脑脊液红细胞数与动脉瘤性蛛网膜下腔出血术后脑血管痉挛的相关性研究
Study on the Relationship between Red Blood Cell Count in Cerebrospinal Fluid and Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage
DOI: 10.12677/acm.2025.15113240, PDF, HTML, XML,   
作者: 武 昊*, 高 军#:首都医科大学宣武医院济南医院,山东 济南;张明坤:山东第一医科大学第一附属医院神经外科,山东 济南
关键词: 红细胞动脉瘤性蛛网膜下腔出血脑血管痉挛氧合血红蛋白脑脊液引流Red Blood Cells Aneurysmal Subarachnoid Hemorrhage Cerebral Vasospasm Oxygenated Hemoglobin Cerebrospinal Fluid Drainage
摘要: 目的:分析脑脊液中红细胞数与动脉瘤性蛛网膜下腔出血(ASAH)患者术后发生脑血管痉挛(CVS)的相关性,以此指导治疗。方法:回顾性分析山东省千佛山医院2018.09~2021.09住院治疗的205例ASAH患者,根据术后是否发生CVS分为CVS组与非CVS组,分析患者入院时的基本情况、实验室检查结果、影像学检查结果、动脉瘤治疗方法与术后脑血管痉挛的关系,进行单因素分析,并将单因素分析中P < 0.1的变量纳入Logistic回归,分析ASAH患者术后发生CVS的危险因素。结果:共纳入205例研究对象,59例术后发生脑血管痉挛。单因素分析提示脑脊液红细胞数与患者术后出现CVS显著相关(P < 0.001),多因素分析在调整了年龄、Hunt-Hess分级、GCS评分混杂作用后,发现脑脊液红细胞数量与患者在术后发生CVS显著相关(P < 0.001)。结论:脑脊液中红细胞的数量是ASAH患者术后发生CVS的独立危险因素,说明实施腰椎穿刺或腰大池引流等措施快速减少脑脊液中红细胞数量,可能是预防CVS有效的方法。
Abstract: Objective: To analyze the relationship between the number of red blood cells in cerebrospinal fluid (CSF) and cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (ASAH) and to guide the treatment. Methods: A retrospective analysis was conducted on 205 patients with aneurysmal vasospasm (ASAH) hospitalized at Shandong Qianfoshan Hospital from September 2018 to September 2021. Patients were divided into a CVS group and a non-CVS group based on whether postoperative CVS occurred. The relationship between patients’ basic information at admission, laboratory test results, imaging results, aneurysm treatment methods, and postoperative cerebral vasospasm was analyzed. Univariate analysis was performed, and variables with P < 0.1 in the univariate analysis were included in logistic regression to analyze the risk factors for postoperative CVS in ASAH patients. Results: A total of 205 subjects were included, of which 59 cases developed cerebral vasospasm after the operation. Single factor analysis showed that the number of red blood cells in cerebrospinal fluid was significantly correlated with CVS (P < 0.001). After adjustment for age, Hunt-Hess scale and GCS score, multiple factors logistic regression analysis showed that the number of red blood cells in cerebrospinal fluid was significantly correlated with CVS (P < 0.001). Conclusion: The number of red blood cells in cerebrospinal fluid is an independent risk factor for CVS after ASAH, indicating that lumbar puncture or lumbar cistern drainage and other measures to reduce the number of red blood cells in cerebrospinal fluid may be effective methods to prevent CVS.
文章引用:武昊, 张明坤, 高军. 脑脊液红细胞数与动脉瘤性蛛网膜下腔出血术后脑血管痉挛的相关性研究[J]. 临床医学进展, 2025, 15(11): 1431-1437. https://doi.org/10.12677/acm.2025.15113240

1. 引言

动脉瘤性蛛网膜下腔出血(aneurysm subarachnoid hemorrhage, ASAH)是一种常见的卒中类型,病死率较高。相比于其他形式卒中,ASAH患者年龄相对较年轻,长期的生产生活损失与缺血性卒中后的社会经济负担相当[1] [2]。脑血管痉挛(cerebral vasospasm, CVS)是ASAH最常见的并发症,与患者神经功能缺损及较差预后有关[1]-[4],其中接近三分之一的患者发展为迟发性脑缺血(delayed cerebral ischemia, DCI),这是由脑血管狭窄和脑血流减少所致。CVS严重程度与蛛网膜下腔出血的体积、密度和部位有关[5]。渗出的血液及其降解产物也会对邻近的各种细胞造成损害[6]。目前预防CVS的最重要的概念是维持有规律的血容量以及尼莫地平的治疗[5]。本研究对205例ASAH患者进行回顾性分析,旨在探讨ASAH并发CVS的危险因素,特别是脑脊液中红细胞数量与CVS的相关性,希望借此通过一个客观、可重复的实验室指标来量化CVS风险,为临床早期诊治提供依据。

