超声测量视神经鞘直径监测颅内压在麻醉手术的应用
Application of Ultrasonic Measurement of Optic Nerve Sheath Diameter in Monitoring Intracranial Pressure During Anesthesia and Surgery
DOI: 10.12677/acm.2025.15113225, PDF, HTML, XML,   
作者: 姜 卓, 史明泽, 王嘉微:西安医学院研究生工作部,陕西 西安;李 扬*:陕西省人民医院麻醉科,陕西 西安
关键词: 围手术期颅内压视神经鞘直径Perioperative Period Intracranial Pressure Optic Nerve Sheath Diameter
摘要: 目前有多种有创或无创的方法可以在围术期监测患者颅内压,不同的方法具有各自的使用范围。超声测量视神经鞘直径因其便捷、可重复性强、灵敏度高等特点,可用于监测术中颅内压变化的高危患者和术中采用特殊体位的患者以及指导术后并发症的治疗。本文就超声测量ONSD在麻醉手术中的应用进行综述,旨在为该技术在麻醉手术中的推广提供一定依据。
Abstract: Currently, there are various invasive or non-invasive methods for monitoring intracranial pressure during anesthesia and surgery, each with its specific clinical applicability. Ultrasonic measurement of the optic nerve sheath diameter is particularly suitable for monitoring high-risk patients with intraoperative intracranial pressure fluctuations, those requiring special surgical positioning, and guiding postoperative complication management due to its advantages of convenience, strong reproducibility, and high sensitivity. This article reviews the clinical applications of optic nerve sheath diameter measurement in perioperative anesthesia, aiming to provide evidence-based support for promoting this technique in surgical anesthesia practice.
文章引用:姜卓, 史明泽, 王嘉微, 李扬. 超声测量视神经鞘直径监测颅内压在麻醉手术的应用[J]. 临床医学进展, 2025, 15(11): 1315-1323. https://doi.org/10.12677/acm.2025.15113225

1. 引言

颅内压(Intracranial Pressure, ICP)的剧烈波动可对患者造成严重的影响。研究表明,颅高压可通过多重病理机制引发神经损伤:首先升高的ICP可直接破坏血脑屏障完整性,诱导炎症介质释放及导致渗透压梯度失衡,进而引发血管源性脑水肿;其次脑组织机械性压迫可导致微循环障碍及线粒体功能障碍,最终引发神经元凋亡或坏死[1] [2]。从生理学角度而言,ICP是颅腔内容物(脑脊液(Cerebrospinal Fluid, CSF)、脑组织、及血液)对颅骨内壁产生的静态压力,其动态平衡主要依赖CSF的生成与吸收调节[3]。实施ICP监测的核心价值在于预警致命性颅压失衡状态。值得注意的是,ICP升高不仅是颅脑损伤严重程度的标志,其本身即可构成直接致死因素。若未能及时干预,急性颅内高压可迅速危及生命:其一为小脑幕切迹疝及继发性脑干受压引发的呼吸循环中枢衰竭;其二为脑灌注压的急剧下降导致全脑出现缺血缺氧性损伤[4]。此外,颅压过低虽较为罕见,但亦可引发脑脊液动力学紊乱及脑组织移位风险[5]。因此,对存在颅压波动高危因素的患者进行实时监测是有必要的。

2. ICP监测方法

2.1. 侵入性ICP监测方法

目前ICP监测方法的金标主要有两种:脑室外引流或脑实质内探头,但二者皆有出血或感染风险,增加患者痛苦,临床应用受限[6]。腰穿(Lumbar Puncture, LP)也可用于测量ICP,在没有阻塞的情况下,LP脑脊液初压已被证明与脑室压密切对应,但它只能提供ICP的单次瞬时压力值,并且对于存在颅腔椎管存在压力梯度(如脊髓占位病变或CSF动力学障碍)的患者,LP技术可能增加脑出血的风险[7]-[9]。目前不再建议使用LP来诊断神经重症监护机构中的脑出血,而是更常用于脑积水和特发性颅高压的诊断。

2.2. 非侵入性ICP监测方法

非侵入方法由于避免了与颅内导管置入相关的并发症,同时可能快速和降低了颅内压评估的成本,应用更加广泛。目前已知的非侵入性ICP监测方法包括:磁共振(MRI),计算机断层扫描(CT),以及经颅多普勒(TCD)、鼓室测量、近红外光谱、脑电图、耳声发射评估等[4]

