NAD依赖性蛋白脱乙酰酶Sirtuin-3对糖尿病心肌病影响及机制研究进展
Advanced Research on the Effects and Mechanisms of NAD-Dependent Protein Deacetylase Sirtuin-3 in Diabetic Cardiomyopathy
摘要: 糖尿病心肌病(Diabetic Cardiomyopathy, DCM)是糖尿病引发的主要累及心肌,独立于冠状动脉疾病、瓣膜病变及其他常规心血管危险因素(如高血压、血脂异常)的严重心脏并发症,表现为心肌功能障碍。其主要病理特征包括心肌细胞肥大、心肌纤维化及心室收缩/舒张功能受损,最终可导致广泛心肌损伤与坏死,现已成为全球心力衰竭的重要诱因。线粒体脱乙酰酶Sirtuin-3 (SIRT3)是一种NAD⁺依赖性蛋白去乙酰化酶,在心脏等代谢活跃组织高表达。SIRT3通过调控脂肪酸氧化、三羧酸循环(TCA)、氧化磷酸化(OXPHOS)、活性氧(ROS)平衡及蛋白质乙酰化修饰水平,维持线粒体功能与代谢稳态。研究表明,SIRT3功能异常与糖尿病心肌病、心肌肥大、动脉粥样硬化等多种心血管疾病的发生发展密切相关。本综述系统探讨了SIRT3在糖尿病心肌病发病中的关键作用及相关分子机制,旨在为深入理解糖尿病心肌病病理生理过程及寻找潜在防治靶点提供科学依据。
Abstract: Diabetic Cardiomyopathy (DCM) is a severe diabetic complication primarily affecting cardiac muscle, characterized by myocardial dysfunction independent of coronary artery disease, valvulopathies, and other conventional cardiovascular risk factors (e.g., hypertension, dyslipidemia). Its core pathological features encompass cardiomyocyte hypertrophy, myocardial fibrosis, and impaired ventricular systolic/diastolic function, ultimately leading to extensive myocardial damage and necrosis. DCM has emerged as a significant contributor to global heart failure. Sirtuin-3 (SIRT3), a mitochondrial NAD⁺-dependent protein deacetylase, is highly expressed in metabolically active tissues including the heart. SIRT3 maintains mitochondrial function and metabolic homeostasis by regulating fatty acid oxidation, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), reactive oxygen species (ROS) balance, and protein acetylation modifications. Studies demonstrate that SIRT3 dysfunction is critically implicated in the pathogenesis of various cardiovascular diseases, including DCM, cardiac hypertrophy, and atherosclerosis. This review systematically explores the pivotal role and molecular mechanisms of SIRT3 in DCM pathogenesis, aiming to advance the understanding of DCM pathophysiology and identify potential therapeutic targets.
文章引用:孙文月. NAD依赖性蛋白脱乙酰酶Sirtuin-3对糖尿病心肌病影响及机制研究进展[J]. 临床医学进展, 2025, 15(11): 1491-1497. https://doi.org/10.12677/acm.2025.15113247

1. 引言

在全球范围内,糖尿病已成为严重威胁公共卫生安全与社会经济发展的重大健康挑战;尤其是近年来,在城市化进程加速、人口老龄化加剧、体力活动减少及肥胖流行等多重因素驱动下,糖尿病患病率持续显著攀升[1]。根据国际糖尿病联盟(IDF)《全球糖尿病地图(2025年版)》预测,至2050年全球成年糖尿病患者总数将激增至8.53亿,凸显其相关防控工作挑战日益严峻。其中,糖尿病性心肌病(Diabetic Cardiomyopathy, DCM)作为糖尿病引发的心肌特异性微血管病变并发症[2],已成为导致糖尿病患者致残与死亡的主要病因;随着糖尿病流行态势持续加剧,DCM已然发展为威胁公众健康的突出心血管问题。需特别指出,DCM病理生理机制具有显著的多因素复杂性,具体而言,胰岛素信号通路障碍引发心肌细胞葡萄糖利用减少及脂肪酸氧化代偿性增强,导致心肌脂质异常沉积与脂毒性[3] [4];继而触发的炎症级联反应、氧化应激损伤、线粒体功能障碍及异常信号通路激活协同作用,共同驱动心脏舒张功能障碍和收缩功能障碍,心脏重塑,组织间质纤维化,进而导致临床心力衰竭综合征[5]。然而目前,临床尚缺乏针对DCM的特异性防治药物。

