|
[1]
|
Luo, J., Wang, X., Gu, Y., Wang, D., Wang, S., Li, W., et al. (2022) Constructing Hollow Nanocages of Co3O4-CoMoO4 Heterostructure for Efficient Electrocatalytic Oxygen Evolution Reaction. Applied Surface Science, 606, Article ID: 154562. [Google Scholar] [CrossRef]
|
|
[2]
|
Zheng, Y., Tang, P., Xu, X. and Sang, X. (2020) POM Derived UOR and HER Bifunctional NiS/MoS2 Composite for Overall Water Splitting. Journal of Solid State Chemistry, 292, Article ID: 121644. [Google Scholar] [CrossRef]
|
|
[3]
|
Poudel, M.B., Logeshwaran, N., Kim, A.R., S.C., K., Vijayapradeep, S. and Yoo, D.J. (2023) Integrated Core-Shell Assembly of Ni3S2 Nanowires and CoMoP Nanosheets as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Alloys and Compounds, 960, Article ID: 170678. [Google Scholar] [CrossRef]
|
|
[4]
|
Jiang, J., Li, F., Su, H., Gao, Y., Li, N. and Ge, L. (2022) Flower-Like NiCo2S4/NiFeP/NF Composite Material as an Effective Electrocatalyst with High Overall Water Splitting Performance. Chinese Chemical Letters, 33, 4367-4374. [Google Scholar] [CrossRef]
|
|
[5]
|
Wang, X., Wang, L., Liu, Y., Devasenathipathy, R., Liu, L., Huang, Q., et al. (2024) Boosting the Oxygen Evolution Reaction via the Reconstruction of an M(OH)x/Fe3O4 Catalyst. Inorganic Chemistry Frontiers, 11, 6333-6342. [Google Scholar] [CrossRef]
|
|
[6]
|
Xu, W., Zhong, W., Yang, C., Zhao, R., Wu, J., Li, X., et al. (2022) Tailoring Interfacial Electron Redistribution of Ni/Fe3O4 Electrocatalysts for Superior Overall Water Splitting. Journal of Energy Chemistry, 73, 330-338. [Google Scholar] [CrossRef]
|
|
[7]
|
Cartagena, S. and Calderón, J.A. (2022) Corrosion of Non-Noble Metal-Based Catalysts during Oxygen Evolution Reaction under on/off Operation. Corrosion Science, 205, Article ID: 110437. [Google Scholar] [CrossRef]
|
|
[8]
|
Ji, X., Zhang, Y., Ma, Z. and Qiu, Y. (2020) Oxygen Vacancy‐rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 13, 5004-5014. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, C., Bao, A., Yang, C., Liu, G., Chen, X., Li, M., et al. (2023) Multi-Interface Engineering of NiS/Ni3S2/Fe3O4 Nanoarchitectures for Use as High-Efficiency Electrocatalysts toward the Oxygen Evolution Reaction. Inorganic Chemistry Frontiers, 10, 6664-6673. [Google Scholar] [CrossRef]
|
|
[10]
|
Xie, Y., Wang, X., Tang, K., Li, Q. and Yan, C. (2018) Blending Fe3O4 into a Ni/NiO Composite for Efficient and Stable Bifunctional Electrocatalyst. Electrochimica Acta, 264, 225-232. [Google Scholar] [CrossRef]
|
|
[11]
|
Luo, F., Pan, S., Xie, Y., Li, C., Yu, Y. and Yang, Z. (2024) Atomically Dispersed Ni Electrocatalyst for Superior Urea-Assisted Water Splitting. Journal of Energy Chemistry, 90, 1-6. [Google Scholar] [CrossRef]
|
|
[12]
|
Cao, W., Zhao, R., Liu, G., Wu, L. and Li, J. (2023) Three-Dimensional Ordered Macroporous Design of Heterogeneous Nickel-Iron Phosphide as Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Applied Surface Science, 607, Article ID: 154905. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhu, J., Zhang, Q., Zhao, P., Chen, L., Yang, S., Yan, Q., et al. (2022) NiFe2O4@Co3O4 Heterostructure with Abundant Oxygen Vacancies as a Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Alloys and Compounds, 918, Article ID: 165705. [Google Scholar] [CrossRef]
|
|
[14]
|
Garain, S., Dang Van, C., Choi, S., Nguyen Dang, T., Ager, J.W., Nam, K.T., et al. (2022) Hierarchical Thiospinel NiCo2S4/Polyaniline Hybrid Nanostructures as a Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Materials Interfaces, 9, Article ID: 2200649. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, X., Xiao, L., Zhou, L., Xu, Q., Weng, J., Xu, J., et al. (2020) Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angewandte Chemie International Edition, 59, 21106-21113. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mu, Y., Zhang, Y., Feng, Z., Dong, X., Jing, X., Pei, X., et al. (2023) Bifunctional Electrocatalyst Junction Engineering: Cop Nanoparticles In-Situ Anchored on CO3(Si2O5)2(OH)2 Nanosheets for Highly Efficient Water Splitting. Chemical Engineering Journal, 460, Article ID: 141709. [Google Scholar] [CrossRef]
