复合炎症指标对冠脉支架内再狭窄预测的研究进展
Research Progress on the Prediction of Coronary In-Stent Restenosis Using Composite Inflammatory Indices
DOI: 10.12677/acm.2025.15113227, PDF, HTML, XML,   
作者: 李 诗, 刘晓燃, 袁忠明*:重庆医科大学附属第二医院老年医学科,重庆
关键词: 复合炎症指标支架内再狭窄冠心病Composite Inflammatory Indices In-Stent Restenosis Coronary Heart Disease
摘要: 冠心病(CHD)属于慢性炎症性病变,临床上常采用经皮冠状动脉介入治疗(PCI)作为血运重建的关键手段。然而,该治疗术后可能出现的支架内再狭窄(ISR),是影响治疗效果的主要并发症之一。随着相关机制研究的不断深入,炎症反应被证实与ISR的发生发展关系密切。复合炎症指标是基于单一炎症指标衍生而来,因其能够更全面、综合地反映机体炎症状态,所以在评估疾病进展、识别高危人群以及改善长期预后方面具有重要意义,是预测ISR风险的可靠生物标志物,有望为临床预后判断与个体化治疗提供指导。本文就多种复合炎症指标作为冠脉ISR预测因子的研究进行综述。
Abstract: Coronary heart disease (CHD) is characterized as a chronic inflammatory process, and percutaneous coronary intervention (PCI) is widely employed as a pivotal revascularization strategy. However, in-stent restenosis (ISR), a common complication following PCI, significantly impacts long-term treatment efficacy. Growing mechanistic evidence has established a close association between inflammatory responses and the pathogenesis of ISR. Derived from individual inflammatory markers, composite inflammatory indices provide a more comprehensive and integrated assessment of systemic inflammation. These indices are valuable for evaluating disease progression, identifying high-risk patients, and improving long-term outcomes, serving as reliable biomarkers for predicting ISR risk. They also offer potential guidance for prognostic assessment and personalized therapeutic approaches. This review summarizes current research on various composite inflammatory indices as predictors of coronary ISR.
文章引用:李诗, 刘晓燃, 袁忠明. 复合炎症指标对冠脉支架内再狭窄预测的研究进展[J]. 临床医学进展, 2025, 15(11): 1333-1341. https://doi.org/10.12677/acm.2025.15113227

1. 引言

近些年来,随着国内老龄化进程的不断加快以及人民生活习惯的转变,心血管系统疾病(Cardiovascular Disease, CVD)已跃居中国居民死亡原因的首位,其中冠心病(Coronary Heart Disease, CHD)的发病率与死亡率逐年上升,已成为一个重大的公共卫生挑战[1]。在此背景下,经皮冠状动脉介入治疗(Percutaneous Coronary Intervention, PCI)的广泛应用,有效地使靶向病变血管血运重建,已显著改善了冠心病患者的临床结局,为其患者缓解病情及远期生存率带来巨大帮助。尽管药物洗脱支架技术不断迭代和辅助药物治疗方案日益优化,但仍有10%患者在接受PCI治疗后出现支架内狭窄(In-Stent Restenosis, ISR) [2]。ISR是目前影响冠心病患者远期预后的主要临床挑战之一,探索能够高效、便捷地预测ISR发生的血清学标志物,已成为当前术后管理的研究重点。随着机制的深入研究,炎症反应被证实广泛参与ISR的病理进程。复合炎症指标通过整合多项参数,较单一炎症指标具有更优的炎症评估能力,本文以复合炎症指标对ISR预测价值进行了综述,旨在辅助临床医生实现早期识别与干预ISR,从而改善冠心病患者长期预后结局。

