Fe3O4/Ni复合材料用于增强析氧催化反应
Fe3O4/Ni Composite for Enhanced Oxygen Evolution Reaction
DOI: 10.12677/ms.2025.1511214, PDF, HTML, XML,    科研立项经费支持
作者: 曹纪铭, 任一臣, 吕晓丁:塔里木大学化学化工学院,新疆 阿拉尔;张京京, 陈亚辉*:塔里木大学化学化工学院,新疆 阿拉尔;新疆生产建设兵团南疆化学工程重点实验室,新疆 阿拉尔
关键词: 电催化水分解析氧反应Fe3O4/Ni催化剂Electrocatalytic Water Splitting Oxygen Evolution Reaction Fe3O4/Ni Catalyst
摘要: 开发先进的非贵金属析氧反应(OER)催化剂对实际电解水至关重要,而催化剂优化对于调控OER反应动力学、保证长期稳定性又起决定性作用。本研究采用水热法与热解法相结合的策略,成功制备了Fe3O4/Ni非贵金属复合催化剂,以提升OER性能。在1 M KOH电解液中测试显示:Fe3O4/Ni催化剂在10 mA∙cm2电流密度下的过电位仅为242 mV,塔菲尔斜率低至61.04 mV∙dec1,且具备优异的循环稳定性,综合性能显著优于单一的Ni与Fe3O4催化剂。本研究为高效非贵金属OER催化剂的设计提供了有效策略。
Abstract: Developing advanced non-noble metal catalysts for the oxygen evolution reaction (OER) is of great significance to practical water electrolysis, and material optimization plays a decisive role in regulating OER reaction kinetics and ensuring the long-term stability of catalysts. In this study, a strategy combining hydrothermal method and pyrolysis method was adopted to successfully synthesize the Fe3O4/Ni composite non-noble metal catalyst for enhancing OER performance. Tests in 1 M KOH electrolyte showed that the catalyst exhibited an overpotential of only 242 mV at a current density of 10 mA∙cm2, a Tafel slope as low as 61.04 mV∙dec⁻¹, and excellent cyclic stability. Its comprehensive performance was significantly superior to that of pure Ni and single Fe3O4 catalysts. This study provides an effective strategy for the design of high-efficiency non-noble metal OER catalysts.
文章引用:曹纪铭, 任一臣, 吕晓丁, 张京京, 陈亚辉. Fe3O4/Ni复合材料用于增强析氧催化反应[J]. 材料科学, 2025, 15(11): 2016-2023. https://doi.org/10.12677/ms.2025.1511214

1. 引言

电化学水分解是可持续制氢的重要过渡策略,可通过清洁水电解为替代化石能源基能源系统提供碳中和路径[1]。然而,其包含的两个半反应中,析氧反应(OER)因需经历四电子转移,动力学过程缓慢,成为制约整体能量转换效率的关键[2]。虽然贵金属氧化物(如RuO2、IrO2)能为OER提供优异的催化活性,但高昂的生产成本与地缘政治导致的资源限制,严重制约着其广泛应用并阻碍商业化进程[3]。因此,开发经济高效的非贵金属OER催化剂以支撑清洁氢生产,已成为当前的迫切需求。

在新兴的非贵金属OER催化剂中,四氧化三铁(Fe3O4)与镍(Ni)材料因成本低廉、储量丰富,且催化活性与贵金属催化剂接近,成为极具潜力的替代选项[4] [5]。但单一组分存在明显局限,碱性电解环境中的活性位点暴露不足,以及长期运行中发生的不可逆腐蚀,都制约实际应用中的耐久性[6] [7]。因此,需要协同结合镍基材料的高催化活性与四氧化三铁材料的结构稳定性,开发Fe3O4/Ni复合催化剂,解决单一组分的固有缺陷。

本研究采用水热法与热解法相结合的策略,成功制备了Fe3O4/Ni复合材料并将其用作OER催化剂。实验结果表明,该催化剂表现出较低的过电位,较小的塔菲尔斜率和电荷转移电阻,以及优异的循环稳定性,综合性能显著优于单一的Ni与Fe3O4催化剂。其优异催化性能可归因于活性位点暴露量的有效提升,这一变化不仅直接增强催化活性,更进一步加速了OER反应动力学过程。

