基因检测指导的化疗与经验性化疗在晚期肺癌患者中的疗效和安全性差异分析
Efficacy and Safety of Genetic Testing-Guided Chemotherapy vs. Empiric Chemotherapy in Patients with Advanced Lung Cancer
DOI: 10.12677/acm.2025.15113252, PDF, HTML, XML,   
作者: 熊雨芳:北华大学临床医学院,吉林 吉林;韦丽娜:永吉县第二人民医院急诊科,吉林 吉林;钟立哲*:北华大学附属医院心胸外科,吉林 吉林
关键词: 非小细胞癌基因检测治疗结果Non-Small Cell Lung Cancer Genetic Testing Treatment Outcomes
摘要: 目的:本研究旨在探讨个体化精准治疗在晚期非小细胞肺癌患者化疗领域的应用。方法:选取2023年9月到2025年6月北华大学附属医院心胸血管外科收治的非小细胞肺癌患者30例作为研究对象。采用回顾性分析,将30例患者分为观察组(15例)和对照组(15例)。观察组患者对ERCC1、ERCC2、XRCC1、MTHFR和TYMS、GSTP1和RRM1基因进行检测后选择敏感药物进行化疗。对照组采用紫杉醇联合铂类进行化疗。比较两组患者化疗后,经CT图像测量所得肿瘤最大长径变化差异以及化疗相关不良反应。结果:观察组与对照组患者在第2周期化疗结束后同化疗前,经CT图像测量的肿瘤最大长径变化差值有统计学差异(P = 0.030)。观察组与对照组患者第4周期化疗结束后同第2周期化疗后,经CT图像测量的肿瘤最大长径变化差值有统计学差异(P = 0.014)。安全性分析表明,两组在血液学毒性、肝肾毒性和消化系统反应等方面未见显著差异(P > 0.05)。结论:观察组与对照组在第2周期、第4周期化疗后肿瘤大小变化有显著差异。观察组与对照组患者分别在第2周期化疗结束后同化疗前,第4周期化疗结束后同第2周期化疗后,经CT图像测量的肿瘤最大长径变化差值有统计学差异。安全性分析表明,两组在血液学毒性、肝肾毒性和消化系统反应等方面未见显著差异。基因检测指导化疗显著提高短期疗效。
Abstract: Objective: To explore the application of individualized precision therapy in chemotherapy for patients with advanced non-small cell lung cancer (NSCLC). Methods: A retrospective analysis was conducted on 30 NSCLC patients treated in the Department of Cardiothoracic and Vascular Surgery, Affiliated Hospital of Beihua University, from September 2023 to June 2025. Patients were assigned to an observation group (n = 15) and a control group (n = 15). The observation group underwent genetic testing for ERCC1, ERCC2, XRCC1, MTHFR, TYMS, GSTP1, and RRM1, and subsequently received chemotherapy regimens selected according to predicted drug sensitivity. The control group received paclitaxel combined with a platinum agent. The primary outcome was the change in the maximum long-axis tumor diameter on CT imaging after chemotherapy. Chemotherapy-related adverse events were also compared. Results: Relative to baseline, the between-group difference in the change of maximum long-axis tumor diameter at the end of cycle 2 was statistically significant (P = 0.030). From cycle 2 to the end of cycle 4, the between-group difference in the further change of tumor diameter remained significant (P = 0.014). Safety analyses showed no significant differences between groups in hematologic toxicity, hepatic/renal toxicity, or gastrointestinal reactions (all P > 0.05).Conclusions: Tumor size reduction differed significantly between the observation and control groups after cycles 2 and 4. Specifically, the changes from baseline to the end of cycle 2 and from cycle 2 to the end of cycle 4 were significantly different between groups. Safety profiles were comparable, with no significant differences in major toxicities. Genetic testing–guided chemotherapy significantly improves short-term efficacy.
文章引用:熊雨芳, 韦丽娜, 钟立哲. 基因检测指导的化疗与经验性化疗在晚期肺癌患者中的疗效和安全性差异分析[J]. 临床医学进展, 2025, 15(11): 1528-1533. https://doi.org/10.12677/acm.2025.15113252