2. ISR与炎症

ISR是指PCI术后一种血管重构现象,其诊断标准为:ISR通过冠状动脉造影评估,定义为原支架段及支架近端和远端5 mm边缘区域的直径狭窄率 ≥ 50% [3]。根据冠状动脉造影对ISR进行分类,可分为四类:局灶性ISR:再狭窄病变长度 ≤ 10 mm;弥漫性ISR:病变长度 > 10 mm,但局限于支架内;增殖性ISR:病变长度 > 10 mm,且延伸至支架两端之外;完全闭塞ISR:支架内血管完全闭塞[4]。ISR是一种复杂的病理生理过程,其核心是支架内新内膜增生和新动脉粥样硬化形成,而炎症反应贯穿于这两大过程的始终[5]。冠状动脉支架作为外源性物质,在植入及扩张血管过程中会损伤血管内皮细胞,这种急性血管损伤会引发中性粒细胞浸润,并释放炎症介质和细胞因子诱导后续损伤,并促进内皮增生和新血管形成[6] [7]。这种强烈的炎症刺激反应是后续支架内新内膜形成的病理学基础。支架部署引起的上述局部炎症环境随后使血小板迅速在患处聚集与活化,活化的血小板会释放许多生物活性因子,其中血小板衍生生长因子显著促进平滑肌细胞的增殖、迁移及细胞外基质的沉积,使新内膜增生形成,最终可导致再狭窄的发生[8]。新内膜增生的发展与血小板、单核细胞、巨噬细胞和淋巴细胞介导的炎症反应密切相关[9]。支架内新动脉粥样硬化形成与自身血管动脉粥样硬化的病理机制类似,支架植入后血管异物反应引起的慢性炎症,其特征是单核细胞浸润到血管内皮损伤部位,分化为富含脂质的泡沫状巨噬细胞,此类细胞在该受损血管中不断募集,随着时间推移,新生内膜可能转变为新动脉粥样硬化,有时会在粥样斑块破裂时导致支架段急性血栓性闭塞[10]。C反应蛋白(C-Reactive Protein, CRP)反映了由白介素-6驱动的全身性炎症反应的强度[11],它可评估支架局部持续的异物反应、内皮损伤和斑块炎症的剧烈程度。在炎症调控机制中,淋巴细胞,尤其是调节性T细胞,通过抑制过度炎症反应和维持免疫稳态,对动脉粥样硬化发挥保护作用[12]。此外,高密度脂蛋白胆固醇通过抑制巨噬细胞和其他细胞中的炎症信号传导在动脉粥样硬化和脆弱斑块形成的发病机制中起着保护作用[13]。血清白蛋白不仅作为营养状态的评价指标,它更具备强大的抗氧化、抗炎、抗凝和抗血小板聚集活性[14]。综上,ISR并非由单一细胞或因子驱动,其病理机制涉及中性粒细胞浸润、血小板活化、单核细胞募集等多细胞协同作用;ISR发生风险不仅取决于促炎反应的强度,更受到机体抗炎与免疫调节能力弱化的影响。复合炎症指标是基于细胞亚群比值构建的,通过数学整合实现了对多重细胞参与、动态炎症失衡及全身状态的同步量化,相较单一指标更能精准捕捉ISR的复杂病理本质,为临床风险分层提供更具洞察力的评估工具。

3. 中性粒细胞/淋巴细胞比值

中性粒细胞数和淋巴细胞数是从外周血检测中获得,中性粒细胞计数升高反映了机体的炎症反应,淋巴细胞计数减少与氧化应激状态相关。在动脉粥样硬化这一炎性过程中,中性粒细胞释放的中性粒细胞细胞外陷阱(Neutrophil Extracellular Traps, NET)导致内皮细胞功能障碍、血管炎症、斑块侵蚀和最终不稳定斑块血栓形成,NET是一个关键的驱动因素,其功能贯穿病理进程始终[15]。淋巴细胞作为免疫调节的核心参与者,动脉粥样硬化发生过程中,抗炎和促炎机制之间的不平衡可能导致对免疫损伤的易感性增加并维持促炎状态[16]。促炎症状态可驱动新动脉粥样硬化进展并最终导致ISR发生。

中性粒细胞/淋巴细胞比值(Neutrophil to Lymphocyte Ratio, NLR)是根据血常规中的两类细胞计数计算而来。其数值升高能更全面、灵敏地体现炎症状态,优于任何单一白细胞亚群的检测。NLR水平不仅与冠状动脉病变严重程度呈正相关,同时对心血管疾病的预后具有良好的预测价值[17]。最近一项包含15项研究,共3889例患者的荟萃分析发现,NLR在预测冠状动脉和非冠状动脉ISR方面展现出良好的预测和预后价值;同时研究还证实,NLR对早期ISR的预测效能均显著优于晚期ISR [18]。Turak等[19]通过分析术前NLR对冠脉支架置入的稳定型和不稳定型心绞痛患者发生ISR的预测能力,研究表明,在接受裸金属支架(Bare Metal Stent, BMS)治疗的两类心绞痛患者中,术前高NLR是预测ISR发生的一个独立预测指标。一项回顾性研究发现NLR值 > 3.43可以作为生物标志物,有效预测稳定型冠状动脉疾病(Coronary Artery Disease, CAD)患者接受分叉PCI后ISR发生[20]。同时Gabbasov等人也得出了类似的结论,NLR是稳定型CAD患者药物洗脱支架(Drug Eluting Stent, DES)植入后ISR的独立预测因子[21]。多项研究均表明NLR与冠状动脉ISR存在明确关联,该比值被视为评估心血管疾病临床结局的一项可靠指标。

4. 血小板/淋巴细胞比值

血小板作为血常规中一项重要指标,在炎症、血栓形成和动脉粥样硬化病理过程中处于中心环节。血管损伤诱发的血小板活化,使其能与白细胞、内皮细胞及循环祖细胞产生协同作用,进而通过自分泌与旁分泌激活过程,触发并加速血管壁炎症及动脉粥样硬化[22]。支架植入后,机体内血小板的活化是ISR形成及发展的关键因素,血小板的激活可促使支架内新动脉粥样硬化形成,进一步使血管壁炎症反应加重,最终支架内血栓形成并导致血管闭塞。相比之下,淋巴细胞在抗炎和心血管系统中起着保护作用[23] [24]