2. 实验部分

图1为Fe3O4/Ni催化剂的合成流程:首先将0.01 mol Ni(CH3COO)2∙4H2O、0.02 mol Fe(NO3)2∙9H2O与0.033 mol CO(NH2)2溶解于75 mL去离子水中,持续搅拌至体系混合均匀;随后将上述溶液转移至100 mL聚四氟乙烯内衬高压釜,于180℃下水热6 h,反应结束后缓慢冷却至室温;然后离心收集沉淀物,经去离子水与乙醇交替洗涤3次后,在85℃真空干燥箱中干燥12 h,得到前驱体粉末;最后将前驱体粉末置于管式炉,以5℃/min的升温速率升至500℃煅烧2 h,即得Fe3O4/Ni催化剂。

电化学性能采用CHI 660E电化学工作站在三电极体系下进行测试:工作电极为自制催化剂修饰电极,对电极为铂丝电极,参比电极为Hg/HgO电极。X'Pert PRO MPD型X射线衍射仪(XRD)测试晶体结构;Axis Ultra DLD Kratos AXIS SUPRA型X射线光电子能谱仪(XPS)表征元素组成及价态;Hitachi Regulus8100场发射扫描电子显微镜(SEM)与FEI Tecnai F20透射电子显微镜(TEM)观察微观形貌与结构。

Figure 1. Preparation of Fe3O4/Ni catalyst

1. Fe3O4/Ni催化剂的制备

3. 结果与讨论

通过XRD对Fe3O4/Ni催化剂的晶体结构和物相信息进行分析。由图2(a)可知,在43.7˚、52.1˚和76.5˚处出现的衍射峰,分别对应于Ni的(111)、(200)和(220)晶面(PDF: 04-004-3634) [8],而位于18.1˚、30.3˚、35.7˚、37.1˚、42.8˚、48.1˚、53.2˚、57.1˚、62.7˚和66.8˚处的衍射峰分别对应于Fe3O4的(111)、(220)、(311)、(222)、(400)、(331)、(422)、(511)、(440)和(531)晶面[9]。EDS图谱(图2(b))进一步证实了O (51.73 wt%)、Fe (25.90 wt%)和Ni (22.37 wt%)的共存和大致含量。

Figure 2. Spectra of Fe3O4/Ni catalyst: (a) XRD pattern, (b) EDS spectrum, (c) XPS survey spectrum, (d) Fe 2p spectrum, (e) Ni 2p spectrum, (f) O 1s spectrum

2. Fe3O4/Ni催化剂的光谱图:(a) XRD图谱,(b) EDS光谱,(c) XPS全谱,(d) Fe 2p图谱,(e) Ni 2p图谱,(f) O 1s图谱

此外,XPS全谱图(图2(c))揭示了氧、镍和铁元素,其分别位于978.7 eV (O)、786.4 eV (Fe)和647.5 eV (Ni)。由图2(d)可知Fe 2p谱图显示六个峰:四个卫星峰(734.1、729.2、720.3和717.1 eV)以及两个分别位于724.3 (Fe 2p1/2)和710.2 eV (Fe 2p3/2)的主峰[6]。对于Ni 2p (图2(e)),Ni 2p3/2和Ni 2p1/2的特征峰分别在886.5~877.4 eV和867.5~861.4 eV处出现一个卫星峰,其中Ni⁰出现在873.1 eV处,Ni2⁺则出现在854.9 eV处[10]。在O 1s光谱(图2(f))中,可识别出表面吸附氧(531.5 eV)和晶格氧(Ni/Fe-O, 529.3 eV) [6]

采用SEM与TEM分析Fe3O4/Ni催化剂的微观形貌。由图3(a)图3(b)可见,该催化剂呈颗粒状结构,存在轻微的团聚,平均颗粒粒径约为25 nm。高分辨透射电子显微镜(HR-TEM)图像(图3(c))进一步显示,Fe3O4/Ni催化剂存在0.203 nm与0.241 nm的晶格间距,分别对应Ni (111)晶面与Fe3O4 (222)晶面[11] [12]。此外,SEM元素图像(图3(d))表明Fe、O、Ni三种元素在催化剂表面均匀分布,进一步印证了XRD和XPS表征结果,证实所制备材料为Fe3O4/Ni复合材料。

Figure 3. Electron microscopy images and elemental distribution maps of the Fe3O4/Ni catalyst: (a) SEM, (b) TEM, (c) HRTEM and (d) SEM-mapping of Fe3O4/Ni catalyst

3. Fe3O4/Ni催化剂的电镜图和元素分布图:(a) SEM,(b) TEM,(c) HRTEM和(d) 元素分布图

在1 M KOH电解液中评估Fe3O4/Ni的OER活性,并以Fe3O4和Ni为对照样,同步测试其线性扫描伏安(LSV)曲线。图4(a)显示,Fe3O4/Ni在10 mA∙cm2电流密度下的过电位为242 mV,显著低于Fe3O4 (309 mV)和Ni (339 mV),表明其具有最优OER催化活性[13]。值得注意的是,当电流密度升至50和100 mA∙cm2时(图4(d)),Fe3O4/Ni的性能优势进一步凸显。此外,对比近期报道的NCS-P、COFeO@BP、CoP/CSNSs等催化剂[10] [14]-[20],发现Fe3O4/Ni的OER活性同样具有一定的优势(图4(b)表1)。

