|
[1]
|
Bryce, C. and Bucaj, M. (2024) Pancreatic Cancer: Rapid Evidence Review. American Family Physician, 109, 245-250.
|
|
[2]
|
Caban, M. and Małecka-Wojciesko, E. (2023) Gaps and Opportunities in the Diagnosis and Treatment of Pancreatic Cancer. Cancers, 15, Article 5577. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Koltai, T. (2023) Earlier Diagnosis of Pancreatic Cancer: Is It Possible? Cancers, 15, Artilce 4430. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Stoop, T.F., Javed, A.A., Oba, A., Koerkamp, B.G., Seufferlein, T., Wilmink, J.W., et al. (2025) Pancreatic Cancer. The Lancet, 405, 1182-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lee, E.S. (2014) Imaging Diagnosis of Pancreatic Cancer: A State-of-the-Art Review. World Journal of Gastroenterology, 20, 7864-7877. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Toft, J., Hadden, W.J., Laurence, J.M., Lam, V., Yuen, L., Janssen, A., et al. (2017) Imaging Modalities in the Diagnosis of Pancreatic Adenocarcinoma: A Systematic Review and Meta-Analysis of Sensitivity, Specificity and Diagnostic Accuracy. European Journal of Radiology, 92, 17-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
中华外科青年医师学术研究社胰腺外科研究组. 中国胰腺囊性肿瘤外科诊治现状分析: 2251例报告[J]. 中华外科杂志, 2018, 56(1): 24-29.
|
|
[9]
|
Chu, L.C., Park, S., Kawamoto, S., Fouladi, D.F., Shayesteh, S., Zinreich, E.S., et al. (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma from Normal Pancreatic Tissue. American Journal of Roentgenology, 213, 349-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wei, W., Jia, G., Wu, Z., Wang, T., Wang, H., Wei, K., et al. (2022) A Multidomain Fusion Model of Radiomics and Deep Learning to Discriminate between PDAC and AIP Based on 18F-FDG PET/CT Images. Japanese Journal of Radiology, 41, 417-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dinesh, M.G., Bacanin, N., Askar, S.S. and Abouhawwash, M. (2023) Diagnostic Ability of Deep Learning in Detection of Pancreatic Tumour. Scientific Reports, 13, Article No. 9725. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, P., Wu, T., Wang, P., Chang, D., Liu, K., Wu, M., et al. (2023) Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-Based Study. Radiology, 306, 172-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zwijnen, A.W., Watzema, L., Ridwan, Y., van Der Pluijm, I., Smal, I. and Essers, J. (2024) Self-Adaptive Deep Learning-Based Segmentation for Universal and Functional Clinical and Preclinical CT Image Analysis. Computers in Biology and Medicine, 179, Article 108853. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J. and Maier-Hein, K.H. (2021) nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nature Methods, 18, 203-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science, Springer, 234-241. [Google Scholar] [CrossRef]
|
|
[16]
|
Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., et al. (2021) Loss Odyssey in Medical Image Segmentation. Medical Image Analysis, 71, Article 102035. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. (2018) MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 4510-4520. [Google Scholar] [CrossRef]
|
|
[18]
|
Jacob, D., Ming-Wei, C., Kenton, L. and Kristina, T. (2019) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics.
|
|
[19]
|
Amulya Arun, B. and Arti, A. (2020) Empirical Evaluation of Gated Recurrent Neural Network Architectures in Aviation Delay Prediction. 2020 International Conference on Cloud Computing and Security, Beijing, 7-11 July 2020, 1-7.
|
|
[20]
|
Zhang, G., Gao, Q., Zhan, Q., Wang, L., Song, B., Chen, Y., et al. (2024) Label-Free Differentiation of Pancreatic Pathologies from Normal Pancreas Utilizing End-to-End Three-Dimensional Multimodal Networks on CT. Clinical Radiology, 79, e1159-e1166. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., et al. (2018) Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease. Nature Medicine, 24, 1342-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ardila, D., Kiraly, A.P., Bharadwaj, S., Choi, B., Reicher, J.J., Peng, L., et al. (2019) End-to-End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nature Medicine, 25, 954-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., et al. (2020) International Evaluation of an AI System for Breast Cancer Screening. Nature, 577, 89-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lotter, W., Diab, A.R., Haslam, B., Kim, J.G., Grisot, G., Wu, E., et al. (2021) Robust Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis Using an Annotation-Efficient Deep Learning Approach. Nature Medicine, 27, 244-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cao, K., Xia, Y., Yao, J., Han, X., Lambert, L., Zhang, T., et al. (2023) Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning. Nature Medicine, 29, 3033-3043. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Spyridon, B., Mauricio, R., Andras, J., Stefan, B., Markus, R., et al. (2018) Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. Computing Research Repository.
|