血小板/淋巴细胞比值(Platelet to Lymphocyte Ratio, PLR)是一项来源于血常规中的血小板计数与淋巴细胞计数之比的衍生指标,该指标已被确认为心血管系统炎症反应及MACE的预测性生物标志物[25]。一项基于7174例接受PCI的急性冠状动脉综合征(Acute Coronary Syndrome, ACS)患者的Meta分析发现,在评估院内和长期主要不良心血管事件(Major Adverse Cardiovascular Events, MACE)方面,高水平PLR具有较高的预测效能,且PLR在60岁以上患者和女性比例较高的亚组中具有更高的敏感性和识别风险的能力,并且对院内MACE也更敏感[26]。同时,在一项纳入675例因稳定型或不稳定型心绞痛而BMS植入成功患者的研究中,发现PLR > 122在预测ISR方面具有81%的敏感性和72%的特异性,表明术前高水平PLR可作为心绞痛患者BMS植入后ISR的一项独立预测指标[27]。一项回顾性单中心研究评估了416例因冠状动脉慢性完全闭塞(Chronic Total Occlusion, CTO)病变而成功接受BMS患者,与非ISR组相比,ISR组PLR值显著升高,证明较高的术前PLR水平是CTO病变接受PCI的患者发生ISR的独立危险因素,此外NLR、低密度脂蛋白胆固醇水平和支架长度也是此类患者的独立预测因子[28]。一项回顾性研究中,发现颈动脉支架置入术后发生ISR患者在第一次手术前PLR的比率增加,但第二次手术前没有增加;结果表明,PLR可作为首次颈动脉支架置入术前ISR的预测生物标志物[29]。由于PLR同时纳入了血小板所涵盖的血栓形成和淋巴细胞所代表的炎症状态,整合了二者的预测能力,其在心血管疾病预后评估中的价值高于单一生物指标。因此,PLR被认为在冠脉ISR预测中是一个颇具潜力的生物标志物。

5. 淋巴细胞/单核细胞比值

先天免疫系统核心组分的单核细胞,在机体炎症应答中扮演重要角色。在趋化因子等炎症信号介导下,单核细胞被引导至损伤部位并发生组织浸润,进而分化为活化的巨噬细胞。此类细胞通过分泌大量细胞外基质成分,参与血管新生内膜的构成;同时,活化的单核–巨噬系统释放多种炎症因子,进一步募集淋巴细胞等免疫细胞,形成逐级放大的炎症级联反应,最终加剧局部血栓形成风险并推动支架内再狭窄的病理进程。

淋巴细胞/单核细胞比值(Lymphocyte to Monocyte Ratio, LMR)是基于淋巴细胞计数和单核细胞计数计算得到的炎症参数。一项研究分析了273名因稳定型心绞痛而进一步复查冠状动脉造影的患者,发现在接受BMS植入治疗的患者中,LMR水平与ISR呈负相关[30]。最近一研究成果中,Ling等人对668名接受PCI治疗的患者通过XGBoost机器学习模型,从一组31个变量中识别ISR最佳预测变量,LMR被确定为具有成本效益且可靠的生物标志物,与传统方法相比,XGBoost模型在较高的曲线下面积表现出优异的预测性能,表明此模型对ISR的判别力和预测准确性更好,LMR可用于预测ACS患者DES植入后的ISR风险[31]。一项Mata分析了4343例ACS患者,较低水平的LMR可能与ACS患者短期及长期死亡和MACE风险增加呈负相关,此关联在年轻患者中表现得尤其显著[32]。另一项研究表明,接受PCI患者LMR ≤ 5.06的预后较差,在长达1年的随访中心血管事件发生率更高,LMR被证实与冠脉粥样硬化严重程度呈独立正相关,且该指标对冠心病患者未来心血管事件的发生具备预测价值[33]。因此,LMR作为一种复合炎症指标,在预测ISR和心血管不良事件方面具有重要价值。

6. 系统免疫炎症指数

系统免疫炎症指数(System Inflammation Index, SII)是2014年由Hu等人提出,最早是用于评估接受切除术的肝细胞癌患者中的预后价值,它的计算方式是(中性粒细胞计数x血小板计数)/淋巴细胞计数[34]。SII是由淋巴细胞、中性粒细胞和血小板计数组成的一种新型炎症指标,通过这三种炎症细胞可以更好反应机体炎症和免疫的平衡状态,目前SII已成为各种肿瘤的预后相关的预测因子。SII在预测心血管疾病的发展及预后价值也得到了广泛证实。一项涉及152,996名受试者的Meta分析发现,SII是预测CVD发展的潜在生物标志物,SII升高与CVD风险增加有关[35]。另有研究证明,在评估CAD的发生及严重程度时,SII相较于NLR、PLR和CRP,表现出更优的预测能力[36]。一项包含523名ACS患者的回顾性研究中,发现高水平的SII增加了ACS患者DES植入后发生ISR的风险,这种独立正相关与年龄、性别、体重指数、当前吸烟、高血压和糖尿病没有显着依赖性[37]。一项纳入903名接受PCI的ACS患者的研究发现,SII (OR: 1.014, 95% CI: 1.001~1.023; P < 0.001)可作为ISR的独立预测因子[38]。Deng等人也发现SII可用于预测ACS患者发生ISR的风险,该研究强调,高SII水平是更严重和更早的ISR的独立预测因子,可能有助于患者的风险分层,尤其是患有合并糖尿病的患者[39]。一项回顾性研究分析了387例因冠状动脉支架置入术后因复发性心绞痛行冠状动脉造影的患者,发现SII较高的患者比SII较低的患者更频繁地发生ISR,表明术前SII值升高有助于预测ISR,并可作为一种有用的筛查工具,根据患者支架植入后发生ISR的风险指导针对性介入策略[40]。SII可作为评估PCI术后ISR风险的重要炎症标志物,需要进一步的前瞻性队列研究来验证。

