadratus Femoris versus the Alone Anterior Approach—A Retrospective Observational Study. Journal of Ultrasound, 27, 545-550. [Google Scholar] [CrossRef] [PubMed]
[13] Jordan, J.M., Helmick, C.G., Renner, J.B., Luta, G., Dragomir, A.D., Woodard, J., et al. (2009) Prevalence of Hip Symptoms and Radiographic and Symptomatic Hip Osteoarthritis in African Americans and Caucasians: The Johnston County Osteoarthritis Project. The Journal of Rheumatology, 36, 809-815. [Google Scholar] [CrossRef] [PubMed]
[14] Sencan, S., Saçaklıdır, R. and Gunduz, O.H. (2024) Fluoroscopy-Guided Triple Hip Block for Patients with Hip Osteoarthritis: A New Approach. Ağrı-The Journal of The Turkish Society of Algology, 36, 120-122. [Google Scholar] [CrossRef] [PubMed]
[15] Tran, J., Peng, P.W.H., Lam, K., Baig, E., Agur, A.M.R. and Gofeld, M. (2018) Anatomical Study of the Innervation of Anterior Knee Joint Capsule: Implication for Image-Guided Intervention. Regional Anesthesia and Pain Medicine, 43, 407-414. [Google Scholar] [CrossRef] [PubMed]
[16] Tomlinson, J., Ondruschka, B., Prietzel, T., Zwirner, J. and Hammer, N. (2021) A Systematic Review and Meta-Analysis of the Hip Capsule Innervation and Its Clinical Implications. Scientific Reports, 11, Article No. 5299. [Google Scholar] [CrossRef] [PubMed]
[17] Nagpal, A.S., Brennick, C., Occhialini, A.P., Leet, J.G., Clark, T.S., Rahimi, O.B., et al. (2021) Innervation of the Posterior Hip Capsule: A Cadaveric Study. Pain Medicine, 22, 1072-1079. [Google Scholar] [CrossRef] [PubMed]
[18] Laumonerie, P., Dalmas, Y., Tibbo, M.E., Robert, S., Durant, T., Caste, T., et al. (2021) Sensory Innervation of the Hip Joint and Referred Pain: A Systematic Review of the Literature. Pain Medicine, 22, 1149-1157. [Google Scholar] [CrossRef] [PubMed]
[19] Barnett, J.J.G., Shakeri, S. and Agur, A.M.R. (2021) Overview of the Innervation of the Hip Joint. Physical Medicine and Rehabilitation Clinics of North America, 32, 745-755. [Google Scholar] [CrossRef] [PubMed]
[20] Birnbaum, K., Prescher, A., Heßler, S. and Heller, K. (1997) The Sensory Innervation of the Hip Joint—An Anatomical Study. Surgical and Radiologic Anatomy, 19, 371-375. [Google Scholar] [CrossRef] [PubMed]
[21] Sag, A.A. and Patel, P. (2022) CT-Guided Cooled Radiofrequency Denervation for Chronic Arthritis Pain of the Hip and Shoulder. Seminars in Interventional Radiology, 39, 150-156. [Google Scholar] [CrossRef] [PubMed]
[22] Heywang-Köbrunner, S.H., Amaya, B., Okoniewski, M., Pickuth, D. and Spielmann, R. (2001) CT-Guided Obturator Nerve Block for Diagnosis and Treatment of Painful Conditions of the Hip. European Radiology, 11, 1047-1053. [Google Scholar] [CrossRef] [PubMed]
[23] Gonzalez, F.M., Huang, J. and Fritz, J. (2023) Image-Guided Radiofrequency Ablation for Joint and Back Pain: Rationales, Techniques, and Results. CardioVascular and Interventional Radiology, 46, 1538-1550. [Google Scholar] [CrossRef] [PubMed]
[24] Fabris, L.K., Maretic, S.Z., Petrinovic, M., et al. (2023) Minimally Invasive Diagnostic Block and Percutaneous Radiofrequency Ablation in the Treatment of Chronic Hip Pain-Review Article. Acta Clinica Croatica, 62, 68-76.