近年来,超声下测量视神经鞘直径(Optic Nerve Sheath Diameter, ONSD)监测颅内压因其可重复性高、安全和低成本的优势,逐渐受到关注。包裹视神经的鞘膜是硬脑膜的直接延续,其间的蛛网膜下腔充满CSF,形成了颅内与眶内两个腔室之间的直接连通,由于视神经鞘具有可扩张性,CSF压力的变化会影响视神经鞘的体积,并伴随着眼球后方约3 mm处间隙的波动[10]。既往研究显示:视神经周围CSF压力与ICP之间存在线性关系[11] [12],在一定范围内,ONSD几乎与ICP变化直接相关,显示出良好的灵敏度和特异性[13]。本文将系统综述超声监测ONSD在围术期颅内压无创评估中的最新研究进展,深入探讨该技术对手术麻醉管理的优化价值,为建立精准化颅内压管理方案提供理论依据 。

3. ONSD标准化测量方法与质量控制

超声测量ONSD的无创性与可靠性高度依赖于标准化的操作流程。近期发布的国际共识为此提供了权威规范,其核心在于通过全流程质量控制,确保测量结果的准确性与可比性[14]。规范的ONSD测量涵盖设备准备、患者体位、图像获取、精确测量与数据记录等多个环节,具体技术要点归纳如表1。严格遵循此标准化流程,是确保ONSD成为围术期可靠监测工具的前提。

Table 1. Key points for standardized ONSD measurement and quality control

1. ONSD标准化测量与质量控制要点

类别

核心要求

说明与临床意义

设备与安全

高频线阵探头(≥7.5 MHz);启用眼部预设;MI ≤ 0.23,TI ≤ 1.0;避免压迫眼球。

确保图像质量与患者安全。压迫眼球可致测量值假性偏低。

患者体位

仰卧位,头部中立,双眼中立注视。

标准化体位是保证动态监测数据可比性的基础。

成像规范

经眼睑轴向切面;声束与视神经平行;清晰显示“靶心征”。

获取标准切面,避免倾斜所致伪影。

测量规范

参考点:视网膜;深度:后3 mm;测量:ONSD内径;角度:垂直(90˚)。

3 mm处重复性最佳;测量内径边界清晰,为共识推荐。

数据记录

双眼独立测量与报告;重点关注动态趋势。

趋势变化比单次绝对值更具临床意义。

注:MI,机械指数;TI,热指数。测量ONSD内径指测量视神经鞘膜高回声条带的内缘至对侧内缘的垂直距离。

4. 麻醉管理对ICP及ONSD的影响

麻醉医生的核心职责在于维持术中生理稳态,其管理措施——包括麻醉方案制定、通气参数调节与液体治疗——均可直接或间接影响脑血流量(CBF)、脑代谢率(CMRO2)及脑血管自动调节功能,进而引起颅内压(ICP)的波动,并实时反映于视神经鞘直径(ONSD)的变化。深入理解这些影响的内在机制,是麻醉医生正确解读ONSD数值、区分生理性波动与病理性升高、并实施精准脑保护干预的前提。

4.1. 麻醉药物的影响

不同麻醉药物通过对CMRO2、CBF和脑血管阻力的差异化作用来调节ICP。静脉麻醉药中丙泊酚和依托咪酯能强力降低CMRO2,耦合引起CBF及脑血容量(CBV)的下降,从而有效降低ICP与ONSD。与之相反,挥发性吸入麻醉药(如七氟烷、地氟烷)呈剂量依赖性引起脑血管扩张,增加CBV,具有升高ICP/ONSD的潜在风险。因此,在颅内顺应性降低的患者中,建议使用低浓度(<1.0 MAC)或采用全凭静脉麻醉策略。阿片类药物(如芬太尼、瑞芬太尼)对CMRO2和CBF影响极小,不直接改变ICP,但能有效抑制气管插管、手术切皮等伤害性刺激引起的ICP反射性升高,是理想的辅助用药。

4.2. 通气参数的管理

动脉血二氧化碳分压(PaCO2)是围术期调控CBF最强效的生理因素[15]。过度通气(低PaCO2)可引起脑血管收缩,快速降低CBF、CBV、ICP及ONSD,是处理急性颅内高压的有效手段;但需注意,预防性或不恰当的长期过度通气可能导致脑缺血,应予以避免。反之,通气不足(高PaCO2)可引起脑血管显著扩张,增加CBF、CBV、ICP及ONSD,在神经外科及高危患者中必须严格防止。此外,高水平的呼气末正压(PEEP)可能通过增加胸内压、阻碍脑静脉回流而间接升高ICP,在颅内与肺顺应性均差的患者中需谨慎应用与监测。