1. 引言

背景:目前肺癌不仅是世界上最常见的恶性肿瘤,也是病死率最高的恶性肿瘤[1]。在肺癌中非小细胞肺癌占大多数[2],其中晚期非小细胞肺癌患者往往失去手术机会,常采用化疗为主的综合性治疗;当前,化疗方案选择在很大程度上依赖于临床经验和组织学类型,但不同患者对化疗药物的反应差异较大,导致疗效与安全性存在显著异质性[3]。本研究试图通过基因检测指导多种化疗药物的选择,而不仅仅是局限于ERCC1与铂类药物的单一关联。如果结论成立,将为临床实践提供一种优化传统化疗、实现“因人施治”的潜在方法,以期达到增效减毒的目的,为晚期非小细胞肺癌的个体化治疗提供依据。

2. 资料与方法

2.1. 一般资料

本研究为回顾性队列研究,研究对象为2023年9月到2025年6月期间在北华大学附属医院心胸血管外科接受化疗的晚期非小细胞肺癌患者。患者根据是否接受基因检测指导化疗分为两组:观察组和对照组,观察组为选择基因检测指导化疗的患者,对照组为采用经验性化疗的患者。纳入标准:(1) 通过病理学或细胞学诊断为非小细胞肺癌Ⅲ期或Ⅳ期、未接受过肺癌相关治疗、全身评估结果显示化疗耐受性较好者;(2) 年龄大于18岁且小于80岁者;(3) 美国东部肿瘤协作组体能状况(Performance Status, PS)评分[3] 0~1分者;(4) CT扫描检查结果表明肿瘤病灶可测量者。排除标准:(1) 粒细胞严重减少(白细胞总数 < 3.0 × 109/L)、贫血者(血红蛋白 < 90 g/L);(2) 肝、肾功能异常,实验室检查指标超过参考值2倍,或有严重并发症、感染性发热、出血倾向者;(3) 合并有严重的心脏、神经系统等疾病者;(4) 年龄大于80岁者;(5) PS评分 > 2分者。两组患者的性别、年龄、病理类型、分期比较,差异均无统计学意义(P > 0. 05)。本研究经过北华大学附属医院医学伦理委员会批准,且患者均知情同意。

2.2. 方法

2.2.1. 基因检测

观察组15例患者的细针穿刺标本经病理科固定后的石蜡片或外周血送北京乐土医学检验实验室进行ERCC1、ERCC2、XRCC1、MTHFR和TYMS、GSTP1和RRM1基因检测,采用的二代测序(Next-Generation Sequencing, NGS)检测拷贝数变异(Copy Number Variation, CNV),单核苷酸变异(Single Nucleotide Variation, SNV),基因融合(Gene Fusion, FUSION),下机数据对比人类基因组,最终得出突变的结果。

2.2.2. 治疗方法

1) 观察组

根据ERCC1、DHFR、RRM1、CYP3A4、ABCB1、TP53基因表达量确定化疗方案:ERCC1低表达者采取以铂类为主的2种药物治疗,DHFR低表达者选择培美曲塞,RRM1低表达者选择吉西他滨,CYP3A4低表达或者功能降低患者考虑多西他赛,ABCB1低表达者选择紫杉醇,野生型TP53患者选择依托泊苷。

2) 对照组

对照组患者选用紫杉醇联合铂类化疗方案。

2.2.3. 疗效评价

患者在化疗2个周期后、化疗4个周期后依次进行疗效判断,判断标准为观察组与对照组患者在第2周期化疗结束后同化疗前,经CT图像测量的肿瘤最大长径差值。观察组与对照组患者第4周期化疗结束后同第2周期化疗后,经CT图像测量的肿瘤最大长径差值。患者化疗期间出现不良反应按国家癌症研究所(NCI)推荐的CTCAE (Common Terminology Criteria for Adverse Events)进行分级。采用CTCAE v5.0进行症状评估[4]

2.2.4. 统计方法

由于两组患者年龄均服从正态分布,采用两独立样本T检验。采用Fisher精确检验比较性别、吸烟史和不良反应的发生情况。由于两组患者分别在第2周期化疗结束后同化疗前、第4周期化疗结束后同第2周期化疗后,经CT图像测量的肿瘤最大长径差值不服从正态分布,采用Mann-Whitney U检验。统计学方法使用SPSS 26.0软件,显著性水平设定为α = 0.05。