2. 资料与方法

该研究已提交给山东第一医科大学第一附属医院医学伦理委员会并获得批准(【2022】伦审字(S008)号)。

2.1. 研究对象

本研究选择山东省千佛山医院2018.09-2021.09住院治疗的205例ASAH患者为研究对象,根据术后是否发生CVS分为CVS组与未发生CVS组。ASAH诊断标准:(1) CT平扫示蛛网膜下腔出血;(2) 突发的剧烈头痛或呕吐等症状;(3) 经MRA、CTA、DSA中至少一种检查证实责任动脉瘤;(4) 排除继发性蛛网膜下腔出血。CVS诊断标准为:(1) 在SAH发病后3~14 d期间出现的剧烈头痛、颈部强直、低热、意识水平下降、局灶性神经功能缺损等;(2) 排除引起如电解质紊乱等引起神经功能恶化的其他原因;(3) 颅脑CT排除再出血和脑积水;(4) 术后头颅CTA或全脑血管造影检查提示脑血管痉挛。纳入标准:(1) 符合前述诊断标准;(2) 发病至入院时间 ≤ 2 d;(3) 发病至首次腰穿时间 ≤ 3天;(4) 经证实的责任动脉瘤通过栓塞或夹闭得以治愈;(5) 患者和家属均知晓研究内容并签署书面知情同意书。排除标准:(1) 年龄小于18岁或大于80岁;(2) 入院时Hunt-Hess分级V级;(3) 合并恶性肿瘤、精神疾病、颅内感染者。

2.2. 方法

入院后,所有患者均接受常规输液治疗,并维持血容量,并给予尼莫地平静脉泵入,在24小时内接受CTA或DSA检查,并发现责任动脉瘤,根据患者病情于入院后24小时内行血管内栓塞或开颅夹闭治疗,术后持续尼莫地平静脉泵入,并于1周后改为口服,所有患者均于术后第二天行腰椎穿刺术释放脑脊液并接受脑脊液化验检查。将患者分为2组,发生CVS患者为观察组,未发生CVS的患者为对照组。以性别、年龄、高血压、糖尿病、手术方式、吸烟、静脉血白细胞计数、静脉血血红蛋白计量、脑脊液红细胞计数为变量进行统计学分析。

2.3. 统计学分析

采用SPSS 22.0软件进行数据统计分析。正态性检验采用KS检验,符合正态分布的连续性变量以χ ± s表示,组间比较采用t检验;不符合正态分布的变量以中位数M(Q1,Q3)表示,组间比较采用非参数秩和检验。组间率的比较,样本数 ≥ 40及理论频数 ≥ 5时采用χ2检验,样本量 ≥ 40及1 ≤ 理论频数 < 5时采用校正χ2检验,样本数 < 40及理论频数 < 1时采用Fisher确切概率法。将单因素分析中P < 0.1的变量纳入多因素Logistic回归分析,P < 0.05为差异有统计学意义。

3. 结果

3.1. 单因素分析

纳入205例ASAH患者,未发生CVS患者146例,发生CVS患者59例。在本研究中,对符合正态分布的静脉血血红蛋白等1项定量资料进行t检验,结果发现静脉血血红蛋白无统计学意义(P > 0.05),见表1;对年龄、入院时Hunt-Hess评分、入院时GCS昏迷评分、静脉血白细胞计数、脑脊液红细胞计数等5项不符合正态分布的定量资料进行非参数秩和检验,结果发现年龄、入院时Hunt-Hess评分、入院时GCS昏迷评分、脑脊液红细胞计数等4项观察指标具有统计学意义(P < 0.05),见表2;对性别、入院时有无急性脑积水、入院时有无脑室出血、手术方式、吸烟史、高血压、糖尿病等7项定性资料进行卡方检验,结果发现均无统计学意义(P > 0.05),见表1