4.3. 液体管理策略

合理的液体管理是维持脑灌注压(CPP)同时避免脑水肿加重的基础。在液体种类选择上,等渗晶体液(如生理盐水、平衡盐溶液)是首选,能有效维持血容量与血浆渗透压;严禁使用低渗晶体液(如5%葡萄糖液),因其会降低血浆渗透压,促使水分透过血脑屏障进入脑组织,显著升高ICP并增宽ONSD;高渗盐水则通过建立血管内外的渗透梯度,将脑组织水分“抽出”,能强力、快速地降低ICP与ONSD,常用于治疗颅内高压危象[16]

5. 在特殊体位手术中的应用

体位是围术期影响ICP的重要因素之一。特殊体位可通过改变静脉回流、胸腹内压及脑脊液动力学进而影响ICP,此类操作期间利用ONSD进行监测具有重要临床价值。

5.1. 腹腔镜手术

腹腔镜手术期间,持续的CO2气腹引起腹内压力升高,阻碍下腔静脉回流、同时CO2的蓄积导致的脑循环血管的扩张,加上腰椎静脉丛的受压[17],共同促使颅内压的升高。研究显示[18],颅内压随着气腹压力增加而显著升高,最高可达为25 mmHg,存在潜在危险。此时若采用Trendelenburg体位,会进一步加剧这一趋势。该体位可能导致患者颈静脉瓣关闭不全,增加颅内血容量和压力[19],影响预后。一项研究显示[20],腹腔镜直肠癌手术中ONSD < 5.00 mm的患者术后1天和4天的MMSE和CAM评分明显低于ONSD ≤ 4.00 mm的患者。因此在此类术中依据ONSD值时及时地调整体位以及气腹压力是必要的。

5.2. 俯卧位手术

俯卧位手术期间患者并发症发生率较高[21]。Wright JM等的研究发现,俯卧位通气期间患者ICP明显增加[22]。Robba C等人则观察到,全麻脊柱手术在由仰卧位转变为俯卧位后,患者ONSD的平均值由4.0 mm增加至4.8 mm [23],且随着手术时间延长逐渐增宽[24]。这可能由于俯卧位时颈部静脉血管受到压迫,颅内静脉回流障碍,导致颅内血容量增加。而对于颅内顺应性降低的患者,颅内压可能在俯卧位情况下急速增加[25]。当采用呼气末正压通气(PEEP)后,患者ONSD变化更明显,提示在俯卧位情况下,PEEP技术应用可能受到限制[22]

6. 在颅脑损伤病人的应用

颅脑损伤患者是围术期ICP管理的重点人群。此类患者术前常已存在颅内高压,麻醉操作(如气道管理)及手术本身均可引起ICP剧烈波动,ONSD监测为此提供了动态评估手段。由于原发损伤,颅脑损伤患者术前常存在颅内高压,成功救治的关键在于及时、有效且持续地控制ICP [26]。全身麻醉诱导时喉镜操作以及气管插管是强烈的应激源,可能引起血流动力学波动和ICP升高[27]。一过性的颅内压升高对于无颅脑损伤患者影响较小、但对于重型颅脑损伤病人可能造成严重后果[28]。在正常患者术中气道压增加可以增加[29]、减少[30]或不改变[31] CBF速度;但对于脑损伤病人:若初始ICP已升高,气道压增压可能加剧ICP [32]。研究显示[33]非颅脑伤患者气管插管时的ONSD较喉罩植入时明显增加。颅脑损伤患者在气管操作过程中ICP均升高至20 mmHg以上,操作停止ONSD逐渐恢复至基线水平[34]。一项纳入了64例颅脑损伤病人前瞻性研究显示:相比于其他无创方法,ONSD的检测颅内压增高的灵敏度(ICP ≥ 20 mm Hg)最高[35]。而在此类手术患者围拔管期及术后维持颅内压的稳定仍然重要,研究显示与拔管前相比,拔管后5 min及10 min患者ONSD明显增加[36]。而脑损伤患者尽管进行了去骨瓣减压术,仍可能出现颅内压升高。目前临床建议去骨瓣减压术后应继续进行ICP监测[37]。在对急性脑损伤患者进行的SYNAPSE-ICU研究中,与未进行监测的患者相比,行ICP测的最严重损伤患者的6个月死亡率较低,恢复较好[38]