7. 单核细胞/高密度脂蛋白胆固醇比值

高密度脂蛋白胆固醇对心血管系统所发挥的有益作用,主要归因于其介导细胞胆固醇清除的核心能力,以及其抗炎、抗氧化以及抗血栓形成等保护特性,这些功能通过协同作用的方式,共同促进血管内皮功能的改善,并有效抑制动脉粥样硬化的发生与发展,最终实现降低心血管风险目标[41]。在动脉粥样硬化病变进展中,单核细胞会分化成巨噬细胞,后者通过吞噬天然及修饰型脂蛋白,转化为充满胆固醇的脂质泡沫细胞,此为斑块形成的核心环节。此类泡沫细胞不仅构成了连接先天性与适应性免疫反应的桥梁,其大量聚集更会逐步形成脂肪条纹,最终可能发展为晚期粥样硬化斑块[42]

单核细胞与高密度脂蛋白胆固醇比值(Monocyte to HDL Ratio, MHR),能同时反映机体的炎症活跃程度与脂质代谢状态。在一项回顾性研究中,术前MHR是接受BMS的稳定型和不稳定型心绞痛患者发生ISR的独立预测因子[43]。Ucar的研究中也得出同样结论[44]。另一项研究分析了705名接受BMS植入患者,结果表明术前MHR是ISR的独立预测因子,同时发现吸烟、糖尿病、支架长度和CRP水平也是ISR独立危险因素[45]。Jing [46]等人通过对214例接受DES植入的非ST段抬高型ACS患者研究分析,指出ISR是此类患者独立且有用的预测因子。一项包含474名接受DES支架植入的不稳定型心绞痛患者,发现MHR是不稳定型心绞痛患者的DES植入后ISR的独立预测因子,表明MHR可以作为接受DES植入的个体风险分层和预后的有价值的标志物[47]。一项研究探索MHR与早发性冠心病患者ISR之间关系,发现MHR的曲线下面积为0.750,敏感度78%,特异度65.2%,证明MHR是该人群发生ISR的独立危险因素,具备良好的预测能力[48]。一项研究共纳入216例ACS接受了光学相干断层扫描的患者,发现MHR水平是支架内新动脉粥样硬化的独立危险因素[49]。多项研究证明MHR可预测冠脉PCI术后ISR发生,表明其在临床应用的潜在价值。

8. C反应蛋白/白蛋白比值

CRP是一种血浆蛋白,其在进化上高度保守,同时对蛋白酶降解具有较强的抵抗能力,其主要在肝脏中合成,能响应促炎细胞因子。CRP是动脉粥样硬化进程中一个重要参与者,它通过直接启动补体系统并影响细胞凋亡、介导单核细胞趋化、诱导血管细胞活化、导致脂质堆积以及促进血栓生成等多种途径发挥作用。同时,CRP有利于建立全身慢性炎症状态,进而增强动脉粥样硬化[50]。血清白蛋白是血液中最丰富的循环蛋白,是一种必需的蛋白质,它结合和运输各种药物和物质,维持血液的渗透压,影响循环系统的生理功能。白蛋白具有抑制炎症反应、抵御氧化损伤以及防止血栓形成等多种生物活性[51]

作为由CRP与白蛋白衍生的新型炎症指标,多项研究显示,C反应蛋白/白蛋白比值(C-Reactive Protein to Albumin Ratio, CAR)在评估CHD进展与临床结局方面展现出更优的预测效能。此前一项针对205例非ST段抬高型心肌梗死(Non-ST Segment Elevation Myocardial Infarction, NSTEMI)患者的回顾性研究证实,新型炎症指标CAR能够有效预测CAD病变严重程度[52]。一项研究探索ST段抬高型心肌梗死(St-Elevated Myocardial Infarction, STEMI)患者CAR与ISR之间的关系中发现,在一年的随访期间,CAR是ISR的独立预测因子,证明ISR发展与CAR之间可能存在很强的关系,表明炎症反应可能是预测STEMI患者ISR发展的重要诊断工具[53]。Rencuzogullari等人报道对于行PCI的STEMI患者,术前CAR水平升高是ISR的独立预测因子,同时发现CAR比单独使用白蛋白和CRP能更好地预测ISR发生[54]。在接受颈动脉支架置入术的患者中,CAR和ISR之间存在显著关联,CAR可作为预测ISR发展和预后的独立预测因子,这种易于获取且具有成本效益的生物标志物可以加强ISR预测并指导高危患者的预防策略[55]。CAR作为一种炎症标志物与CHD存在密切关联,其预测价值更优于CRP及白蛋白;且在ISR的发生与发展中有良好的预测价值。