Table 1. Univariate analysis of the correlation between clinical data and CVS in this group of patients

1. 本组患者临床资料与CVS相关性的单因素分析

因素

发生痉挛(n = 59)

未发生痉挛(n = 146)

t/χ2

P值

性别(男性:女性)

18:41

50:96

2.326

0.607

年龄

(57, 72)

(49, 66)

-

<0.001

血液白细胞

(8.75, 13.8)

(8.9, 13.55)

-

0.814

血液血红蛋白

134.56 ± 17.93

133.27 ± 18.04

−0.46

0.644

脑脊液红细胞

(6.2, 15.1)

(1.6, 6.35)

-

<0.001

入院时GCS

(10, 14)

(11, 14)

-

<0.001

入院时HH

(2, 3)

(2, 3)

-

<0.001

手术方式(栓塞:夹闭)

53:6

122:24

1.322

0.250

脑室出血

22

59

0.171

0.679

急性脑积水

9

17

0.495

0.482

吸烟

17

34

0.687

0.407

高血压

38

82

1.176

0.278

糖尿病

6

8

1.453

0.228

Table 2. Logistic analysis for CVS

2. CVS的logistic回归分析

危险因素

B值

Wald值

OR值

95% CI值

P值

脑脊液红细胞

0.271

39.520

1.312

(1.205, 1.428)

<0.001

年龄

0.022

1.449

1.023

(0.986, 1.061)

0.229

GCS

−0.329

2.971

0.719

(0.495, 1.046)

0.085

HH

−0.263

0.162

0.769

(0.213, 2.769)

0.687

3.2. 多因素分析

将单因素分析中P < 0.1的变量纳入多因素logistic回归分析,多因素分析表明在调整了入院时Hunt-Hess分级、入院时GCS评分和年龄的混杂作用后,脑脊液红细胞数(OR = 1.312, 95% CI 1.205, 1.428, P < 0.001)与CVS的发生具有显著相关性。见表2

4. 讨论

有报道称ASAH后死亡率下降,这可能要归因于近年来外科、介入和重症监护治疗的不断改善[1] [7]。虽然几乎每个病例都可以通过显微神经外科夹闭或血管内弹簧圈将动脉瘤治愈[8],但ASAH的预后仍然很差。动脉瘤再出血是ASAH最具威胁性的早期神经系统并发症,通常发生在首次出血后24小时内[9] [10],然而,脑血管痉挛所导致的迟发性脑缺血是影响破裂动脉瘤修复后存活的患者预后的主要原因[9]。SAH诱发的CVS最常发生在第3天到第7天,这表明它可能与蛛网膜下腔血液成分的副产物有关,来自蛛网膜下腔的血液成分的因子会刺激血管内皮细胞分泌血管收缩物质,并抑制血管扩张物质的释放[11] [12]。毫无疑问,蛛网膜下腔血液分解产物直接或间接参与了蛛网膜下腔出血后血管痉挛的发生,几项研究已经证明了这一理论几乎是无可争辩的。首先,一项研究证明了蛛网膜下腔的出血量与血管造影血管痉挛的严重程度之间的关系,另外一项研究则表明清除血块可以逆转猴子血管造影中的血管痉挛[13] [14]。而且多项研究发现患有蛛网膜下腔出血的患者的CT血液量与CVS的严重程度相关[13] [15]

红细胞可能是增加血管痉挛所必需的血液成分,大量证据表明,氧合血红蛋白是导致CVS发展的主要痉挛因子,脑血管痉挛期间脑脊液中存在高浓度的氧合血红蛋白[13] [14] [16]。近些年来人们了解到ASAH后许多血管和神经的改变是由炎症引起的,同时伴随着脑实质和血液中免疫细胞的激活[17]。动脉瘤破裂在蛛网膜下腔内沉积血液,随着时间的推移,红细胞的分解和降解会导致血红蛋白的沉积[18] [19],同时会激活中枢神经系统内的免疫调节细胞,这些细胞触发内皮细胞内大量细胞粘附分子的上调,从而与大量炎症细胞结合并进入蛛网膜下腔[18] [20]。一旦进入蛛网膜下腔,这些炎性细胞、巨噬细胞和中性粒细胞就会吞噬外渗的、降解的红细胞。这个过程是为了清除游离血红蛋白,促进神经稳定和恢复[18] [19]