7. 在先兆子痫患者剖宫产手术中的应用

先兆子痫显著增加了产妇的发病率和死亡率[39]。5%~20%的产妇,特别是先兆子痫发生在足月前者,因全身性内皮损伤引起全身性水肿,而脑水肿可能会引起先兆子痫和子痫产妇ICP升高[40]。据估计,严重先兆子痫病例的剖宫产率很高(早产儿约为70%或更高) [41]。Park SK等的研究显示[42],先兆子痫患者的术前基线ONSD较高,且在硬膜外注药3 min后先兆子痫患者的ONSD平均值显著高于血压正常的孕妇。研究还证实了对于有颅内压升高风险且无其他颅内病变的子痫前期患者,硬膜外麻醉并没有进一步增加ONSD,在此类患者中的应用是安全的。目前ONSD与先兆子痫临床症状相关性可能还需要进一步研究。但较宽的ONSD与产妇入住ICU和产妇未遂事故密切相关[43]

8. ONSD与术后并发症

8.1. 预测硬膜外刺破后头痛

硬脊膜穿破后头痛(Postdural Puncture Headache, PDPH)是腰椎穿刺术后的严重并发症之一。根据病因不同,其发生率在0.3%到40%之间[44]。PDPH多发病于术后5天内[45]。而诊断治疗的延误可能导致严重并发症:包括复视、严重头痛(非体位性)、呕吐,严重者可能出现脑静脉血栓形成、偏瘫或意识丧失[46]。在早期进行诊断及干预是必要的。其可能原因包括:疼痛的牵引/压迫敏感的颅内结构和颅内血管扩张[47]。其本质是CSF过量丢失的后果,而CSF变化会引起ONSD变化。一项纳入163例产妇的研究显示:在手术结束时ONSD未显示上升趋势的女性中,PDPH的风险显著更高[48]。Ahmet Besir等人的研究表明[49],在低ICP诱发的PDPH患者中,头痛严重程度与ONSD呈负相关,头痛严重程度越高,ONSD的降低幅度越大,该研究将OSND低于3.2 ± 0.3 mm为头痛的临界值。大量研究证明,椎管内麻醉前后ONSD值的降低可以作为预测PDPH发展的重要参数[50],但目前并没有确定颅内低压的ONSD的临界值。同时超声测量ONSD可作为腰椎硬膜外血贴治疗PDPH有效的标志,治疗成功受试者的ONSD扩大[51]

8.2. 预测心跳骤停患者预后

手术室和术后发生心脏骤停是灾难性的,麻醉医生在此期间的处理中起着关键作用。与其他环境相比,麻醉医生总是目睹心脏骤停,可以及时有效地处理药物副作用和气道危象[52],使患者转危为安。但心跳骤停恢复阶段患者仍处于高危期,需要及时判断复苏是否有效。目前指南推荐的预测指标包括:脑电图、体感诱发电位、神经特异性及自主循环恢复,然而这些指标可能会有53%~68%的不确定性[53]。大量研究表明,较宽的ONSD与心脏骤停后不良的神经系统结局相关,ONSD低于5.4 mm预示着良好的结局[54]-[56],高于5.11 mm~7.0 mm的ONSD提示预后不良[56]。Marlous M L H Verhulst等人的研究则进一步发现监测心脏骤停后第1~3天在体感诱发电位和脑电图中增加ONSD测量值将可靠预测不良结果的敏感性从25%提高到41%。该研究在排除非神经系统死因的患者后,多种预测方式联合将预测不良结局的敏感性从27%增加到50%,但增加ONSD测量并未改善对良好神经系统结局的预测[57]

综上所述,超声测量ONSD通过监测围术期ICP可能发生剧烈变化的患者,为麻醉医生及时采取干预措施、指导术后诊疗提供了重要依据。然而,目前ONSD临床研究多集中于颅内压增高领域,对颅内压降低患者的研究相对较少,此方向值得未来进一步探索。