|
|
[17]
|
Yang, H., Zhou, Z., Yu, H., Wen, H., Yang, R., Peng, S., et al. (2023) Alkali Treatment of Layered Double Hydroxide Nanosheets as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Colloid and Interface Science, 636, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Khan, J., Liu, H., Xiao, J., Zhu, Y., Hayat, A., Ullah, H., et al. (2023) Synthesis of Heteroatom Incorporated Porous Carbon Encapsulated Fe-Doped Co9S8 as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physics and Chemistry of Solids, 175, Article ID: 111220. [Google Scholar] [CrossRef]
|
|
[19]
|
Yang, X., Wu, Z., Xing, Z., Yang, C., Wang, W., Yan, R., et al. (2023) IrPd Nanoalloy‐Structured Bifunctional Electrocatalyst for Efficient and pH‐Universal Water Splitting. Small, 19, Article ID: 2208261. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xiong, J., Cao, Z., Wang, H., Ban, D., Zhou, Z., Li, Y., et al. (2022) CoS2/MoS2 Hollow Heterostructure as High‐Efficiency Bifunctional Electrocatalyst for Overall Water Splitting. ChemistrySelect, 7, e202202700. [Google Scholar] [CrossRef]
|
|
[21]
|
Wang, Z., Pan, D., Chen, K., Yin, X., Wang, J., Cai, P., et al. (2023) Palladium Modified FeCoS2 Nanosheet Arrays on Ni Foam as Bifunctional Electrodes for Overall Alkaline Water Splitting. ChemistrySelect, 8, e202204456. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, W., Feng, B., Yi, L., Li, J. and Hu, W. (2020) Highly Efficient Alkaline Water Splitting with Ru‐Doped Co-V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. ChemSusChem, 14, 730-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Im, S.W., Ahn, H., Park, E.S., Nam, K.T. and Lim, S.Y. (2021) Electrochemically Activated NiFeOxHy for Enhanced Oxygen Evolution. ACS Applied Energy Materials, 4, 595-601. [Google Scholar] [CrossRef]
|
|
[24]
|
Zou, C., Guo, X., Wang, F., Tian, R., Hou, Y., Liu, F., et al. (2022) Macroporous Ni-Fe Hydroxide Bifunctional Catalyst for Efficient Alkaline Water Splitting. Journal of Sol-Gel Science and Technology, 103, 505-514. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, Y., Peng, A., Wu, Q., Shan, Y., Wei, Y., Zhou, Y., et al. (2025) Adjust Adsorption Capacity and Charge Redistribution by S-Anion Effect in Ni2Fe1S4 Nanowires for OER in Alkaline. Journal of Alloys and Compounds, 1040, Article ID: 183631. [Google Scholar] [CrossRef]
|
|
[26]
|
Kang, J., Yan, F., Li, C., Qi, L., Geng, B., Wang, Y., et al. (2020) NiFe2O4 Hollow Nanoparticles of Small Sizes on Carbon Nanotubes for Oxygen Evolution. Catalysis Science & Technology, 10, 6970-6976. [Google Scholar] [CrossRef]
|
|
[27]
|
Cossar, E., Agarwal, K., Nguyen, V.B., Safari, R., Botton, G.A. and Baranova, E.A. (2021) Highly Active Nickel-Iron Nanoparticles with and without Ceria for the Oxygen Evolution Reaction. Electrocatalysis, 12, 605-618. [Google Scholar] [CrossRef]
|
|
[28]
|
Wang, J., Yu, J., Chen, X., Zeng, Z., He, S., Liu, H., et al. (2025) Dual Electronic and Structural Engineering of Ni-Fe Alloys via Molten Salt Electrodeposition for Enhanced Oxygen Evolution Reaction. Advanced Functional Materials. [Google Scholar] [CrossRef]
|
|
[29]
|
Gao, W., Lin, J., Wang, K., Liu, Z., Qin, J., Xie, J., et al. (2018) Controllable Phosphorsulfurization of Uniform Binary Ni-Fe Nanocubes for Enhanced Water Oxidation. Materials Letters, 229, 248-251. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, Y., Yu, J., Wang, Y., Chen, Z., Dong, L., Cai, R., et al. (2020) In Situ Templating Synthesis of Mesoporous Ni-Fe Electrocatalyst for Oxygen Evolution Reaction. RSC Advances, 10, 23321-23330. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rosa, M., Costa Bassetto, V., Girault, H.H., Lesch, A. and Esposito, V. (2019) Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Applied Energy Materials, 3, 1017-1026. [Google Scholar] [CrossRef]
|
|
[32]
|
Zhou, F., Gan, M., Yan, D., Chen, X. and Peng, X. (2023) Hydrogen‐Rich Pyrolysis from Ni‐Fe Heterometallic Schiff Base Centrosymmetric Cluster Facilitates NiFe Alloy for Efficient OER Electrocatalysts. Small, 19, Article ID: 2208276. [Google Scholar] [CrossRef] [PubMed]
|