9. 总结与展望

现有研究表明,ISR本质上是一种由血管局部炎症反应驱动的病理过程,其发生与发展涉及血管炎症、脂质代谢紊乱、斑块不稳定以及先天与适应性免疫应答之间复杂的相互作用等多个核心环节。相较于单一炎症参数,复合炎症指标能够更系统反映机体炎症状态,在ISR风险分层与预后评估中展现出良好的判别效能。然而,目前相关研究局限于单中心、小样本的回顾性分析,循证医学价值有限。为推动该领域向临床转化,建议开展大规模、多中心的前瞻性队列研究,比较不同复合炎症指标对ISR的预测能力,确定最优预测模型;在此基础上,可进一步设计随机对照试验,探索复合炎症指标风险分层的干预策略(如强化抗炎治疗或个体化抗血小板方案)是否能够有效降低ISR发生率;同时,由专业学术组织牵头建立标准化的实验室测量与临床报告规范,确保研究数据的可比性与可重复性。通过上述系统研究路径的推进,复合炎症指标有望成为ISR精准防治中的重要工具,最终改善PCI术后患者的长期预后。

NOTES

*通讯作者。

参考文献

[1] 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2024》要点解读[J]. 临床心血管病杂志, 2025, 41(7): 492-511.
[2] Protty, M.B., Dissanayake, T., Jeffery, D., Hailan, A. and Choudhury, A. (2023) Stent Failure: The Diagnosis and Management of Intracoronary Stent Restenosis. Expert Review of Cardiovascular Therapy, 21, 501-506. [Google Scholar] [CrossRef] [PubMed]
[3] Neumann, F., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A.P., Benedetto, U., et al. (2018) 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal, 40, 87-165. [Google Scholar] [CrossRef] [PubMed]
[4] Mehran, R., Dangas, G., Abizaid, A.S., Mintz, G.S., Lansky, A.J., Satler, L.F., et al. (1999) Angiographic Patterns of In-Stent Restenosis: Classification and Implications for Long-Term Outcome. Circulation, 100, 1872-1878. [Google Scholar] [CrossRef] [PubMed]
[5] Gupta, A., Maitas, O. and Patel, R.A.G. (2025) Recurrent Drug Eluting Stent, In-Stent Restenosis (DES-ISR): Epidemiology, Pathophysiology & Treatment. Progress in Cardiovascular Diseases, 88, 68-74. [Google Scholar] [CrossRef] [PubMed]
[6] Li, J., Nie, S., Zhang, C., Gao, Z., Zheng, X. and Guo, Y. (2007) Is Inflammation a Contributor for Coronary Stent Restenosis? Medical Hypotheses, 68, 945-951. [Google Scholar] [CrossRef] [PubMed]
[7] Silvestre-Roig, C., Braster, Q., Ortega-Gomez, A. and Soehnlein, O. (2020) Neutrophils as Regulators of Cardiovascular Inflammation. Nature Reviews Cardiology, 17, 327-340. [Google Scholar] [CrossRef] [PubMed]
[8] Bajeu, I., Niculescu, A., Scafa-Udriște, A. and Andronescu, E. (2024) Intrastent Restenosis: A Comprehensive Review. International Journal of Molecular Sciences, 25, Article 1715. [Google Scholar] [CrossRef] [PubMed]
[9] Haybar, H., Pezeshki, S.M.S. and Saki, N. (2021) Platelets in In-Stent Restenosis: From Fundamental Role to Possible Prognostic Application. Current Cardiology Reviews, 16, 285-291. [Google Scholar] [CrossRef] [PubMed]
[10] Komiyama, H. (2015) Neoatherosclerosis: Coronary Stents Seal Atherosclerotic Lesions but Result in Making a New Problem of Atherosclerosis. World Journal of Cardiology, 7, 776-783. [Google Scholar] [CrossRef] [PubMed]
[11] Yousuf, O., Mohanty, B.D., Martin, S.S., Joshi, P.H., Blaha, M.J., Nasir, K., et al. (2013) High-Sensitivity C-Reactive Protein and Cardiovascular Disease: A Resolute Belief or an Elusive Link? Journal of the American College of Cardiology, 62, 397-408. [Google Scholar] [CrossRef] [PubMed]
[12] Spitz, C., Winkels, H., Bürger, C., Weber, C., Lutgens, E., Hansson, G.K., et al. (2015) Regulatory T Cells in Atherosclerosis: Critical Immune Regulatory Function and Therapeutic Potential. Cellular and Molecular Life Sciences, 73, 901-922. [Google Scholar] [CrossRef] [PubMed]
[13] Linton, M.F., Yancey, P.G., Tao, H. and Davies, S.S. (2023) HDL Function and Atherosclerosis: Reactive Dicarbonyls as Promising Targets of Therapy. Circulation Research, 132, 1521-1545. [Google Scholar] [CrossRef] [PubMed]
[14] Arques, S. (2020) Serum Albumin and Cardiovascular Disease: State-Of-The-Art Review. Annales de Cardiologie et dAngéiologie, 69, 192-200. [Google Scholar] [CrossRef] [PubMed]
[15] Shetty, S. and Subramanian, M. (2025) Neutrophil Extracellular Traps (nets) as Drivers of Atherosclerosis: Pathogenic Mechanisms and Therapeutic Opportunities. Pharmacology & Therapeutics, 274, Article ID: 108917. [Google Scholar] [CrossRef] [PubMed]