线粒体定位的NAD+依赖性脱乙酰酶Sirtuin 3 (SIRT3)要位于线粒体中,通过去乙酰化和修饰线粒体蛋白的酶活性调控约80%~90%线粒体蛋白的酶活性,进而主导线粒体代谢通路调节[6]。SIRT3通过协调脂肪酸氧化、三羧酸循环(TCA)、氧化磷酸化(OXPHOS)、活性氧(ROS)稳态及蛋白质乙酰化平衡[6] [7],维持线粒体功能与代谢稳态。值得注意的是,SIRT3与多种心血管疾病有关,包括糖尿病性心肌病、心肌肥大、动脉粥样硬化、高血压、缺血性心肌病、中风等。越来越多的证据表明,SIRT3可以预防糖尿病引起的心脏损伤,并具有重要的改善作用。SIRT3过表达可降低糖尿病及代谢综合征发生的概率[8]。尤其重要的是,临床上能改善糖尿病患者预后的干预措施,如运动锻炼和热量限制,均被证实可激活SIRT3 [9]。SIRT3不仅保护心肌细胞免受心肌梗死(Myocardial Infarction, MI)损伤,还可阻断糖尿病心肌病进展;反之,SIRT3缺失会直接诱发心脏线粒体功能障碍和收缩能力下降[10]

本文系统阐述SIRT3在DCM治疗中的保护效应及其潜在作用机制,为推进SIRT3作为新型治疗靶点的临床转化奠定理论基础。

2. SIRT3在DCM病理进展的保护效应及机制

2.1. SIRT3改善DCM脂毒性和氧化应激水平

在糖尿病胰岛素抵抗状态下,心肌细胞被迫依赖脂肪酸供能。当循环脂质过量而脂肪酸氧化(Fatty Acid Oxidation, FAO)能力不足时,将促进胞质脂质蓄积,造成心肌能量底物代谢紊乱并诱发脂毒性。心脏脂毒性增加活性氧(ROS)生成[11]、高血糖驱动的非酶糖基化级联反应产生的晚期糖基化终产物(Advanced Glycation End products, AGEs)累积[12],进一步损害细胞功能并加剧氧化应激水平,从而加速糖尿病心肌病发展。研究发现,10 μM烟酰胺核苷可通过激活SIRT3显著上调棕榈酸诱导的H9C2细胞自噬关键蛋白BECLIN1表达,同时降低脂滴包被蛋白PLIN5水平,还可以降低甘油三酯水平,逆转脂滴过度蓄积,最终改善心肌细胞脂噬功能[13] [14]。相关机制研究还发现:木犀草素依赖于SIRT3升高糖尿病大鼠心脏线粒体超氧化物歧化酶2 (Superoxide Dismutase 2, SOD2)活性,并减少新生大鼠心肌细胞SOD2及血红素氧合酶-1 (Heme Oxygenase 1, HO-1)蛋白表达[15] [16]。SIRT3缺陷小鼠心脏组织中脂质过氧化标志物4-羟基壬烯醛(4-Hydroxynonenal, 4-HNE)显著升高,且线粒体锰超氧化物歧化酶(Manganese superoxide dismutase, MnSOD)水平同步降低[17]。过表达短型SIRT3(25 kDa,胞质来源)可有效降低AGO2蛋白丙二酰化修饰水平并促进其线粒体定位,而其敲低实验则呈现完全相反的调控效应[18]。Macrod1通过调节PARP1-NAD-SIRT3通路来改善DCM小鼠氧化应激水平[16]。运动干预通过SIRT3对糖尿病心肌病的心脏起到保护效应。SIRT3作为成纤维细胞生长因子21 (Fibroblast Growth Factor 21, FGF21)下游关键效应器,通过重塑心肌线粒体乙酰化修饰稳态、修复脂肪酸氧化及抗氧化酶功能,改善糖尿病心肌病[9]。综上,SIRT3作为线粒体功能调控核心枢纽,通过协同增强脂噬清除能力、抑制氧化损伤级联反应及修复蛋白质翻译后修饰稳态,多通路逆转糖尿病心肌细胞代谢紊乱与脂毒性损伤,彰显其治疗糖尿病心肌病的核心靶点价值。