如何预防和治疗CVS仍是临床上一个棘手的问题,外科干预治疗的是动脉瘤,而不是蛛网膜下腔出血本身,并无法降低CVS的发生率。目前公认的防治CVS的策略主要为保持全血容量性高血压及钙拮抗剂的使用[21]。使用钙拮抗剂的理论基础是血管痉挛可能是由于血管平滑肌细胞内钙的增加所致,钙拮抗剂可以通过阻断钙通道来减少钙流入细胞[22]。然而,多项研究表明,二氢吡啶钙通道拮抗剂尼莫地平虽可改善ASAH患者的临床结果,但并不会降低CVS的发生率[8] [9] [21]-[24],但考虑到其潜在的益处和较低的风险,目前还是将钙拮抗剂作为CVS的一线治疗。另外血管内治疗包括经皮腔内血管成形术(PTA)和动脉内注射血管扩张剂,考虑到血管内治疗潜在的风险,目前更多的是将其作为一种补救策略[21]。多项实验和临床观察证明镁可以用于防治CVS,镁可以通过非竞争性拮抗电压依赖性钙通道抑制谷氨酸释放并引起脑血管扩张[25] [26]。大量的实验性中风模型已经证明镁具有神经保护作用,研究表明,硫酸镁逆转脑血管痉挛和梗死体积[27]-[29]。一项临床观察发现低镁血症发生在一半以上ASAH患者中,并与DCI的发生和不良预后相关[30]

本研究中发现,脑脊液中红细胞的数量是ASAH后发生CVS的独立危险因素,再次验证了SAH导致CVS根本原因是蛛网膜下腔的血液产生的机械及化学刺激,所以预防CVS最根本办法是尽早清除蛛网膜下腔积血。实施腰椎穿刺或腰大池引流等措施快速减少脑脊液中红细胞数量,是预防CVS发生的有效途径。一项临床研究表明ASAH术后行腰大池持续引流可减少CVS等并发症发生,改善患者预后[31]。虽然腰椎穿刺术及腰大池引流术可用于防治CVS,但需把握操作的时机,以防对患者造成更大的伤害。脑脊液引流的前提是动脉瘤已夹闭或者已栓塞[32],研究表明,在动脉瘤修复前,如果实施外部脑脊液引流,患者再出血的风险可能会增加,这可能是由于已经受损和脆弱的动脉瘤壁的腔内压力突然变化所致[33]。目前还没有公认的脑脊液引流的合适时机,本研究中的患者均于术后第二天行腰椎穿刺术,未发现有不良反应及相关并发症。