[16] Nijm, J. and Jonasson, L. (2009) Inflammation and Cortisol Response in Coronary Artery Disease. Annals of Medicine, 41, 224-233. [Google Scholar] [CrossRef] [PubMed]
[17] Arbel, Y., Finkelstein, A., Halkin, A., Birati, E.Y., Revivo, M., Zuzut, M., et al. (2012) Neutrophil/Lymphocyte Ratio Is Related to the Severity of Coronary Artery Disease and Clinical Outcome in Patients Undergoing Angiography. Atherosclerosis, 225, 456-460. [Google Scholar] [CrossRef] [PubMed]
[18] Siahaan, P.P., Widiarti, W., Saputra, P.B.T., Putra, R.M. and D’Oria, M. (2025) Neutrophil-to-Lymphocyte Ratio as a Potential Biomarker in Predicting In-Stent Restenosis: A Systematic Review and Meta-Analysis. PLOS One, 20, e0322461. [Google Scholar] [CrossRef] [PubMed]
[19] Turak, O., Ozcan, F., Isleyen, A., Tok, D., Sokmen, E., Buyukkaya, E., et al. (2012) Usefulness of the Neutrophil-To-Lymphocyte Ratio to Predict Bare-Metal Stent Restenosis. The American Journal of Cardiology, 110, 1405-1410. [Google Scholar] [CrossRef] [PubMed]
[20] Balli, M., Taşolar, H., Çetin, M., Tekin, K., Çağliyan Ç.E., Türkmen, S., et al. (2015) Use of the Neutrophil to Lymphocyte Ratio for Prediction of In-Stent Restenosis in Bifurcation Lesions. European Review for Medical and Pharmacological Sciences, 19, 1866-1873.
[21] Gabbasov, Z., Kozlov, S., Melnikov, I., Byazrova, S., Saburova, O., Prokofieva, L., et al. (2018) Novel Biomarkers for Coronary Restenosis Occurrence after Drug-Eluting Stent Implantation in Patients with Diabetes Having Stable Coronary Artery Disease. Clinical and Applied Thrombosis/Hemostasis, 24, 1308-1314. [Google Scholar] [CrossRef] [PubMed]
[22] May, A.E., Seizer, P. and Gawaz, M. (2008) Platelets: Inflammatory Firebugs of Vascular Walls. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, s5-s10. [Google Scholar] [CrossRef] [PubMed]
[23] Budzianowski, J., Pieszko, K., Burchardt, P., Rzeźniczak, J. and Hiczkiewicz, J. (2017) The Role of Hematological Indices in Patients with Acute Coronary Syndrome. Disease Markers, 2017, Article ID: 3041565. [Google Scholar] [CrossRef] [PubMed]
[24] Kaplan, A., Altara, R., Eid, A., Booz, G.W. and Zouein, F.A. (2016) Update on the Protective Role of Regulatory T Cells in Myocardial Infarction: A Promising Therapy to Repair the Heart. Journal of Cardiovascular Pharmacology, 68, 401-413. [Google Scholar] [CrossRef] [PubMed]
[25] Tudurachi, B., Anghel, L., Tudurachi, A., Sascău, R.A. and Stătescu, C. (2023) Assessment of Inflammatory Hematological Ratios (NLR, PLR, MLR, LMR and Monocyte/HDL-Cholesterol Ratio) in Acute Myocardial Infarction and Particularities in Young Patients. International Journal of Molecular Sciences, 24, Article 14378. [Google Scholar] [CrossRef] [PubMed]
[26] Wang, H., Zulikaier, T., Yumaierjiang, B., Lyu, S. and He, P. (2025) Platelet-to-Lymphocyte Ratio Efficiency in Predicting Major Adverse Cardiovascular Events after Percutaneous Coronary Intervention in Acute Coronary Syndromes: A Meta-Analysis. Reviews in Cardiovascular Medicine, 26, Article 27942. [Google Scholar] [CrossRef] [PubMed]
[27] Yılmaz, S., Sen, F., Ünal, S., Yayla, C., Özeke, Ö., Aras, D., et al. (2014) Usefulness of the Platelet-To-Lymphocyte Ratio in Predicting Bare-Metal Stent Restenosis. Scandinavian Cardiovascular Journal, 49, 39-44. [Google Scholar] [CrossRef] [PubMed]
[28] Li, C., Shen, Y., Xu, R., Dai, Y., Chang, S., Lu, H., et al. (2018) Evaluation of Preprocedural Laboratory Parameters as Predictors of Drug-Eluting Stent Restenosis in Coronary Chronic Total Occlusion Lesions. Angiology, 70, 272-278. [Google Scholar] [CrossRef] [PubMed]