Figure 4. Electrochemical performance diagrams: (a) LSV curves, (b) comparison diagrams of Fe₃O₄/Ni with other catalysts, (c) Tafel Slopes, (d) overpotentials at 50 and 100 mA cm⁻², (e) EIS plots, (f) stability tests at different current densities

4. 电化学性能图:(a) LSV曲线,(b) Fe3O4/Ni与其他催化剂的对比图,(c) Tafel斜率,(d) 50和100 mA∙cm−2时对应的过电位,(e) EIS图谱,(f) 不同电流密度下稳定性测试

Table 1. Comparison of the performance of Fe-Ni-based catalysts

1. Fe-Ni基催化剂性能对比表

催化剂

电解液

η10过电位(mV)

塔菲尔(mVdec1)

参考文献

NiFeOxHy

1 M KOH

250

30

[23]

Ni0.6Fe0.4-pH

1 M KOH

263

55.6

[24]

Ni2Fe1S4 NWs

1 M KOH

260

45

[25]

NiFe2O4-HNP/CNTs

1 M KOH

260

40

[26]

Ni80Fe20

1 M KOH

269

43

[27]

Ni-Fe/Nis-10

1 M KOH

265

38.8

[28]

P-S-NiFe NCs

1 M KOH

270

35

[29]

2Ni1Fe-MFS

1 M KOH

270

41

[30]

Ni-Fe LDH

1 M KOH

270

32

[31]

Fe2O3/Fe0.64Ni0.36@C-800

1 M KOH

274

83

[32]

塔菲尔斜率是反映OER反应动力学的关键指标。图4(c)显示,Fe3O4/Ni的塔菲尔斜率为61.04 mV∙dec1,小于Fe3O4 (73.96 mV∙dec1)和Ni (80.50 mV∙dec1),表明其反应动力学更快[21]。电化学阻抗谱(EIS)测试用于评估催化剂与电解质界面的电荷转移电阻,等效电路中Rs、CPE和Rct分别代表溶液电阻、恒相元件和电荷转移电阻。结果显示(图4(e)),Fe3O4/Ni的Rct值(0.88 Ω)小于Fe3O4 (1.22 Ω)和Ni (2.24 Ω),证实其电荷转移速率更快[22]。稳定性测试表明(图4(f)),Fe3O4/Ni在10、30和50 mA∙cm2电流密度下连续运行32 h后,电位保持相对稳定,证明其在碱性环境中具有较好的耐久性。

4. 总结

本研究采用水热和煅烧相结合的方式,将Fe3O4与Ni复合,成功制备出Fe3O4/Ni非贵金属OER催化剂。在碱性条件下,该催化剂展现出优异的电催化析氧性能,10 mA∙cm2电流密度下过电位仅242 mV,塔菲尔斜率为61.04 mV∙dec1,且具备良好的催化稳定性。本研究为高效非贵金属OER催化剂的设计与开发提供了参考。