2.2. SIRT3降低DCM炎症水平

在DCM进展过程中,多因素共同驱动炎症级联反应,包括:M1型巨噬细胞异常活化、白细胞募集增强,以及晚期糖基化终产物促发的炎性因子分泌。此过程中关键信号通路显著激活,例如核转录因子(NF-κB)通路、丝裂原活化蛋白激酶(MAPK)信号轴(包括JNK/p38通路)及NOD样受体热蛋白结构域相关蛋白3 (NOD-Like Receptor Thermal Protein Domain Associated Protein 3, NLRP3)炎性小体[19]-[22]。研究发现,相较于野生型糖尿病小鼠,SIRT3基因敲除糖尿病小鼠心肌中NLRP3、含半胱氨酸的天冬氨酸蛋白水解酶-1 (Caspase-1)与白细胞介素-1β (Interleukin-1β, IL-1β)蛋白表达进一步升高,该现象同样在高糖刺激的心肌细胞中得到验证,表明SIRT3缺失会特异性加剧心脏炎症水平[23]。二氢杨梅素(Dihydromyricetin, DHY)通过上调SIRT3表达,显著降低DCM小鼠NLRP3炎性体水平,进而保护链脲佐菌素(Streptozocin, STZ)诱导的糖尿病模型及高糖损伤的心肌细胞[24]。索马鲁肽可通过增加SIRT3表达,下调Raf激酶抑制蛋白(Raf Kinase Inhibitor Protein, RKIP)蛋白水平,由此抑制结合激酶1 (TANK Binding Kinase 1, TBK1)/NF-κB通路活化,最终缓解糖尿病小鼠心脏炎症反应[25]。综上,靶向SIRT3可多途径阻断糖尿病心肌病的炎症信号网络,其作为核心调控节点为临床干预提供新策略。

2.3. SIRT3逆转DCM线粒体功能损伤

在糖尿病患者中,ROS的水平升高与抗氧化防御失衡导致氧化应激损伤,促炎细胞因子大量释放,触发了线粒体功能障碍[19]。SIRT3在线粒体功能障碍和氧化还原稳态中起着至关重要的作用。Sentrin/SUMO特异性蛋白酶1 (Small Ubiquitin-Like Modifier (SUMO)/Sentrin-Specific Protease 1, SENP1)调节SIRT3的去小泛素样修饰剂过程,以增强线粒体质量控制,最终改善DCM病理进程[26] [27]。使用SIRT3激动剂Oroxylin-A显著提升高脂饮食喂养大鼠心肌的线粒体生物效能,生物发生关键因子PGC-1α、NRF1、TFAM表达上调、线粒体DNA含量增加;同时改善线粒体膜电位、耗氧率(OCR)及最大呼吸能力,并提升ATP合成相关耗氧率[28]

在糖尿病进程中,线粒体自噬功能普遍受到抑制,此障碍可加速心肌损伤进展[29]。哺乳动物不育系20样激酶1 (Mammalian Sterile 20-LIKE kinase 1, Mst1)缺失可以抑制SIRT3表达,从而损害Parkin介导的线粒体自噬[30]。SIRT3敲除糖尿病心肌病模型,心肌组织呈现LC3-II表达水平显著下调并伴随p62累积,最终导致自噬障碍性心肌损伤[31]。SIRT3过表达通过降低PINK1/Parkin的乙酰化修饰水平,激活其介导的线粒体自噬通路,从而有效修复受损的线粒体清除机制[17]。进一步的体外实验证实,SIRT3过表达可同步激活基础自噬与线粒体自噬,显著抑制线粒体膜电位崩解及心肌细胞凋亡,提示其具有双重心肌保护效应[26]。综上,SIRT3通过去SUMO化修饰激活线粒体生物发生–呼吸耦联轴,通过PINK1/Parkin轴调控糖尿病心肌线粒体自噬,是逆转糖尿病心肌线粒体损伤的核心分子开关。