NOTES

*通讯作者。

参考文献

[1] Chodobski, A., Zink, B.J. and Szmydynger-Chodobska, J. (2011) Blood-Brain Barrier Pathophysiology in Traumatic Brain Injury. Translational Stroke Research, 2, 492-516. [Google Scholar] [CrossRef] [PubMed]
[2] Marmarou, A. (2007) A Review of Progress in Understanding the Pathophysiology and Treatment of Brain Edema. Neurosurgical Focus, 22, 1-10. [Google Scholar] [CrossRef] [PubMed]
[3] Canac, N., Jalaleddini, K., Thorpe, S.G., Thibeault, C.M. and Hamilton, R.B. (2020) Review: Pathophysiology of Intracranial Hypertension and Noninvasive Intracranial Pressure Monitoring. Fluids and Barriers of the CNS, 17, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
[4] Hawryluk, G.W.J., Citerio, G., Hutchinson, P., Kolias, A., Meyfroidt, G., Robba, C., et al. (2022) Intracranial Pressure: Current Perspectives on Physiology and Monitoring. Intensive Care Medicine, 48, 1471-1481. [Google Scholar] [CrossRef] [PubMed]
[5] Schievink, W.I. (2021) Spontaneous Intracranial Hypotension. New England Journal of Medicine, 385, 2173-2178. [Google Scholar] [CrossRef] [PubMed]
[6] Le Roux, P., Menon, D.K., Citerio, G., et al. (2014) Consensus Summary Statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A Statement for Healthcare Professionals from the Neuro-Critical Care Society and the European Society of Intensive Care Medicine. Neurocritical Care, 21, S1-S26.
[7] Langfitt, T.W., Weinstein, J.D. and Kassell, N.F. (1964) Transmission of Increased Intracranial Pressure. Journal of Neurosurgery, 21, 989-997. [Google Scholar] [CrossRef] [PubMed]
[8] Andrews, P.D. and Citerio, G. (2004) Intracranial Pressure. Part One: Historical Overview and Basic Concepts. Intensive Care Medicine, 30, 1730-1733. [Google Scholar] [CrossRef] [PubMed]
[9] Heldt, T., Zoerle, T., Teichmann, D. and Stocchetti, N. (2019) Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care. Annual Review of Biomedical Engineering, 21, 523-549. [Google Scholar] [CrossRef] [PubMed]
[10] Moretti, R. and Pizzi, B. (2011) Ultrasonography of the Optic Nerve in Neurocritically Ill Patients. Acta Anaesthesiologica Scandinavica, 55, 644-652. [Google Scholar] [CrossRef] [PubMed]
[11] Sekhon, M.S., Griesdale, D.E., Robba, C., McGlashan, N., Needham, E., Walland, K., et al. (2015) Erratum to: Optic Nerve Sheath Diameter on Computed Tomography Is Correlated with Simultaneously Measured Intracranial Pressure in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 41, 177-177. [Google Scholar] [CrossRef] [PubMed]
[12] Geeraerts, T., Merceron, S., Benhamou, D., Vigué, B. and Duranteau, J. (2008) Non-Invasive Assessment of Intracranial Pressure Using Ocular Sonography in Neurocritical Care Patients. Intensive Care Medicine, 34, 2062-2067. [Google Scholar] [CrossRef] [PubMed]
[13] Robba, C., Santori, G., Czosnyka, M., Corradi, F., Bragazzi, N., Padayachy, L., et al. (2018) Optic Nerve Sheath Diameter Measured Sonographically as Non-Invasive Estimator of Intracranial Pressure: A Systematic Review and Meta-analysis. Intensive Care Medicine, 44, 1284-1294. [Google Scholar] [CrossRef] [PubMed]
[14] Hirzallah, M.I., Lochner, P., Hafeez, M.U., Lee, A.G., Krogias, C., Dongarwar, D., et al. (2024) Optic Nerve Sheath Diameter Point-of-Care Ultrasonography Quality Criteria Checklist: An International Consensus Statement on Optic Nerve Sheath Diameter Imaging and Measurement. Critical Care Medicine, 52, 1543-1556. [Google Scholar] [CrossRef] [PubMed]
[15] Sharie, S.A., Almari, R., Azzam, S., Al-Husinat, L., Araydah, M., Battaglini, D., et al. (2025) Brain Protective Ventilation Strategies in Severe Acute Brain Injury. Current Neurology and Neuroscience Reports, 25, Article No. 68. [Google Scholar] [CrossRef