[29] Ma, L., Xu, H., Li, H. and Liu, D. (2025) Predictive Utility of PLR and Platelet-To-LDL Ratio for In-Stent Restenosis Following Carotid Artery Stenting. Vascular Health and Risk Management, 21, 671-684. [Google Scholar] [CrossRef
[30] Murat, S.N., Yarlioglues, M., Celik, I.E., Kurtul, A., Duran, M., Kilic, A., et al. (2016) The Relationship between Lymphocyte-To-Monocyte Ratio and Bare-Metal Stent In-Stent Restenosis in Patients with Stable Coronary Artery Disease. Clinical and Applied Thrombosis/Hemostasis, 23, 235-240. [Google Scholar] [CrossRef] [PubMed]
[31] Hou, L., Su, K., He, T., Zhao, J. and Li, Y. (2024) Using XGBoost for Predicting In-Stent Restenosis Post-Des Implantation: Role of Lymphocyte-To-Monocyte Ratio and Residual Cholesterol. International Journal of General Medicine, 17, 3443-3452. [Google Scholar] [CrossRef] [PubMed]
[32] Quan, X., Wang, R., Zhang, Q., Zhang, C. and Sun, L. (2020) The Predictive Value of Lymphocyte-To-Monocyte Ratio in the Prognosis of Acute Coronary Syndrome Patients: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 20, Article No. 338. [Google Scholar] [CrossRef] [PubMed]
[33] Gong, S., Gao, X., Xu, F., Shang, Z., Li, S., Chen, W., et al. (2018) Association of Lymphocyte to Monocyte Ratio with Severity of Coronary Artery Disease. Medicine, 97, e12813. [Google Scholar] [CrossRef] [PubMed]
[34] Hu, B., Yang, X., Xu, Y., Sun, Y., Sun, C., Guo, W., et al. (2014) Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clinical Cancer Research, 20, 6212-6222. [Google Scholar] [CrossRef] [PubMed]
[35] Ye, Z., Hu, T., Wang, J., Xiao, R., Liao, X., Liu, M., et al. (2022) Systemic Immune-Inflammation Index as a Potential Biomarker of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article 933913. [Google Scholar] [CrossRef] [PubMed]
[36] Liu, Y., Ye, T., Chen, L., Jin, T., Sheng, Y., Wu, G., et al. (2021) Systemic Immune-Inflammation Index Predicts the Severity of Coronary Stenosis in Patients with Coronary Heart Disease. Coronary Artery Disease, 32, 715-720. [Google Scholar] [CrossRef] [PubMed]
[37] Xie, F., Yu, Z., Xiong, Y., Wu, Z. and Wu, Y. (2024) Systemic Immune-Inflammation Index and In-Stent Restenosis in Patients with Acute Coronary Syndrome: A Single-Center Retrospective Study. European Journal of Medical Research, 29, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
[38] Ösken, A., Polat, F., Çakir, B., Zengin, A., Çalik, A.N., Ünal Dayi, Ş., et al. (2024) Systemic Immune Inflammation Index and Its Implication on In-Stent Restenosis among Patients with Acute Coronary Syndrome. Coronary Artery Disease, 35, 209-214. [Google Scholar] [CrossRef] [PubMed]
[39] Deng, X., Deng, Q., Zhang, Q. and Hou, J. (2025) Association of Systemic Immune-Inflammatory Index with In-Stent Restenosis in Patients with and without Diabetes Mellitus. Frontiers in Cardiovascular Medicine, 12, Article 1419314. [Google Scholar] [CrossRef] [PubMed]
[40] Xu, P., Cao, Y., Ren, R., Zhang, S., Zhang, C., Hao, P., et al. (2024) Usefulness of the Systemic Inflammation Response Index and the Systemic Immune Inflammation Index in Predicting Restenosis after Stent Implantation. Journal of Inflammation Research, 17, 4941-4955. [Google Scholar] [CrossRef] [PubMed]
[41] Hausenloy, D.J. and Yellon, D.M. (2008) Targeting Residual Cardiovascular Risk: Raising High-Density Lipoprotein Cholesterol Levels. Heart, 94, 706-714. [Google Scholar] [CrossRef] [PubMed]
[42] McLaren, J.E., Michael, D.R., Ashlin, T.G. and Ramji, D.P. (2011) Cytokines, Macrophage Lipid Metabolism and Foam Cells: Implications for Cardiovascular Disease Therapy. Progress in Lipid Research, 50, 331-347. [Google Scholar] [CrossRef] [PubMed]