3. 结果

3.1. 基线特征

基线特征,包括年龄、性别、吸烟史等。两组在年龄(P = 0.796)、性别(P = 0.70)、吸烟史(P = 0.71)上无显著差异见表1

Table 1. Baseline characteristics of the two patient groups

1. 两组患者的基线特征

组别

例数

年龄(岁)

性别(男/女)

吸烟史(有/无)

观察组

15

64.0 ± 6.0

11/4

7/8

对照组

15

63.3 ± 7.9

9/6

5/10

t值

0.26

P值

0.796

0.70

0.71

3.2. 化疗结果

在15例观察组患者中用紫杉醇 + 铂类6例,多西他赛 + 铂类5例,培美曲塞 + 铂类2例,吉西他滨 + 铂类2例。两组患者在第2周期化疗结束后的肿瘤最大长径变化,与化疗前的差值存在显著统计学差异(P = 0.030)见表2。观察组与对照组患者第4周期化疗结束后肿瘤最大长径变化,与第2周期化疗后的差值存在显著统计学差异(P = 0.014)见表3

Table 2. Mann-Whitney U test (nonparametric) of between-group differences in the change of maximum long-axis tumor diameter after two chemotherapy cycles

2. 组别与化疗2个周期后最大长径变化值的非参数Mann-Whitney U检验

变量

组别

个案数

秩平均值

Mann-Whitney U检验

P

最大长径变化值

观察组

15

18.97

60.5

0.03

对照组

15

12.03

Table 3. Mann-Whitney U test (nonparametric) of between-group differences in the change of maximum long-axis tumor diameter after four chemotherapy cycles

3. 组别与化疗4个周期后最大长径变化值的非参数Mann-Whitney U检验

变量

组别

个案数

秩平均值

Mann-Whitney U检验

最大长径变化值

观察组

15

19.43

53.5

0.014

对照组

15

11.57

3.3. 不良反应

在观察组和对照组患者中,发生血液系统不良反应分别为11例(73.3%)和13例(86.7%),2组间无显著差异(P = 0.651);发生肝毒性分别为3例(20%)和5例(33.3%),2组间无显著差异(P = 0.682);发生肾毒性分别为3例(20%)和7例(46.7%),2组间无显著差异(P = 0.245);发生消化系统不良反应分别为9例(60%)和13例(86.7%),2组间无显著差异(P = 0.215)见表4

Table 4. Comparison of chemotherapy-related adverse events between the two groups [n (%)]

4. 两组患者化疗毒副作用比较[n (%)]

组别

例数

血液系统不良反应

肝毒性

肾毒性

消化系统不良反应

观察组

15

4 (26.7)

11 (73.3)

12 (80.0)

3 (20.0)

12 (80.0)

3 (20.0)

6 (40.0)

9 (60.0)

对照组

15

2 (13.3)

13 (86.7)

10 (66.7)

5 (33.3)

8 (53.3)

7 (46.7)

2 (13.3)

13 (86.7)