[16] Alexandri, M., Smith, T.M., Mitchell, C.A., Ausman, C. and Brillhart, D.B. (2025) Real-Time Reduction in Optic Nerve Sheath Diameter Following Hypertonic Saline Bolus in a Patient with Penetrating Traumatic Brain Injury: A Case Report. Journal of Special Operations Medicine, 25, 87-91. [Google Scholar] [CrossRef
[17] Radkowski, P., Oniszczuk, H., Opolska, J., Kłosińska, A., Dabdoub, T. and Onichimowski, D. (2024) Optimizing Anesthetic Management for Laparoscopic Surgery: A Comprehensive Review. Medical Science Monitor, 30, e945951. [Google Scholar] [CrossRef] [PubMed]
[18] Kamine, T.H., Papavassiliou, E. and Schneider, B.E. (2014) Effect of Abdominal Insufflation for Laparoscopy on Intracranial Pressure. JAMA Surgery, 149, 380-382. [Google Scholar] [CrossRef] [PubMed]
[19] Chen, K., Wang, L., Wang, Q., Liu, X., Lu, Y., Li, Y., et al. (2019) Effects of Pneumoperitoneum and Steep Trendelenburg Position on Cerebral Hemodynamics during Robotic-Assisted Laparoscopic Radical Prostatectomy. Medicine, 98, e15794. [Google Scholar] [CrossRef] [PubMed]
[20] Song, B., Li, L., Wang, X., Guo, Y. and Li, J. (2024) Relationship between Intracranial Pressure and Neurocognitive Function among Older Adults after Radical Resection of Rectal Cancer. World Journal of Gastrointestinal Surgery, 16, 3261-3268. [Google Scholar] [CrossRef] [PubMed]
[21] Edgcombe, H., Carter, K. and Yarrow, S. (2008) Anaesthesia in the Prone Position. British Journal of Anaesthesia, 100, 165-183. [Google Scholar] [CrossRef] [PubMed]
[22] Wright, J.M., Gerges, C., Shammassian, B., Labak, C.M., Herring, E.Z., Miller, B., et al. (2021) Prone Position Ventilation in Neurologically Ill Patients: A Systematic Review and Proposed Protocol. Critical Care Medicine, 49, e269-e278. [Google Scholar] [CrossRef] [PubMed]
[23] Robba, C., Bragazzi, N.L., Bertuccio, A., Cardim, D., Donnelly, J., Sekhon, M., et al. (2017) Effects of Prone Position and Positive End-Expiratory Pressure on Noninvasive Estimators of ICP: A Pilot Study. Journal of Neurosurgical Anesthesiology, 29, 243-250. [Google Scholar] [CrossRef] [PubMed]
[24] Duan, X., Wei, J., Liang, A., et al. (2024) Small Tidal Volume Hyperventilation Relieves Intraocular and Intracranial Pressure Elevation in Prone Spinal Surgery: A Randomized Controlled Trial. Journal of Southern Medical University, 44, 660-665.
[25] Nekludov, M., Bellander, B.‐M. and Mure, M. (2006) Oxygenation and Cerebral Perfusion Pressure Improved in the Prone Position. Acta Anaesthesiologica Scandinavica, 50, 932-936. [Google Scholar] [CrossRef] [PubMed]
[26] Huang, Q.B., Zhang, Y., Su, Y.H., et al. (2013) Prognostic Correlation of Intracranial Pressure Monitoring in Patients with Severe Craniocerebral Injury. Chinese Medical Journal, 93, 1788-1790.
[27] McCormack, E., Aysenne, A., Cardona, J.J., Chaiyamoon, A., Bui, C.J., Dumont, A.S., et al. (2023) Effects of Intubation Technique on Intracranial Pressure: A Cadaveric Study. Neurosurgical Review, 46, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
[28] Maissan, I.M., Hollestelle, R.V., Rijs, K., Jaspers, S., Hoeks, S., Haitsma, I.K., et al. (2023) Intravenous Lidocaine Attenuates Distention of the Optical Nerve Sheath, a Correlate of Intracranial Pressure, during Endotracheal Intubation. Minerva Anestesiologica, 89, 131-137. [Google Scholar] [CrossRef] [PubMed]
[29] Shortland, D.B., Field, D., Archer, L.N., Gibson, N.A., Woods, K.L., Evans, D.H., et al. (1989) Cerebral Haemodynamic Effects of Changes in Positive End Expiratory Pressure in Preterm Infants. Archives of Disease in Childhood, 64, 465-469. [Google Scholar] [CrossRef] [PubMed]