[43] Tok, D., Turak, O., Yayla, Ç., Ozcan, F., Tok, D. and Çağlı, K. (2016) Monocyte to HDL Ratio in Prediction of BMS Restenosis in Subjects with Stable and Unstable Angina Pectoris. Biomarkers in Medicine, 10, 853-860. [Google Scholar] [CrossRef] [PubMed]
[44] Ucar, F.M. (2016) A Potential Marker of Bare Metal Stent Restenosis: Monocyte Count-To-HDL Cholesterol Ratio. BMC Cardiovascular Disorders, 16, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
[45] Yilmaz, S., Akboga, M.K., Sen, F., Balcı, K.G., Aras, D., Temizhan, A., et al. (2016) Usefulness of the Monocyte-To-High-Density Lipoprotein Cholesterol Ratio to Predict Bare Metal Stent Restenosis. Biomarkers in Medicine, 10, 959-966. [Google Scholar] [CrossRef] [PubMed]
[46] Nan, J., Meng, S., Hu, H., Jia, R., Chen, C., Peng, J., et al. (2020) The Predictive Value of Monocyte Count to High-Density Lipoprotein Cholesterol Ratio in Restenosis after Drug-Eluting Stent Implantation. International Journal of General Medicine, 13, 1255-1263. [Google Scholar] [CrossRef] [PubMed]
[47] Meng, H., Zhou, X., Li, L., Liu, Y., Liu, Y. and Zhang, Y. (2024) Monocyte to High-Density Lipoprotein Cholesterol Ratio Predicts Restenosis of Drug-Eluting Stents in Patients with Unstable Angina Pectoris. Scientific Reports, 14, Article No. 30175. [Google Scholar] [CrossRef] [PubMed]
[48] Chen, B., Liu, J., Xing, J., Liu, H., Wei, Y., Xue, X., et al. (2022) Analysis of the Correlation between the Ratio of Monocytes to High-Density Lipoprotein Cholesterol and In-Stent Restenosis in Patients with Premature Coronary Heart Disease. Clinical and Applied Thrombosis/Hemostasis, 28, 1-9. [Google Scholar] [CrossRef] [PubMed]
[49] Rong, J., Gu, N., Tian, H., Shen, Y., Deng, C., Chen, P., et al. (2024) Association of the Monocytes to High-Density Lipoprotein Cholesterol Ratio with In-Stent Neoatherosclerosis and Plaque Vulnerability: An Optical Coherence Tomography Study. International Journal of Cardiology, 396, Article ID: 131417. [Google Scholar] [CrossRef] [PubMed]
[50] Salazar, J., Martínez, M.S., Chávez-Castillo, M., Núñez, V., Añez, R., Torres, Y., et al. (2014) C-Reactive Protein: An In-Depth Look into Structure, Function, and Regulation. International Scholarly Research Notices, 2014, Article ID: 653045. [Google Scholar] [CrossRef] [PubMed]
[51] Manolis, A.A., Manolis, T.A., Melita, H., Mikhailidis, D.P. and Manolis, A.S. (2022) Low Serum Albumin: A Neglected Predictor in Patients with Cardiovascular Disease. European Journal of Internal Medicine, 102, 24-39. [Google Scholar] [CrossRef] [PubMed]
[52] Kalyoncuoglu, M. and Durmus, G. (2020) Relationship between C-Reactive Protein-To-Albumin Ratio and the Extent of Coronary Artery Disease in Patients with Non-St-Elevated Myocardial Infarction. Coronary Artery Disease, 31, 130-136. [Google Scholar] [CrossRef] [PubMed]
[53] Aksu, U., Gulcu, O., Aksakal, E., Kalkan, K., Öztürk, M., Korkmaz, A.F., et al. (2019) The Association between CRP/Albumin Ratio and In‐stent Restenosis Development in Patients with St‐segment Elevation Myocardial Infarction. Journal of Clinical Laboratory Analysis, 33, e22848. [Google Scholar] [CrossRef] [PubMed]
[54] Rencuzogullari, I., Karabağ, Y., Çağdaş, M., Karakoyun, S., Seyis, S., Gürsoy, M.O., et al. (2019) Assessment of the Relationship between Preprocedural C-Reactive Protein/Albumin Ratio and Stent Restenosis in Patients with ST-Segment Elevation Myocardial Infarction. Revista Portuguesa de Cardiologia, 38, 269-277. [Google Scholar] [CrossRef] [PubMed]
[55] Durmuş, G., Karataş, M.B., Gökalp, M., Eren, S., Cebeci, A.C., Nural, A., et al. (2024) Increased Serum CRP-Albumin Ratio Is Independently Associated with In-Stent Restenosis after Carotid Artery Stenting. Angiology. [Google Scholar] [CrossRef] [PubMed]