2.4. SIRT3改善DCM心肌细胞凋亡以及胶原沉积

在糖尿病心肌病(DCM)进展中,心脏脂毒性与氧化应激协同驱动信号通路紊乱及细胞组分氧化修饰,直接导致细胞功能障碍并通过凋亡加速心肌损伤。SIRT3基因敲除不仅进一步加剧心肌细胞凋亡,且完全阻断Macrod1过表达的抗凋亡效应[31];SIRT3缺失显著增强糖尿病小鼠心肌细胞凋亡水平[32]。SIRT3敲低也可以解除NEU1抑制对H2O2诱导凋亡的保护作用。SIRT3抑制剂3-TYP可消除木犀草素对p-RIPK3/p-MLKL的抑制作用,表明木犀草素的抗坏死性凋亡效应严格依赖SIRT3激活[33]

糖尿病小鼠心肌细胞凋亡显著增多,鉴于心肌细胞再生能力受限,凋亡区域被成纤维细胞取代,最终激活心脏纤维化进程。SIRT3敲除组小鼠心肌组织胶原沉积增加,间质和血管周围纤维化水平均加重[28]。Liu P等研究表明,SIRT3基因敲除模型可进一步驱动内皮–间质转化关键标志物的病理重塑,具体表现为血管内皮标志物(CD31, VE-cadherin)表达显著抑制;肌成纤维细胞转化标记物α-平滑肌肌动蛋白(α-SMA)及细胞外基质核心组分胶原蛋白I (Col1a1)异常上调[17]。AMPKα通过磷酸化激活SIRT3,进而逆转糖尿病心肌病小鼠升高的促纤维化因子TGF-β及I型胶原(col I)水平,由此遏制心肌组织纤维化级联反应[34]。综上,SIRT3通过双重调控细胞凋亡与纤维化通路,成为逆转糖尿病心肌损伤的核心枢纽,其靶向激活为DCM治疗提供新策略。

3. SIRT3与DCM临床相关性与转化前景

糖尿病当前的临床管理策略涵盖生活方式干预与药物治疗两大核心。对于2型糖尿病,二甲双胍仍为一线用药,可联合磺脲类、SGLT2抑制剂(如达格列净、卡格列净)或DPP-4抑制剂等多机制口服药物;而1型糖尿病患者则需依赖外源性胰岛素维持血糖稳定。近年来,GLP-1受体激动剂(如司美格鲁肽和艾塞那肽),因其在降糖之外尚具心血管获益和体重控制作用,日益受到重视。

多项研究提示,部分降糖药物可能通过调控SIRT3发挥器官保护效应。例如,二甲双胍可上调SIRT3表达,抑制心肌细胞凋亡[35],缓解IL-1β介导的细胞毒性,降低线粒体活性氧水平,并增强PINK1/Parkin通路介导的线粒体自噬[36]。在SIRT3沉默模型中,二甲双胍对糖尿病相关认知障碍小鼠的线粒体保护作用被显著削弱[37]。同样,SGLT2抑制剂达格列净可逆转缺氧条件下H9c2细胞中SIRT家族蛋白(含SIRT3)的表达抑制,从而改善细胞存活并抑制凋亡[38]。研究还显示,心脏特异性SIRT3敲除不仅加剧盐负荷诱导的心肌肥厚,也消除了卡格列净的治疗效应。此外,GLP-1受体激动剂司美格鲁肽可恢复糖尿病小鼠心肌SIRT3表达,并通过RKIP依赖途径调节心脏炎症反应[25];艾塞那肽则通过提升SIRT3水平、激活AMPK信号、降低p53与PGC-1α乙酰化及FOXO-1磷酸化,发挥对心肌缺血再灌注损伤的保护作用[39]。综上所述,SIRT3作为线粒体功能与细胞稳态的关键调控因子,其在糖尿病心肌病发病机制与药物干预中的核心地位已得到初步证实,深入探究SIRT3信号通路不仅为阐释糖尿病相关心脏病变的分子机制提供新视角,也为开发以SIRT3为靶点的心脏保护策略奠定了重要的理论与实验基础。

目前,关于SIRT3在糖尿病心肌病(Diabetic Cardiomyopathy, DCM)患者中改善作用的相关研究尚鲜有报道。上述证据为我们在人群中进行SIRT3激动剂——如白藜芦醇和烟酰胺核糖等——干预糖尿病心肌病的临床试验提供了重要的理论依据。