5. 研究局限性

本研究虽对病人的治疗方式、取样时间进行了严格筛选,做到了每个病人基本一致,但因为其为回顾性研究,取样时间距发病时间仍存在微小差异。未来的研究应前瞻性地准确把握取样时间,且尽量比较多次取样结果,使对比更加精准。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Al-Matter, M., Aguilar Péreza, M., Bhogal, P., Hellstern, V., Ganslandt, O. and Henkes, H. (2018) Results of Interdisciplinary Management of 693 Patients with Aneurysmal Subarachnoid Hemorrhage: Clinical Outcome and Relevant Prognostic Factors. Clinical Neurology and Neurosurgery, 167, 106-111. [Google Scholar] [CrossRef] [PubMed]
[2] Johnston, S.C., Selvin, S. and Gress, D.R. (1998) The Burden, Trends, and Demographics of Mortality from Subarachnoid Hemorrhage. Neurology, 50, 1413-1418. [Google Scholar] [CrossRef] [PubMed]
[3] Hackett, M.L. and Anderson, C.S. (2000) Health Outcomes 1 Year after Subarachnoid Hemorrhage: An International Population-Based Study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology, 55, 658-662.
[4] Al-Khindi, T., Macdonald, R.L. and Schweizer, T.A. (2010) Cognitive and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Stroke, 41, e519-e536. [Google Scholar] [CrossRef] [PubMed]
[5] Opancina, V., Lukic, S., Jankovic, S., Vojinovic, R. and Mijailovic, M. (2020) Risk Factors for Cerebral Vasospasm in Patients with Aneurysmal Subarachnoid Hemorrhage. Open Medicine, 15, 598-604. [Google Scholar] [CrossRef] [PubMed]
[6] Chaudhry, S.R., Hafez, A., Rezai Jahromi, B., Kinfe, T.M., Lamprecht, A., Niemelä, M., et al. (2018) Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). International Journal of Molecular Sciences, 19, Article 2035. [Google Scholar] [CrossRef] [PubMed]
[7] Nieuwkamp, D.J., Setz, L.E., Algra, A., Linn, F.H., de Rooij, N.K. and Rinkel, G.J. (2009) Changes in Case Fatality of Aneurysmal Subarachnoid Haemorrhage over Time, According to Age, Sex, and Region: A Meta-Analysis. The Lancet Neurology, 8, 635-642. [Google Scholar] [CrossRef] [PubMed]
[8] Cahill, J. and Zhang, J.H. (2009) Subarachnoid Hemorrhage: Is It Time for a New Direction? Stroke, 40, S86-S87. [Google Scholar] [CrossRef] [PubMed]
[9] de Oliveira Manoel, A.L. and Macdonald, R.L. (2018) Neuroinflammation as a Target for Intervention in Subarachnoid Hemorrhage. Frontiers in Neurology, 9, Article 292. [Google Scholar] [CrossRef] [PubMed]
[10] van Donkelaar, C.E., Bakker, N.A., Veeger, N.J.G.M., Uyttenboogaart, M., Metzemaekers, J.D.M., Luijckx, G., et al. (2015) Predictive Factors for Rebleeding after Aneurysmal Subarachnoid Hemorrhage. Stroke, 46, 2100-2106. [Google Scholar] [CrossRef] [PubMed]
[11] Yilmaz, D.M., Haciyakupoglu, E., Diril, S., Sencar, L., Akgul, E., Polat, S., et al. (2018) Effects of Arginine Vasopressin and V1 Receptor Antagonist on Cerebral Vasospasm Secondary to Subarachnoid Hemorrhage: An Experimental Study. Turkish Neurosurgery, 28, 211-218. [Google Scholar] [CrossRef] [PubMed]
[12] Yang, L., Yan, J., Zhang, J., Zhou, X., Fang, C., Zeng, E., et al. (2019) The Important Role of Connexin 43 in Subarachnoid Hemorrhage-Induced Cerebral Vasospasm. Journal of Translational Medicine, 17, Article No. 433. [Google Scholar] [CrossRef] [PubMed]
[13] Kolias, A.G., Sen, J. and Belli, A. (2009) Pathogenesis of Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage: Putative Mechanisms and Novel Approaches. Journal of Neuroscience Research, 87, 1-11. [Google Scholar] [CrossRef] [PubMed]
[14] Zhang, Z., Yamini, B., Komuro, T., Ono, S., Johns, L., Marton, L.S., et al. (2001) Vasospasm in Monkeys Resolves Because of Loss of and Encasement of Subarachnoid Blood Clot. Stroke, 32, 1868-1874. [Google Scholar] [CrossRef] [PubMed]
[15] Fisher, C.M., Kistler, J.P. and Davis, J.M. (1980) Relation of Cerebral Vasospasm to Subarachnoid Hemorrhage Visualized by Computerized Tomographic Scanning. Neurosurgery, 6, 1-9. [Google Scholar] [CrossRef] [PubMed]
[16] 王玉妹, 唐思魏, 张少兰, 等. 不同浓度氧合血红蛋白对大鼠蛛网膜下腔出血后迟发性脑血管痉挛的影响[J]. 中国卒中杂志, 2021, 16(5): 457-462.