[30] Scala, R., Turkington, P.M., Wanklyn, P., Bamford, J. and Elliott, M.W. (2003) Effects of Incremental Levels of Continuous Positive Airway Pressure on Cerebral Blood Flow Velocity in Healthy Adult Humans. Clinical Science, 104, 633-639. [Google Scholar] [CrossRef] [PubMed]
[31] Bowie, R.A., O’Connor, P.J., Hardman, J.G. and Mahajan, R.P. (2001) The Effect of Continuous Positive Airway Pressure on Cerebral Blood Flow Velocity in Awake Volunteers. Anesthesia & Analgesia, 92, 415-417. [Google Scholar] [CrossRef] [PubMed]
[32] Apuzzo, M.L.J., Weiss, M.H., Petersons, V., Small, R.B., Kurze, T. and Heiden, J.S. (1977) Effect of Positive End Expiratory Pressure Ventilation on Intracranial Pressure in Man. Journal of Neurosurgery, 46, 227-232. [Google Scholar] [CrossRef] [PubMed]
[33] 刘玥, 张伟, 宋芬, 等. 气管插管与喉罩对非颅脑手术患者视神经鞘直径影响的比较[J]. 临床麻醉学杂志, 2019, 35(11): 1089-1092.
[34] Maissan, I.M., Dirven, P.J.A.C., Haitsma, I.K., Hoeks, S.E., Gommers, D. and Stolker, R.J. (2015) Ultrasonographic Measured Optic Nerve Sheath Diameter as an Accurate and Quick Monitor for Changes in Intracranial Pressure. Journal of Neurosurgery, 123, 743-747. [Google Scholar] [CrossRef] [PubMed]
[35] Robba, C., Cardim, D., Tajsic, T., Pietersen, J., Bulman, M., Donnelly, J., et al. (2017) Ultrasound Non-Invasive Measurement of Intracranial Pressure in Neurointensive Care: A Prospective Observational Study. PLOS Medicine, 14, e1002356. [Google Scholar] [CrossRef] [PubMed]
[36] 付鸿林, 胡静娜, 张雪薇, 等. 超声在围拔管期颅内压监测中的应用[J]. 中国超声医学杂志, 2024, 40(4): 361-365.
[37] Zoerle, T., Beqiri, E., Åkerlund, C.A.I., Gao, G., Heldt, T., Hawryluk, G.W.J., et al. (2024) Intracranial Pressure Monitoring in Adult Patients with Traumatic Brain Injury: Challenges and Innovations. The Lancet Neurology, 23, 938-950. [Google Scholar] [CrossRef] [PubMed]
[38] Gao, G., Wu, X., Feng, J., Hui, J., Mao, Q., Lecky, F., et al. (2020) Clinical Characteristics and Outcomes in Patients with Traumatic Brain Injury in China: A Prospective, Multicentre, Longitudinal, Observational Study. The Lancet Neurology, 19, 670-677. [Google Scholar] [CrossRef] [PubMed]
[39] Ives, C.W., Sinkey, R., Rajapreyar, I., Tita, A.T.N. and Oparil, S. (2020) Preeclampsia—Pathophysiology and Clinical Presentations. Journal of the American College of Cardiology, 76, 1690-1702. [Google Scholar] [CrossRef] [PubMed]
[40] Sterrett, M.E., Austin, B., Barnes, R.M. and Chang, E.Y. (2022) Optic Nerve Sheath Diameter in Severe Preeclampsia with Neurologic Features versus Controls. BMC Pregnancy and Childbirth, 22, Article No. 224. [Google Scholar] [CrossRef] [PubMed]
[41] Amorim, M.M.R., Katz, L., Barros, A.S., Almeida, T.S.F., Souza, A.S.R. and Faúndes, A. (2015) Maternal Outcomes According to Mode of Delivery in Women with Severe Preeclampsia: A Cohort Study. The Journal of Maternal-Fetal & Neonatal Medicine, 28, 654-660. [Google Scholar] [CrossRef] [PubMed]
[42] Park, S., Kim, H., Kim, Y., Jang, Y. and Kim, J. (2024) Effect of Epidural Anesthesia on the Optic Nerve Sheath Diameter in Patients with Pre-Eclampsia: A Prospective Observational Study. Regional Anesthesia & Pain Medicine, 50, 828-834. [Google Scholar] [CrossRef] [PubMed]
[43] da Mota, M.F., de Amorim, M.M., Correia, M.D.T. and Katz, L. (2024) The Optic Nerve Sheath in Hypertensive Disorders of Pregnancy and Perinatal Outcomes: A Cohort Study. BMC Pregnancy and Childbirth, 24, Article No. 654. [Google Scholar] [CrossRef] [PubMed]