4. 结论

SIRT3作为核心调控节点,在DCM病理进程中发挥多重保护效应:其通过多种机制清除活性氧簇,减轻炎症损伤,并改善线粒体功能障碍,激活抗凋亡通路,降低心肌胶原沉积。现有证据表明,绝大多数DCM干预策略,包括二甲双胍代谢调控、白藜芦醇多酚保护等,均需依赖SIRT3活化实现上述病理环节改善。因此,未来DCM靶向治疗研发应聚焦SIRT3信号枢纽,有望成为突破现有治疗瓶颈的新路径。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843. [Google Scholar] [CrossRef] [PubMed]
[2] Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. [Google Scholar] [CrossRef] [PubMed]
[3] Li, W., Liu, X., Liu, Z., Xing, Q., Liu, R., Wu, Q., et al. (2024) The Signaling Pathways of Selected Traditional Chinese Medicine Prescriptions and Their Metabolites in the Treatment of Diabetic Cardiomyopathy: A Review. Frontiers in Pharmacology, 15, Article ID: 1416403. [Google Scholar] [CrossRef] [PubMed]
[4] Ma, X., Mei, S., Wuyun, Q., Zhou, L., Sun, D. and Yan, J. (2024) Epigenetics in Diabetic Cardiomyopathy. Clinical Epigenetics, 16, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
[5] Liu, Y., Huo, J., Ren, K., Pan, S., Liu, H., Zheng, Y., et al. (2024) Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM): A Dark Horse for Diabetic Cardiomyopathy Treatment. Cell Death Discovery, 10, Article No. 148. [Google Scholar] [CrossRef] [PubMed]
[6] Hong, C., Wei, Y., Wang, Y., Lv, G., Dong, X. and Huang, X. (2025) The Mechanism and Therapeutic Potential of SIRT3 in Central Nervous System Diseases: A Review. Frontiers in Pharmacology, 16, Article ID: 1652296. [Google Scholar] [CrossRef
[7] Wang, S., Zhang, J., Deng, X., Zhao, Y. and Xu, K. (2020) Advances in Characterization of SIRT3 Deacetylation Targets in Mitochondrial Function. Biochimie, 179, 1-13. [Google Scholar] [CrossRef] [PubMed]
[8] Liu, M., Xuan, A., Zheng, L., Li, D., Chen, C., Liu, H., et al. (2025) Novel Coumarin Derivative SZC-6 as an Allosteric Activator of SIRT3 Alleviates Diabetic Kidney Disease via the Sirt3-Foxo3a Signaling Axis. Free Radical Biology and Medicine, 240, 29-45. [Google Scholar] [CrossRef] [PubMed]
[9] Jin, L., Geng, L., Ying, L., Shu, L., Ye, K., Yang, R., et al. (2022) FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation, 146, 1537-1557. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, M., Zhao, Z., Shen, M., Zhang, Y., Duan, J., Guo, Y., et al. (2017) Polydatin Protects Cardiomyocytes against Myocardial Infarction Injury by Activating Sirt3. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1962-1972. [Google Scholar] [CrossRef] [PubMed]
[11] McLean, E., Roo, C.D., Maag, A., Coble, M., Cano, J. and Liu, R. (2025) ERK1/2 Inhibition Alleviates Diabetic Cardiomyopathy by Suppressing Fatty Acid Metabolism. Frontiers in Bioscience-Landmark, 30, Article No. 26700. [Google Scholar] [CrossRef] [PubMed]
[12] Rigalleau, V., Pucheux, Y., Couffinhal, T., Tessier, F.J., Howsam, M., Rubin, S., et al. (2025) Skin Autofluorescence of Advanced Glycation End-Products, Glycemic Memory, and Diabetes Complications. Diabetes & Metabolism, 51, Article ID: 101600. [Google Scholar] [CrossRef] [PubMed]
[13] Chen, W., Jin, T., Xie, Y., Zhong, C., Gao, H., Zhang, L., et al. (2025) Berberine Partially Ameliorates Cardiolipotoxicity in Diabetic Cardiomyopathy by Modulating Sirt3‐Mediated Lipophagy to Remodel Lipid Droplets Homeostasis. British Journal of Pharmacology, 182, 5038-5056. [Google Scholar] [CrossRef] [PubMed]
[14] Wei, X., Chen, J., Wu, X., Zhang, Q., Xia, G., Chu, X., et al. (2025) Salvianolic Acid B Alleviated Myocardial Ischemia-Reperfusion Injury via Modulating Sirt3-Mediated Crosstalk between Mitochondrial ROS and NLRP3. Phytomedicine, 136, Article ID: 156260. [Google Scholar] [CrossRef] [PubMed]
