|
[1]
|
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, W., Liu, X., Liu, Z., Xing, Q., Liu, R., Wu, Q., et al. (2024) The Signaling Pathways of Selected Traditional Chinese Medicine Prescriptions and Their Metabolites in the Treatment of Diabetic Cardiomyopathy: A Review. Frontiers in Pharmacology, 15, Article ID: 1416403. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ma, X., Mei, S., Wuyun, Q., Zhou, L., Sun, D. and Yan, J. (2024) Epigenetics in Diabetic Cardiomyopathy. Clinical Epigenetics, 16, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, Y., Huo, J., Ren, K., Pan, S., Liu, H., Zheng, Y., et al. (2024) Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM): A Dark Horse for Diabetic Cardiomyopathy Treatment. Cell Death Discovery, 10, Article No. 148. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hong, C., Wei, Y., Wang, Y., Lv, G., Dong, X. and Huang, X. (2025) The Mechanism and Therapeutic Potential of SIRT3 in Central Nervous System Diseases: A Review. Frontiers in Pharmacology, 16, Article ID: 1652296. [Google Scholar] [CrossRef]
|
|
[7]
|
Wang, S., Zhang, J., Deng, X., Zhao, Y. and Xu, K. (2020) Advances in Characterization of SIRT3 Deacetylation Targets in Mitochondrial Function. Biochimie, 179, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, M., Xuan, A., Zheng, L., Li, D., Chen, C., Liu, H., et al. (2025) Novel Coumarin Derivative SZC-6 as an Allosteric Activator of SIRT3 Alleviates Diabetic Kidney Disease via the Sirt3-Foxo3a Signaling Axis. Free Radical Biology and Medicine, 240, 29-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jin, L., Geng, L., Ying, L., Shu, L., Ye, K., Yang, R., et al. (2022) FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation, 146, 1537-1557. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, M., Zhao, Z., Shen, M., Zhang, Y., Duan, J., Guo, Y., et al. (2017) Polydatin Protects Cardiomyocytes against Myocardial Infarction Injury by Activating Sirt3. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1962-1972. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
McLean, E., Roo, C.D., Maag, A., Coble, M., Cano, J. and Liu, R. (2025) ERK1/2 Inhibition Alleviates Diabetic Cardiomyopathy by Suppressing Fatty Acid Metabolism. Frontiers in Bioscience-Landmark, 30, Article No. 26700. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rigalleau, V., Pucheux, Y., Couffinhal, T., Tessier, F.J., Howsam, M., Rubin, S., et al. (2025) Skin Autofluorescence of Advanced Glycation End-Products, Glycemic Memory, and Diabetes Complications. Diabetes & Metabolism, 51, Article ID: 101600. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, W., Jin, T., Xie, Y., Zhong, C., Gao, H., Zhang, L., et al. (2025) Berberine Partially Ameliorates Cardiolipotoxicity in Diabetic Cardiomyopathy by Modulating Sirt3‐Mediated Lipophagy to Remodel Lipid Droplets Homeostasis. British Journal of Pharmacology, 182, 5038-5056. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wei, X., Chen, J., Wu, X., Zhang, Q., Xia, G., Chu, X., et al. (2025) Salvianolic Acid B Alleviated Myocardial Ischemia-Reperfusion Injury via Modulating Sirt3-Mediated Crosstalk between Mitochondrial ROS and NLRP3. Phytomedicine, 136, Article ID: 156260. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, G., Jian, Z., Wang, H., Xu, L., Zhang, T. and Song, J. (2022) Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3319056. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, Y., Qiu, H., Xia, H., Feng, Y., Deng, J., Yuan, Y., et al. (2024) Macrod1 Suppresses Diabetic Cardiomyopathy via Regulating PARP1-NAD+-SIRT3 Pathway. Acta Pharmacologica Sinica, 45, 1175-1188. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, P., Xu, T., Luo, Y., Meng, J., Cui, D. and Wang, A. (2025) SIRT3 Attenuates Sepsis-Induced EndMT and Cardiac Remodeling by Facilitating Mitophagy Process via Pink1/Parkin Signaling. International Immunopharmacology, 164, Article ID: 115377. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., et al. (2010) Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis. PLOS ONE, 5, e11707. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
de la Paz Sánchez-Martínez, M., Blanco-Favela, F., Mora-Ruiz, M.D., Chávez-Rueda, A.K., Bernabe-García, M. and Chávez-Sánchez, L. (2017) IL-17-Differentiated Macrophages Secrete Pro-Inflammatory Cytokines in Response to Oxidized Low-Density Lipoprotein. Lipids in Health and Disease, 16, Article No. 196. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bellemare, M., Bourcier, L., Iglesies‐Grau, J., Boulet, J., O’Meara, E. and Bouabdallaoui, N. (2025) Mechanisms of Diabetic Cardiomyopathy: Focus on Inflammation. Diabetes, Obesity and Metabolism, 27, 2326-2338. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Y., Zhang, L., Li, P., Qiu, L., Qu, Y., Wu, Y., et al. (2025) Extracellular Vesicles from Adipose-Derived Stem Cell Alleviate Diabetic Cardiomyopathy by Regulating Chit1/NLRP3/Caspase-1-Mediated Pyroptosis. International Immunopharmacology, 146, Article ID: 113860. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, X., Shang, L. and Shen, C. (2025) Daphnetin Ameliorates Diabetic Cardiomyopathy by Regulating Inflammation and Endoplasmic Reticulum Stress-Induced Apoptosis. Experimental Animals, 74, 49-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yu, W., Gao, B., Li, N., Wang, J., Qiu, C., Zhang, G., et al. (2017) Sirt3 Deficiency Exacerbates Diabetic Cardiac Dysfunction: Role of Foxo3A-Parkin-Mediated Mitophagy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1973-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, Y., Zheng, Y., Chen, R., Shen, J., Zhang, S., Gu, Y., et al. (2023) Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants, 12, Article No. 200. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lin, K., Wang, A., Zhai, C., Zhao, Y., Hu, H., Huang, D., et al. (2024) Semaglutide Protects against Diabetes‐Associated Cardiac Inflammation via Sirt3‐Dependent RKIP Pathway. British Journal of Pharmacology, 182, 1561-1581. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Fan, Y., Chen, Z., Wang, H., Jiang, M., Lu, H., Wei, Y., et al. (2025) Isovitexin Targets SIRT3 to Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Mitophagy-Mediated Ferroptosis. Bone Research, 13, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, P., Wu, H., Lou, H., Zhou, J., Hao, J., Lin, H., et al. (2025) Baicalin Attenuates Diabetic Cardiomyopathy in Vivo and in Vitro by Inhibiting Autophagy and Cell Death through SENP1/SIRT3 Signaling Pathway Activation. Antioxidants & Redox Signaling, 42, 53-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yu, X., Yang, Y., Chen, T., Wang, Q., Wang, Z., Gao, X., et al. (2025) Exogenous SPD Inhibits Trastuzumab-Mediated Cardiomyocyte Pyroptosis through Sirt3-Regulated Mitochondrial Quality Control. International Journal of Biological Sciences, 21, 4027-4050. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Koutsifeli, P., Varma, U., Daniels, L.J., Annandale, M., Li, X., Neale, J.P.H., et al. (2022) Glycogen-Autophagy: Molecular Machinery and Cellular Mechanisms of Glycophagy. Journal of Biological Chemistry, 298, Article ID: 102093. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, S., Zhao, Z., Fan, Y., Zhang, M., Feng, X., Lin, J., et al. (2019) Mst1 Inhibits Sirt3 Expression and Contributes to Diabetic Cardiomyopathy through Inhibiting Parkin-Dependent Mitophagy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 1905-1914. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, M., Wang, S., Cheng, Z., Xiong, Z., Lv, J., Yang, Z., et al. (2017) Polydatin Ameliorates Diabetic Cardiomyopathy via Sirt3 Activation. Biochemical and Biophysical Research Communications, 493, 1280-1287. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, M., Lin, J., Wang, S., Cheng, Z., Hu, J., Wang, T., et al. (2017) Melatonin Protects against Diabetic Cardiomyopathy through Mst1/Sirt3 Signaling. Journal of Pineal Research, 63, e12418. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yan, L., Liang, L., Gou, Q., Wu, H., Dong, M., Chen, H., et al. (2025) Luteolin Regulates Mitophagy to Alleviate Myocardial Ischemia‐Reperfusion Injury via Sirt3/Foxo3a Pathway. Advanced Biology, 21, e00778. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zeng, H., He, X., Hou, X., Li, L. and Chen, J. (2014) Apelin Gene Therapy Increases Myocardial Vascular Density and Ameliorates Diabetic Cardiomyopathy via Upregulation of Sirtuin 3. American Journal of Physiology-Heart and Circulatory Physiology, 306, H585-H597. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Du, Y., Zhang, J., Fang, F., Wei, X., Zhang, H., Tan, H., et al. (2017) Metformin Ameliorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis Based on the SIRT3 Signaling Pathway. Gene, 626, 182-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, C., Yang, Y., Zhang, Y., Liu, J., Yao, Z. and Zhang, C. (2018) Protective Effects of Metformin against Osteoarthritis through Upregulation of Sirt3-Mediated Pink1/Parkin-Dependent Mitophagy in Primary Chondrocytes. BioScience Trends, 12, 605-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
An, J., Su, H., Zhang, C., Wang, X., Zhang, G., Fu, L., et al. (2025) Metformin Activation of Sirtuin 3 Signaling Regulates Mitochondrial Function Improves Diabetes-Associated Cognitive Impairment. Diabetes, Metabolic Syndrome and Obesity, 18, 2317-2330. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lin, Y., Tsai, W., Chiu, C., Chi, N., Liu, Y., Huang, T., et al. (2024) The Beneficial Effect of the SGLT2 Inhibitor Dapagliflozin in Alleviating Acute Myocardial Infarction-Induced Cardiomyocyte Injury by Increasing the Sirtuin Family SIRT1/SIRT3 and Cascade Signaling. International Journal of Molecular Sciences, 25, Article No. 8541. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Eid, R.A., Bin-Meferij, M.M., El-kott, A.F., Eleawa, S.M., Zaki, M.S.A., Al-Shraim, M., et al. (2020) Exendin-4 Protects against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of AMPK. Journal of Cardiovascular Translational Research, 14, 619-635. [Google Scholar] [CrossRef] [PubMed]
|