P值

0.651

0.682

0.245

0.215

注:组间比较采用Fisher确切概率法。

4. 讨论

目前,晚期非小细胞肺癌的治疗以化疗为核心,结合放疗、靶向及免疫治疗等多学科综合治疗模式。为进一步提升化疗疗效并降低不良反应,近年来越来越多的研究聚焦于肺癌相关基因多态性检测及其在个体化治疗决策中的临床应用价值。多项研究表明,DNA修复、叶酸代谢及药物代谢相关基因多态性显著影响肺癌患者对化疗药物的敏感性及毒副反应。其中,ERCC1低表达或者功能缺失通常提示对铂类药物的敏感性增加[5]-[9]。DHFR低表达可能提示对培美曲塞敏感性增加[10]-[13]。RRM1低表达通常与吉西他滨敏感性增加相关[14]-[17]。CYP3A4低表达或者酶活降低会导致多西他赛血药暴露升高,可能提高疗效同时显著增加毒性[18]-[20]。ABCB1低表达通常与紫杉醇疗效提高相关[20]。功能性(野生型) TP53通常有利于依托泊苷诱导的凋亡,因此常与依托泊苷敏感性相关[21]。上述基因型的检测有助于指导肺癌化疗个体化用药,提高疗效、减少不良反应,实现精准治疗目标。在本次研究中,观察组根据基因检测结果选择化疗药物,对照组依据经验选择化疗药物。观察组与对照组患者在第2周期化疗结束后同化疗前,经CT图像测量的肿瘤最大长径变化差值有统计学差异(P = 0.030)。观察组与对照组患者第4周期化疗结束后同第2周期化疗后,经CT图像测量的肿瘤最大长径变化差值有统计学差异(P = 0.014)。两组血液系统不良反应、肝毒性、肾毒性、消化系统不良反应发生率均无显著差异(分别是(P = 1.00; P = 1.00; P = 0.60; P = 1.00))。本项初步的回顾性研究提示,基因检测指导化疗可能与提高短期疗效相关,但仍需大规模前瞻性研究证实。同时仅研究CT图像测量的肿瘤最大长径变化,没有进一步对总生存期、无生存期进行研究,后续将进一步进行。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
[2] Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E. and Adjei, A.A. (2008) Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic Proceedings, 83, 584-594. [Google Scholar] [CrossRef] [PubMed]
[3] Saito, S., Espinoza-Mercado, F., Liu, H., Sata, N., Cui, X. and Soukiasian, H.J. (2017) Current Status of Research and Treatment for Non-Small Cell Lung Cancer in Never-Smoking Females. Cancer Biology & Therapy, 18, 359-368. [Google Scholar] [CrossRef] [PubMed]
[4] National Cancer Institute (2017) Common Terminology Criteria for Adverse Events (CTCAE) v5.0. National Cancer Institute.
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf
[5] Tzvetkov, M.V., Behrens, G., O‘Brien, V.P., Hohloch, K., Brockmöller, J. and Benöhr, P. (2011) Pharmacogenetic Analyses of Cisplatin-Induced Nephrotoxicity Indicate a Renoprotective Effect of ercc1 Polymorphisms. Pharmacogenomics, 12, 1417-1427. [Google Scholar] [CrossRef] [PubMed]
[6] Bradbury, P.A., Kulke, M.H., Heist, R.S., Zhou, W., Ma, C., Xu, W., et al. (2009) Cisplatin Pharmacogenetics, DNA Repair Polymorphisms, and Esophageal Cancer Outcomes. Pharmacogenetics and Genomics, 19, 613-625. [Google Scholar] [CrossRef] [PubMed]
[7] Rumiato, E., Cavallin, F., Boldrin, E., Cagol, M., Alfieri, R., Basso, D., et al. (2013) ERCC1 C8092A (rs3212986) Polymorphism as a Predictive Marker in Esophageal Cancer Patients Treated with Cisplatin/5-Fu-Based Neoadjuvant Therapy. Pharmacogenetics and Genomics, 23, 597-604. [Google Scholar] [CrossRef] [PubMed]
[8] Giovannetti, E., Pacetti, P., Reni, M., Leon, L.G., Mambrini, A., Vasile, E., et al. (2011) Association between DNA-Repair Polymorphisms and Survival in Pancreatic Cancer Patients Treated with Combination Chemotherapy. Pharmacogenomics, 12, 1641-1652. [Google Scholar] [CrossRef] [PubMed]
[9] Meulendijks, D., Rozeman, E.A., Cats, A., Sikorska, K., Joerger, M., Deenen, M.J., et al. (2016) Pharmacogenetic Variants Associated with Outcome in Patients with Advanced Gastric Cancer Treated with Fluoropyrimidine and Platinum-Based Triplet Combinations: A Pooled Analysis of Three Prospective Studies. The Pharmacogenomics Journal, 17, 441-451. [Google Scholar] [CrossRef] [PubMed]
[10] Corrigan, A., Walker, J.L., Wickramasinghe, S., Hernandez, M.A., Newhouse, S.J., Folarin, A.A., et al. (2014) Pharmacogenetics of Pemetrexed Combination Therapy in Lung Cancer: Pathway Analysis Reveals Novel Toxicity Associations. The Pharmacogenomics Journal, 14, 411-417. [Google Scholar] [CrossRef] [PubMed]