[44] Sprigge, J.S. and Harper, S.J. (2008) Accidental Dural Puncture and Post Dural Puncture Headache in Obstetric Anaesthesia: Presentation and Management: A 23‐Year Survey in a District General Hospital. Anaesthesia, 63, 36-43. [Google Scholar] [CrossRef] [PubMed]
[45] Uppal, V., Russell, R., Sondekoppam, R., Ansari, J., Baber, Z., Chen, Y., et al. (2023) Consensus Practice Guidelines on Postdural Puncture Headache from a Multisociety, International Working Group: A Summary Report. JAMA Network Open, 6, e2325387. [Google Scholar] [CrossRef] [PubMed]
[46] Li, H., Wang, Y., Oprea, A.D. and Li, J. (2022) Postdural Puncture Headache—Risks and Current Treatment. Current Pain and Headache Reports, 26, 441-452. [Google Scholar] [CrossRef] [PubMed]
[47] Schyns-van den Berg, A.M.J.V. and Gupta, A. (2023) Postdural Puncture Headache: Revisited. Best Practice & Research Clinical Anaesthesiology, 37, 171-187. [Google Scholar] [CrossRef] [PubMed]
[48] Leger, F.B.S., Medina, L., Chiniard, T., et al. (2023) The Value of the Optic Nerve Sheath Diameter (ONSD) in Predicting Postdural Puncture Headache (PDPH): A Prospective Observational Study. Pain Physician Journal, 26, 45-52. [Google Scholar] [CrossRef
[49] Besir, A., Tertemiz, O.F., Akdogan, A. and Duman, E.N. (2019) The Importance of Optic Nerve Sheath Diameter in Post-Dural Puncture Headache Diagnosis and Follow-Up. Archives of Neuropsychiatry, 56, 195-199. [Google Scholar] [CrossRef] [PubMed]
[50] Boyacı, S., Onay, M. and Güleç, M.S. (2024) Optic Nerve Sheath Diameter Measurement for Prediction of Postdural Puncture Headache. Journal of Clinical Monitoring and Computing, 38, 415-422. [Google Scholar] [CrossRef] [PubMed]
[51] Dubost, C., Le Gouez, A., Zetlaoui, P.J., Benhamou, D., Mercier, F.J. and Geeraerts, T. (2011) Increase in Optic Nerve Sheath Diameter Induced by Epidural Blood Patch: A Preliminary Report. British Journal of Anaesthesia, 107, 627-630. [Google Scholar] [CrossRef] [PubMed]
[52] McEvoy, M.D., Thies, K., Einav, S., Ruetzler, K., Moitra, V.K., Nunnally, M.E., et al. (2018) Cardiac Arrest in the Operating Room: Part 2—Special Situations in the Perioperative Period. Anesthesia & Analgesia, 126, 889-903. [Google Scholar] [CrossRef] [PubMed]
[53] Nolan, J.P., Sandroni, C., Böttiger, B.W., Cariou, A., Cronberg, T., Friberg, H., et al. (2021) European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-Resuscitation Care. Resuscitation, 161, 220-269. [Google Scholar] [CrossRef] [PubMed]
[54] Rush, B., Wormsbecker, A., Berger, L., Wiskar, K., Sekhon, M.S. and Griesdale, D.E. (2017) Optic Nerve Sheath Diameter on Computed Tomography Not Predictive of Neurological Status Post-Cardiac Arrest. CJEM, 19, 181-185. [Google Scholar] [CrossRef] [PubMed]
[55] Lee, D.H., Lee, S.H., Oh, J.H., Cho, I.S., Lee, Y.H., Han, C., et al. (2018) Optic Nerve Sheath Diameter Measured Using Early Unenhanced Brain Computed Tomography Shows No Correlation with Neurological Outcomes in Patients Undergoing Targeted Temperature Management after Cardiac Arrest. Resuscitation, 128, 144-150. [Google Scholar] [CrossRef] [PubMed]
[56] Chae, M.K., Ko, E., Lee, J.H., Lee, T.R., Yoon, H., Hwang, S.Y., et al. (2016) Better Prognostic Value with Combined Optic Nerve Sheath Diameter and Grey-to-White Matter Ratio on Initial Brain Computed Tomography in Post-Cardiac Arrest Patients. Resuscitation, 104, 40-45. [Google Scholar] [CrossRef] [PubMed]
[57] Verhulst, M.M.L.H., Visser, I.M., Keijzer, H.M., de Kruijf, N.L.M., Peters, E.J.G., Wilbers, T., et al. (2023) Additional Predictive Value of Optic Nerve Sheath Diameter for Neurological Prognosis after Cardiac Arrest: A Prospective Cohort Study. The Ultrasound Journal, 15, Article No. 46. [Google Scholar] [CrossRef] [PubMed]