[15] Li, G., Jian, Z., Wang, H., Xu, L., Zhang, T. and Song, J. (2022) Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3319056. [Google Scholar] [CrossRef] [PubMed]
[16] Liu, Y., Qiu, H., Xia, H., Feng, Y., Deng, J., Yuan, Y., et al. (2024) Macrod1 Suppresses Diabetic Cardiomyopathy via Regulating PARP1-NAD+-SIRT3 Pathway. Acta Pharmacologica Sinica, 45, 1175-1188. [Google Scholar] [CrossRef] [PubMed]
[17] Liu, P., Xu, T., Luo, Y., Meng, J., Cui, D. and Wang, A. (2025) SIRT3 Attenuates Sepsis-Induced EndMT and Cardiac Remodeling by Facilitating Mitophagy Process via Pink1/Parkin Signaling. International Immunopharmacology, 164, Article ID: 115377. [Google Scholar] [CrossRef] [PubMed]
[18] Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., et al. (2010) Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis. PLOS ONE, 5, e11707. [Google Scholar] [CrossRef] [PubMed]
[19] de la Paz Sánchez-Martínez, M., Blanco-Favela, F., Mora-Ruiz, M.D., Chávez-Rueda, A.K., Bernabe-García, M. and Chávez-Sánchez, L. (2017) IL-17-Differentiated Macrophages Secrete Pro-Inflammatory Cytokines in Response to Oxidized Low-Density Lipoprotein. Lipids in Health and Disease, 16, Article No. 196. [Google Scholar] [CrossRef] [PubMed]
[20] Bellemare, M., Bourcier, L., Iglesies‐Grau, J., Boulet, J., O’Meara, E. and Bouabdallaoui, N. (2025) Mechanisms of Diabetic Cardiomyopathy: Focus on Inflammation. Diabetes, Obesity and Metabolism, 27, 2326-2338. [Google Scholar] [CrossRef] [PubMed]
[21] Zhang, Y., Zhang, L., Li, P., Qiu, L., Qu, Y., Wu, Y., et al. (2025) Extracellular Vesicles from Adipose-Derived Stem Cell Alleviate Diabetic Cardiomyopathy by Regulating Chit1/NLRP3/Caspase-1-Mediated Pyroptosis. International Immunopharmacology, 146, Article ID: 113860. [Google Scholar] [CrossRef] [PubMed]
[22] Zhao, X., Shang, L. and Shen, C. (2025) Daphnetin Ameliorates Diabetic Cardiomyopathy by Regulating Inflammation and Endoplasmic Reticulum Stress-Induced Apoptosis. Experimental Animals, 74, 49-57. [Google Scholar] [CrossRef] [PubMed]
[23] Yu, W., Gao, B., Li, N., Wang, J., Qiu, C., Zhang, G., et al. (2017) Sirt3 Deficiency Exacerbates Diabetic Cardiac Dysfunction: Role of Foxo3A-Parkin-Mediated Mitophagy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1973-1983. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, Y., Zheng, Y., Chen, R., Shen, J., Zhang, S., Gu, Y., et al. (2023) Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants, 12, Article No. 200. [Google Scholar] [CrossRef] [PubMed]
[25] Lin, K., Wang, A., Zhai, C., Zhao, Y., Hu, H., Huang, D., et al. (2024) Semaglutide Protects against Diabetes‐Associated Cardiac Inflammation via Sirt3‐Dependent RKIP Pathway. British Journal of Pharmacology, 182, 1561-1581. [Google Scholar] [CrossRef] [PubMed]
[26] Fan, Y., Chen, Z., Wang, H., Jiang, M., Lu, H., Wei, Y., et al. (2025) Isovitexin Targets SIRT3 to Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Mitophagy-Mediated Ferroptosis. Bone Research, 13, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
[27] Zhang, P., Wu, H., Lou, H., Zhou, J., Hao, J., Lin, H., et al. (2025) Baicalin Attenuates Diabetic Cardiomyopathy in Vivo and in Vitro by Inhibiting Autophagy and Cell Death through SENP1/SIRT3 Signaling Pathway Activation. Antioxidants & Redox Signaling, 42, 53-76. [Google Scholar] [CrossRef] [PubMed]