[11] Chen, J., Chao, Y., Bang, Y., Roca, E., Chung, H.C., Palazzo, F., et al. (2010) A Phase I/II and Pharmacogenomic Study of Pemetrexed and Cisplatin in Patients with Unresectable, Advanced Gastric Carcinoma. Anti-Cancer Drugs, 21, 777-784. [Google Scholar] [CrossRef] [PubMed]
[12] Smit, E.F., Burgers, S.A., Biesma, B., Smit, H.J.M., Eppinga, P., Dingemans, A.C., et al. (2009) Randomized Phase II and Pharmacogenetic Study of Pemetrexed Compared with Pemetrexed Plus Carboplatin in Pretreated Patients with Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 27, 2038-2045. [Google Scholar] [CrossRef] [PubMed]
[13] Powrózek, T., Kowalski, D.M., Krawczyk, P., Ramlau, R., Kucharczyk, T., Kalinka-Warzocha, E., et al. (2014) Correlation between TS, MTHFR, and ERCC1 Gene Polymorphisms and the Efficacy of Platinum in Combination with Pemetrexed First-Line Chemotherapy in Mesothelioma Patients. Clinical Lung Cancer, 15, 455-465. [Google Scholar] [CrossRef] [PubMed]
[14] Tibaldi, C., Giovannetti, E., Vasile, E., Mey, V., Laan, A.C., Nannizzi, S., et al. (2008) Correlation of CDA, ERCC1, and XPD Polymorphisms with Response and Survival in Gemcitabine/Cisplatin-Treated Advanced Non-Small Cell Lung Cancer Patients. Clinical Cancer Research, 14, 1797-1803. [Google Scholar] [CrossRef] [PubMed]
[15] Tanaka, M., Javle, M., Dong, X., Eng, C., Abbruzzese, J.L. and Li, D. (2010) Gemcitabine Metabolic and Transporter Gene Polymorphisms Are Associated with Drug Toxicity and Efficacy in Patients with Locally Advanced Pancreatic Cancer. Cancer, 116, 5325-5335. [Google Scholar] [CrossRef] [PubMed]
[16] Kim, S., Jeong, J., Kim, M., Cho, H., Ju, J., Kwon, Y., et al. (2008) Efficacy of Gemcitabine in Patients with Non-Small Cell Lung Cancer According to Promoter Polymorphisms of the Ribonucleotide Reductase M1 Gene. Clinical Cancer Research, 14, 3083-3088. [Google Scholar] [CrossRef] [PubMed]
[17] Dong, S., Guo, A., Chen, Z., Wang, Z., Zhang, X., Huang, Y., et al. (2010) RRM1 Single Nucleotide Polymorphism-37C→A Correlates with Progression-Free Survival in NSCLC Patients after Gemcitabine-Based Chemotherapy. Journal of Hematology & Oncology, 3, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
[18] Galeotti, L., Ceccherini, F., Domingo, D., Laurino, M., Polillo, M., Di Paolo, A., et al. (2017) Association of the hOCT1/ABCB1 Genotype with Efficacy and Tolerability of Imatinib in Patients Affected by Chronic Myeloid Leukemia. Cancer Chemotherapy and Pharmacology, 79, 767-773. [Google Scholar] [CrossRef] [PubMed]
[19] Liu, R., Zhao, X., Liu, X., Chen, Z., Qiu, L., Geng, R., et al. (2015) Influences of ERCC1, ERCC2, XRCC1, GSTP1, GSTT1, and MTHFR Polymorphisms on Clinical Outcomes in Gastric Cancer Patients Treated with EOF Chemotherapy. Tumor Biology, 37, 1753-1762. [Google Scholar] [CrossRef] [PubMed]
[20] Gréen, H., Söderkvist, P., Rosenberg, P., Horvath, G. and Peterson, C. (2006) MDR-1 Single Nucleotide Polymorphisms in Ovarian Cancer Tissue: G2677T/A Correlates with Response to Paclitaxel Chemotherapy. Clinical Cancer Research, 12, 854-859. [Google Scholar] [CrossRef] [PubMed]
[21] Wang, X., Wang, Y., Ma, K., Chen, X. and Li, W. (2014) MDM2 rs2279744 and TP53 rs1042522 Polymorphisms Associated with Etoposide-and Cisplatin-Induced Grade III/IV Neutropenia in Chinese Extensive-Stage Small-Cell Lung Cancer Patients. Oncology Research and Treatment, 37, 176-180. [Google Scholar] [CrossRef] [PubMed]