基金项目

塔里木大学南疆农业废弃物生物质资源开发利用关键技术创新研究团队(TDZKCX202303, 2023ZD097)。

NOTES

*通讯作者。

参考文献

[1] Luo, J., Wang, X., Gu, Y., Wang, D., Wang, S., Li, W., et al. (2022) Constructing Hollow Nanocages of Co3O4-CoMoO4 Heterostructure for Efficient Electrocatalytic Oxygen Evolution Reaction. Applied Surface Science, 606, Article ID: 154562. [Google Scholar] [CrossRef
[2] Zheng, Y., Tang, P., Xu, X. and Sang, X. (2020) POM Derived UOR and HER Bifunctional NiS/MoS2 Composite for Overall Water Splitting. Journal of Solid State Chemistry, 292, Article ID: 121644. [Google Scholar] [CrossRef
[3] Poudel, M.B., Logeshwaran, N., Kim, A.R., S.C., K., Vijayapradeep, S. and Yoo, D.J. (2023) Integrated Core-Shell Assembly of Ni3S2 Nanowires and CoMoP Nanosheets as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Alloys and Compounds, 960, Article ID: 170678. [Google Scholar] [CrossRef
[4] Jiang, J., Li, F., Su, H., Gao, Y., Li, N. and Ge, L. (2022) Flower-Like NiCo2S4/NiFeP/NF Composite Material as an Effective Electrocatalyst with High Overall Water Splitting Performance. Chinese Chemical Letters, 33, 4367-4374. [Google Scholar] [CrossRef
[5] Wang, X., Wang, L., Liu, Y., Devasenathipathy, R., Liu, L., Huang, Q., et al. (2024) Boosting the Oxygen Evolution Reaction via the Reconstruction of an M(OH)x/Fe3O4 Catalyst. Inorganic Chemistry Frontiers, 11, 6333-6342. [Google Scholar] [CrossRef
[6] Xu, W., Zhong, W., Yang, C., Zhao, R., Wu, J., Li, X., et al. (2022) Tailoring Interfacial Electron Redistribution of Ni/Fe3O4 Electrocatalysts for Superior Overall Water Splitting. Journal of Energy Chemistry, 73, 330-338. [Google Scholar] [CrossRef
[7] Cartagena, S. and Calderón, J.A. (2022) Corrosion of Non-Noble Metal-Based Catalysts during Oxygen Evolution Reaction under on/off Operation. Corrosion Science, 205, Article ID: 110437. [Google Scholar] [CrossRef
[8] Ji, X., Zhang, Y., Ma, Z. and Qiu, Y. (2020) Oxygen Vacancy‐rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 13, 5004-5014. [Google Scholar] [CrossRef] [PubMed]
[9] Li, C., Bao, A., Yang, C., Liu, G., Chen, X., Li, M., et al. (2023) Multi-Interface Engineering of NiS/Ni3S2/Fe3O4 Nanoarchitectures for Use as High-Efficiency Electrocatalysts toward the Oxygen Evolution Reaction. Inorganic Chemistry Frontiers, 10, 6664-6673. [Google Scholar] [CrossRef
[10] Xie, Y., Wang, X., Tang, K., Li, Q. and Yan, C. (2018) Blending Fe3O4 into a Ni/NiO Composite for Efficient and Stable Bifunctional Electrocatalyst. Electrochimica Acta, 264, 225-232. [Google Scholar] [CrossRef
[11] Luo, F., Pan, S., Xie, Y., Li, C., Yu, Y. and Yang, Z. (2024) Atomically Dispersed Ni Electrocatalyst for Superior Urea-Assisted Water Splitting. Journal of Energy Chemistry, 90, 1-6. [Google Scholar] [CrossRef
[12] Cao, W., Zhao, R., Liu, G., Wu, L. and Li, J. (2023) Three-Dimensional Ordered Macroporous Design of Heterogeneous Nickel-Iron Phosphide as Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Applied Surface Science, 607, Article ID: 154905. [Google Scholar] [CrossRef
[13] Zhu, J., Zhang, Q., Zhao, P., Chen, L., Yang, S., Yan, Q., et al. (2022) NiFe2O4@Co3O4 Heterostructure with Abundant Oxygen Vacancies as a Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Alloys and Compounds, 918, Article ID: 165705. [Google Scholar] [CrossRef
[14] Garain, S., Dang Van, C., Choi, S., Nguyen Dang, T., Ager, J.W., Nam, K.T., et al. (2022) Hierarchical Thiospinel NiCo2S4/Polyaniline Hybrid Nanostructures as a Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Materials Interfaces, 9, Article ID: 2200649. [Google Scholar] [CrossRef
[15] Li, X., Xiao, L., Zhou, L., Xu, Q., Weng, J., Xu, J., et al. (2020) Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angewandte Chemie International Edition, 59, 21106-21113. [Google Scholar] [CrossRef] [PubMed]
[16] Mu, Y., Zhang, Y., Feng, Z., Dong, X., Jing, X., Pei, X., et al. (2023) Bifunctional Electrocatalyst Junction Engineering: Cop Nanoparticles In-Situ Anchored on CO3(Si2O5)2(OH)2 Nanosheets for Highly Efficient Water Splitting. Chemical Engineering Journal, 460, Article ID: 141709. [Google Scholar] [CrossRef