[17] Coulibaly, A.P. and Provencio, J.J. (2020) Aneurysmal Subarachnoid Hemorrhage: An Overview of Inflammation-Induced Cellular Changes. Neurotherapeutics, 17, 436-445. [Google Scholar] [CrossRef] [PubMed]
[18] Lucke-Wold, B., Logsdon, A., Manoranjan, B., Turner, R., McConnell, E., Vates, G., et al. (2016) Aneurysmal Subarachnoid Hemorrhage and Neuroinflammation: A Comprehensive Review. International Journal of Molecular Sciences, 17, Article 497. [Google Scholar] [CrossRef] [PubMed]
[19] Ascenzi, P., Bocedi, A., Visca, P., Altruda, F., Tolosano, E., Beringhelli, T., et al. (2005) Hemoglobin and Heme Scavenging. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57, 749-759. [Google Scholar] [CrossRef] [PubMed]
[20] Garton, T., Hua, Y., Xiang, J., Xi, G. and Keep, R.F. (2017) Challenges for Intraventricular Hemorrhage Research and Emerging Therapeutic Targets. Expert Opinion on Therapeutic Targets, 21, 1111-1122. [Google Scholar] [CrossRef] [PubMed]
[21] Athar, M.K. and Levine, J.M. (2012) Treatment Options for Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics, 9, 37-43. [Google Scholar] [CrossRef] [PubMed]
[22] Dorhout Mees, S., Rinkel, G.J., Feigin, V.L., Algra, A., van den Bergh, W.M., Vermeulen, M., et al. (2007) Calcium Antagonists for Aneurysmal Subarachnoid Haemorrhage. Cochrane Database of Systematic Reviews, 2008, CD000277. [Google Scholar] [CrossRef] [PubMed]
[23] Muhammad, S., Chaudhry, S.R., Kahlert, U.D., Lehecka, M., Korja, M., Niemelä, M., et al. (2020) Targeting High Mobility Group Box 1 in Subarachnoid Hemorrhage: A Systematic Review. International Journal of Molecular Sciences, 21, Article 2709. [Google Scholar] [CrossRef] [PubMed]
[24] Petridis, A.K., Kamp, M.A., Cornelius, J.F., Beez, T., Beseoglu, K., Turowski, B., et al. (2017) Aneurysmal Subarachnoid Hemorrhage. Deutsches Ärzteblatt International, 114, 226-236. [Google Scholar] [CrossRef] [PubMed]
[25] Rothman, S. (1984) Synaptic Release of Excitatory Amino Acid Neurotransmitter Mediates Anoxic Neuronal Death. The Journal of Neuroscience, 4, 1884-1891. [Google Scholar] [CrossRef] [PubMed]
[26] Johnson, J.W. and Ascher, P. (1990) Voltage-Dependent Block by Intracellular Mg2+ of N-Methyl-D-Aspartate-Activated Channels. Biophysical Journal, 57, 1085-1090. [Google Scholar] [CrossRef] [PubMed]
[27] Marinov, M.B., Harbaugh, K.S., Hoopes, P.J., Pikus, H.J. and Harbaugh, R.E. (1996) Neuroprotective Effects of Preischemia Intraarterial Magnesium Sulfate in Reversible Focal Cerebral Ischemia. Journal of Neurosurgery, 85, 117-124. [Google Scholar] [CrossRef] [PubMed]
[28] van den Bergh, W.M., Zuur, J.K., Kamerling, N.A., van Asseldonk, J.T.H., Rinkel, G.J.E., Tulleken, C.A.F., et al. (2002) Role of Magnesium in the Reduction of Ischemic Depolarization and Lesion Volume after Experimental Subarachnoid Hemorrhage. Journal of Neurosurgery, 97, 416-422. [Google Scholar] [CrossRef] [PubMed]
[29] Ram, Z., Sadeh, M., Shacked, I., Sahar, A. and Hadani, M. (1991) Magnesium Sulfate Reverses Experimental Delayed Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats. Stroke, 22, 922-927. [Google Scholar] [CrossRef] [PubMed]
[30] van den Bergh, W.M., Algra, A., van der Sprenkel, J.W.B., Tulleken, C.A.F. and Rinkel, G.J.E. (2003) Hypomagnesemia after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 52, 276-282. [Google Scholar] [CrossRef] [PubMed]
[31] 沈育, 徐春林, 程小志, 等. 早期持续腰大池引流联合尼莫地平对动脉瘤性蛛网膜下腔出血术后脑血管痉挛的影响[J]. 解放军医药杂志, 2020, 32(5): 99-103.
[32] 谭占国, 黄圣明. 蛛网膜下腔出血后迟发脑血管痉挛诊治新进展[J]. 中国临床神经外科杂志, 2019, 24(8): 505-506.
[33] Wilson, T.J., Stetler, W.J., Davis, M.C., et al. (2015) Intraventricular Hemorrhage Is Associated with Early Hydrocephalus, Symptomatic Vasospasm, and Poor Outcome in Aneurysmal Subarachnoid Hemorrhage. Journal of Neurological Surgery Part A: Central European Neurosurgery, 76, 126-132. [Google Scholar] [CrossRef] [PubMed]