[28] Yu, X., Yang, Y., Chen, T., Wang, Q., Wang, Z., Gao, X., et al. (2025) Exogenous SPD Inhibits Trastuzumab-Mediated Cardiomyocyte Pyroptosis through Sirt3-Regulated Mitochondrial Quality Control. International Journal of Biological Sciences, 21, 4027-4050. [Google Scholar] [CrossRef] [PubMed]
[29] Koutsifeli, P., Varma, U., Daniels, L.J., Annandale, M., Li, X., Neale, J.P.H., et al. (2022) Glycogen-Autophagy: Molecular Machinery and Cellular Mechanisms of Glycophagy. Journal of Biological Chemistry, 298, Article ID: 102093. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, S., Zhao, Z., Fan, Y., Zhang, M., Feng, X., Lin, J., et al. (2019) Mst1 Inhibits Sirt3 Expression and Contributes to Diabetic Cardiomyopathy through Inhibiting Parkin-Dependent Mitophagy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 1905-1914. [Google Scholar] [CrossRef] [PubMed]
[31] Zhang, M., Wang, S., Cheng, Z., Xiong, Z., Lv, J., Yang, Z., et al. (2017) Polydatin Ameliorates Diabetic Cardiomyopathy via Sirt3 Activation. Biochemical and Biophysical Research Communications, 493, 1280-1287. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, M., Lin, J., Wang, S., Cheng, Z., Hu, J., Wang, T., et al. (2017) Melatonin Protects against Diabetic Cardiomyopathy through Mst1/Sirt3 Signaling. Journal of Pineal Research, 63, e12418. [Google Scholar] [CrossRef] [PubMed]
[33] Yan, L., Liang, L., Gou, Q., Wu, H., Dong, M., Chen, H., et al. (2025) Luteolin Regulates Mitophagy to Alleviate Myocardial Ischemia‐Reperfusion Injury via Sirt3/Foxo3a Pathway. Advanced Biology, 21, e00778. [Google Scholar] [CrossRef] [PubMed]
[34] Zeng, H., He, X., Hou, X., Li, L. and Chen, J. (2014) Apelin Gene Therapy Increases Myocardial Vascular Density and Ameliorates Diabetic Cardiomyopathy via Upregulation of Sirtuin 3. American Journal of Physiology-Heart and Circulatory Physiology, 306, H585-H597. [Google Scholar] [CrossRef] [PubMed]
[35] Du, Y., Zhang, J., Fang, F., Wei, X., Zhang, H., Tan, H., et al. (2017) Metformin Ameliorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis Based on the SIRT3 Signaling Pathway. Gene, 626, 182-188. [Google Scholar] [CrossRef] [PubMed]
[36] Wang, C., Yang, Y., Zhang, Y., Liu, J., Yao, Z. and Zhang, C. (2018) Protective Effects of Metformin against Osteoarthritis through Upregulation of Sirt3-Mediated Pink1/Parkin-Dependent Mitophagy in Primary Chondrocytes. BioScience Trends, 12, 605-612. [Google Scholar] [CrossRef] [PubMed]
[37] An, J., Su, H., Zhang, C., Wang, X., Zhang, G., Fu, L., et al. (2025) Metformin Activation of Sirtuin 3 Signaling Regulates Mitochondrial Function Improves Diabetes-Associated Cognitive Impairment. Diabetes, Metabolic Syndrome and Obesity, 18, 2317-2330. [Google Scholar] [CrossRef] [PubMed]
[38] Lin, Y., Tsai, W., Chiu, C., Chi, N., Liu, Y., Huang, T., et al. (2024) The Beneficial Effect of the SGLT2 Inhibitor Dapagliflozin in Alleviating Acute Myocardial Infarction-Induced Cardiomyocyte Injury by Increasing the Sirtuin Family SIRT1/SIRT3 and Cascade Signaling. International Journal of Molecular Sciences, 25, Article No. 8541. [Google Scholar] [CrossRef] [PubMed]
[39] Eid, R.A., Bin-Meferij, M.M., El-kott, A.F., Eleawa, S.M., Zaki, M.S.A., Al-Shraim, M., et al. (2020) Exendin-4 Protects against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of AMPK. Journal of Cardiovascular Translational Research, 14, 619-635. [Google Scholar] [CrossRef] [PubMed]