[17] Yang, H., Zhou, Z., Yu, H., Wen, H., Yang, R., Peng, S., et al. (2023) Alkali Treatment of Layered Double Hydroxide Nanosheets as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Colloid and Interface Science, 636, 11-20. [Google Scholar] [CrossRef] [PubMed]
[18] Khan, J., Liu, H., Xiao, J., Zhu, Y., Hayat, A., Ullah, H., et al. (2023) Synthesis of Heteroatom Incorporated Porous Carbon Encapsulated Fe-Doped Co9S8 as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physics and Chemistry of Solids, 175, Article ID: 111220. [Google Scholar] [CrossRef
[19] Yang, X., Wu, Z., Xing, Z., Yang, C., Wang, W., Yan, R., et al. (2023) IrPd Nanoalloy‐Structured Bifunctional Electrocatalyst for Efficient and pH‐Universal Water Splitting. Small, 19, Article ID: 2208261. [Google Scholar] [CrossRef] [PubMed]
[20] Xiong, J., Cao, Z., Wang, H., Ban, D., Zhou, Z., Li, Y., et al. (2022) CoS2/MoS2 Hollow Heterostructure as High‐Efficiency Bifunctional Electrocatalyst for Overall Water Splitting. ChemistrySelect, 7, e202202700. [Google Scholar] [CrossRef
[21] Wang, Z., Pan, D., Chen, K., Yin, X., Wang, J., Cai, P., et al. (2023) Palladium Modified FeCoS2 Nanosheet Arrays on Ni Foam as Bifunctional Electrodes for Overall Alkaline Water Splitting. ChemistrySelect, 8, e202204456. [Google Scholar] [CrossRef
[22] Li, W., Feng, B., Yi, L., Li, J. and Hu, W. (2020) Highly Efficient Alkaline Water Splitting with Ru‐Doped Co-V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. ChemSusChem, 14, 730-737. [Google Scholar] [CrossRef] [PubMed]
[23] Im, S.W., Ahn, H., Park, E.S., Nam, K.T. and Lim, S.Y. (2021) Electrochemically Activated NiFeOxHy for Enhanced Oxygen Evolution. ACS Applied Energy Materials, 4, 595-601. [Google Scholar] [CrossRef
[24] Zou, C., Guo, X., Wang, F., Tian, R., Hou, Y., Liu, F., et al. (2022) Macroporous Ni-Fe Hydroxide Bifunctional Catalyst for Efficient Alkaline Water Splitting. Journal of Sol-Gel Science and Technology, 103, 505-514. [Google Scholar] [CrossRef
[25] Zhang, Y., Peng, A., Wu, Q., Shan, Y., Wei, Y., Zhou, Y., et al. (2025) Adjust Adsorption Capacity and Charge Redistribution by S-Anion Effect in Ni2Fe1S4 Nanowires for OER in Alkaline. Journal of Alloys and Compounds, 1040, Article ID: 183631. [Google Scholar] [CrossRef
[26] Kang, J., Yan, F., Li, C., Qi, L., Geng, B., Wang, Y., et al. (2020) NiFe2O4 Hollow Nanoparticles of Small Sizes on Carbon Nanotubes for Oxygen Evolution. Catalysis Science & Technology, 10, 6970-6976. [Google Scholar] [CrossRef
[27] Cossar, E., Agarwal, K., Nguyen, V.B., Safari, R., Botton, G.A. and Baranova, E.A. (2021) Highly Active Nickel-Iron Nanoparticles with and without Ceria for the Oxygen Evolution Reaction. Electrocatalysis, 12, 605-618. [Google Scholar] [CrossRef
[28] Wang, J., Yu, J., Chen, X., Zeng, Z., He, S., Liu, H., et al. (2025) Dual Electronic and Structural Engineering of Ni-Fe Alloys via Molten Salt Electrodeposition for Enhanced Oxygen Evolution Reaction. Advanced Functional Materials. [Google Scholar] [CrossRef
[29] Gao, W., Lin, J., Wang, K., Liu, Z., Qin, J., Xie, J., et al. (2018) Controllable Phosphorsulfurization of Uniform Binary Ni-Fe Nanocubes for Enhanced Water Oxidation. Materials Letters, 229, 248-251. [Google Scholar] [CrossRef
[30] Wang, Y., Yu, J., Wang, Y., Chen, Z., Dong, L., Cai, R., et al. (2020) In Situ Templating Synthesis of Mesoporous Ni-Fe Electrocatalyst for Oxygen Evolution Reaction. RSC Advances, 10, 23321-23330. [Google Scholar] [CrossRef] [PubMed]
[31] Rosa, M., Costa Bassetto, V., Girault, H.H., Lesch, A. and Esposito, V. (2019) Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Applied Energy Materials, 3, 1017-1026. [Google Scholar] [CrossRef
[32] Zhou, F., Gan, M., Yan, D., Chen, X. and Peng, X. (2023) Hydrogen‐Rich Pyrolysis from Ni‐Fe Heterometallic Schiff Base Centrosymmetric Cluster Facilitates NiFe Alloy for Efficient OER Electrocatalysts. Small, 19, Article ID: 2208276. [Google Scholar] [CrossRef] [PubMed]