[25] Kwun-Tung Ng, T., Chan, W., Peng, P.W.H., Sham, P., Sasaki, S. and Tsui, H. (2020) Chemical Hip Denervation for Inoperable Hip Fracture. Anesthesia & Analgesia, 130, 498-504. [Google Scholar] [CrossRef] [PubMed]
[26] Kapural, L., Jolly, S., Mantoan, J., et al. (2018) Cooled Radiofrequency Neurotomy of the Articular Sensory Branches of the Obturator and Femoral Nerves-Combined Approach Using Fluoroscopy and Ultrasound Guidance: Technical Report, and Observational Study on Safety and Efficacy. Pain Physician, 1, 279-284. [Google Scholar] [CrossRef
[27] Locher, S., Burmeister, H., Böhlen, T., Eichenberger, U., Stoupis, C., Moriggl, B., et al. (2008) Radiological Anatomy of the Obturator Nerve and Its Articular Branches: Basis to Develop a Method of Radiofrequency Denervation for Hip Joint Pain. Pain Medicine, 9, 291-298. [Google Scholar] [CrossRef] [PubMed]
[28] Sakamoto, J., Manabe, Y., Oyamada, J., Kataoka, H., Nakano, J., Saiki, K., et al. (2018) Anatomical Study of the Articular Branches Innervated the Hip and Knee Joint with Reference to Mechanism of Referral Pain in Hip Joint Disease Patients. Clinical Anatomy, 31, 705-709. [Google Scholar] [CrossRef] [PubMed]
[29] Malik, A., Simopolous, T., Elkers, H.M., et al. (2003) Percutaneous Radiofrequency Lesioning of Sensory Branches of the Obturator and Femoral Nerves for the Treatment of Non-Operable Hip Pain. Pain Physician, 4, 499-502. [Google Scholar] [CrossRef
[30] Tran, A., Reiter, D., Wong, P.K., Fritz, J., Cruz, A.R., Oskouei, S., et al. (2022) Alternative Treatment of Hip Pain from Advanced Hip Osteoarthritis Utilizing Cooled Radiofrequency Ablation: Single Institution Pilot Study. Skeletal Radiology, 51, 1047-1054. [Google Scholar] [CrossRef] [PubMed]
[31] Kumar, P., Hoydonckx, Y. and Bhatia, A. (2019) A Review of Current Denervation Techniques for Chronic Hip Pain: Anatomical and Technical Considerations. Current Pain and Headache Reports, 23, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
[32] Pressler, M.P., Renwick, C., Lawson, A., Singla, P., Wahezi, S.E. and Kohan, L.R. (2024) Radiofrequency Ablation of the Hip: Review. Annals of Palliative Medicine, 13, 927-937. [Google Scholar] [CrossRef] [PubMed]
[33] Naber, J., Lee, N. and Kapural, L. (2019) Clinical Efficacy Assessment of Cooled Radiofrequency Ablation of the Hip in Patients with Avascular Necrosis. Pain Management, 9, 355-359. [Google Scholar] [CrossRef] [PubMed]
[34] Matchett, G. and Stone, J. (2014) Combined Ultrasound and Fluoroscopic Guidance for Radiofrequency Ablation of the Obturator Nerve for Intractable Cancerassociated Hip Pain. Pain Physician, 17, E83-E87. [Google Scholar] [CrossRef
[35] Kapural, L., Naber, J., Neal, K., et al. (2021) Cooled Radiofrequency Ablation of the Articular Sensory Branches of the Obturator and Femoral Nerves Using Fluoroscopy and Ultrasound Guidance: A Large Retrospective Study. Pain Physician, 24, E611-E617.
[36] Karaoğlu, S.Ş., Sari, S., Ekin, Y., Özkan, Y. and Aydin, O.N. (2024) The Effect of Conventional Radiofrequency Thermocoagulation of Femoral and Obturator Nerves’ Articular Branches on Chronic Hip Pain: A Prospective Clinical Study. Pain Medicine, 25, 444-450. [Google Scholar] [CrossRef] [PubMed]
[37] Jadon, A. (2021) Pulsed Radiofrequency (PRF) of Pericapsular Nerves Group (PENG) in Chronic Hip Pain—A Case Report. Turkish Journal of Anaesthesiology and Reanimation, 49, 490-493. [Google Scholar] [CrossRef] [PubMed]
[38] Khan, J.S., Krane, E.J., Higgs, M., Pritzlaff, S., Hoffinger, S. and Ottestad, E. (2019) A Case Report of Combined Ultrasound and Fluoroscopic-Guided Percutaneous Radiofrequency Lesioning of the Obturator and Femoral Articular Branches in the Treatment of Persistent Hip Pain in a Pediatric Patient. Pain Practice, 19, 52-56. [Google Scholar] [CrossRef] [PubMed]
[39] Correia, R., Oliveira, L., Andrade, I., Castro Correia, M.D., Gonçalves, E., Borges, A., et al. (2024) Ultrasound-Guided Radiofrequency Ablation for Chronic Hip Pain Due to Osteoarthritis. Cureus, 16, e53743. [Google Scholar] [CrossRef] [PubMed]
[40] Chaiban, G., Paradis, T. and Atallah, J. (2013) Use of Ultrasound and Fluoroscopy Guidance in Percutaneous Radiofrequency Lesioning of the Sensory Branches of the Femoral and Obturator Nerves. Pain Practice, 14, 343-345. [Google Scholar] [CrossRef] [PubMed]