|
[1]
|
Sidhu, S. and Marine, J.E. (2020) Evaluating and Managing Bradycardia. Trends in Cardiovascular Medicine, 30, 265-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Khurshid, S., Choi, S.H., Weng, L., Wang, E.Y., Trinquart, L., Benjamin, E.J., et al. (2018) Frequency of Cardiac Rhythm Abnormalities in a Half Million Adults. Circulation: Arrhythmia and Electrophysiology, 11, e006273. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kusumoto, F.M., Schoenfeld, M.H., Barrett, C., et al. (2019) 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients with Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation, 140. https://www.ahajournals.org/doi/10.1161/CIR.0000000000000628 [Google Scholar] [CrossRef]
|
|
[4]
|
Wung, S.F. (2016) Bradyarrhythmias: Clinical Presentation, Diagnosis, and Management. Critical Care Nursing Clinics of North America, 28, 297-308.
|
|
[5]
|
Lévy, S., Steinbeck, G., Santini, L., Nabauer, M., Penela, D., Kantharia, B.K., et al. (2022) Management of Atrial Fibrillation: Two Decades of Progress—A Scientific Statement from the European Cardiac Arrhythmia Society. Journal of Interventional Cardiac Electrophysiology, 65, 287-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Aksu, T., Gupta, D., Skeete, J.R. and Huang, H.H. (2023) Intrinsic Cardiac Neuromodulation in the Management of Atrial Fibrillation—A Potential Missing Link? Life, 13, Article 383. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shivkumar, K., Ajijola, O.A., Anand, I., Armour, J.A., Chen, P., Esler, M., et al. (2016) Clinical Neurocardiology Defining the Value of Neuroscience-Based Cardiovascular Therapeutics. The Journal of Physiology, 594, 3911-3954. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
van Weperen, V.Y.H., Ripplinger, C.M. and Vaseghi, M. (2023) Autonomic Control of Ventricular Function in Health and Disease: Current State of the Art. Clinical Autonomic Research, 33, 491-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jabbour, F. and Kanmanthareddy, A. (2025) Sinus Node Dysfunction. StatPearls Publishing.
|
|
[10]
|
Morris, G.M. and Kalman, J.M. (2014) Fibrosis, Electrics and Genetics. Perspectives in Sinoatrial Node Disease. Circulation Journal, 78, 1272-1282. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Alboni, P., Holz, A. and Brignole, M. (2013) Vagally Mediated Atrioventricular Block: Pathophysiology and Diagnosis. Heart, 99, 904-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Baruteau, A., Probst, V. and Abriel, H. (2015) Inherited Progressive Cardiac Conduction Disorders. Current Opinion in Cardiology, 30, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Verkerk, A.O. and Wilders, R. (2014) Pacemaker Activity of the Human Sinoatrial Node: Effects of HCN4 Mutations on the Hyperpolarization-Activated Current. EP Europace, 16, 384-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yanni, J., D’Souza, A., Wang, Y., Li, N., Hansen, B.J., Zakharkin, S.O., et al. (2020) Silencing miR-370-3p Rescues Funny Current and Sinus Node Function in Heart Failure. Scientific Reports, 10, Article No. 11279. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
王国昊, 张荣峰. 缓慢性心律失常的遗传学研究进展[J]. 心血管病学进展, 2022, 43(11): 978-983.
|
|
[16]
|
Brignole, M., Moya, A., de Lange, F.J., et al. (2018) 2018 ESC Guidelines for the Diagnosis and Management of Syncope. European Heart Journal, 39, 1883-1948.
|
|
[17]
|
Shen, W.K., Sheldon, R.S., Benditt, D.G., et al. (2017) 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients with Syncope: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation, 136, e60-e122.
|
|
[18]
|
Kusumoto, F.M., Schoenfeld, M.H., Barrett, C., et al. (2019) 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients with Bradycardia and Cardiac Conduction Delay: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. The Journal of the American College of Cardiology, 74, 932-987.
|
|
[19]
|
Wilde, A.A.M., Semsarian, C., Márquez, M.F., Shamloo, A.S., Ackerman, M.J., Ashley, E.A., et al. (2022) European Heart Rhythm Association (EHRA)/heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Europace, 24, 1307-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Michowitz, Y., Kronborg, M.B., Glikson, M. and Nielsen, J.C. (2021) The ‘10 Commandments’ for the 2021 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy. European Heart Journal, 42, Article 4295. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Curnis, A., Salghetti, F., Cerini, M., Fabbricatore, D., Ghizzoni, G., Arrigoni, L., et al. (2020) Leadless Pacemaker: State of the Art and Incoming Developments to Broaden Indications. Pacing and Clinical Electrophysiology, 43, 1428-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ngo, L., Nour, D., Denman, R.A., Walters, T.E., Haqqani, H.M., Woodman, R.J., et al. (2021) Safety and Efficacy of Leadless Pacemakers: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 10, e019212. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gitenay, E., Molin, F., Blais, S., Tremblay, V., Gervais, P., Plourde, B., et al. (2018) Cardiac Implantable Electronic Device Infection: Detailed Analysis of Cost Implications. Canadian Journal of Cardiology, 34, 1026-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wan-Tong, Z., Bao-Chen, Z., Zhao, L., Xu-Jie, W., Rui, G., Ning, X., et al. (2022) Compassionate Use of Yuanjiang Decoction, a Traditional Chinese Medicinal Prescription, for Symptomatic Bradyarrhythmia. Frontiers in Pharmacology, 13, Article 764930. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pannone, L., D’Angelo, G., Gulletta, S., Falasconi, G., Brugliera, L., Frontera, A., et al. (2021) Amiodarone in Ventricular Arrhythmias: Still a Valuable Resource? Reviews in Cardiovascular Medicine, 22, 1383-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
张铭杰, 卫靖靖, 包宇, 等. 基于数据挖掘探析中药治疗快速型心律失常与缓慢型心律失常的用药规律[J]. 中西医结合心脑血管病杂志, 2024, 22(13): 2305-2311.
|
|
[27]
|
Zhang, Z., Li, Y., Yu, T., Yan, M. and Li, S. (2023) Efficacy Evaluation of the Mahuang-Fuzi-Xixin Decoction in Combination with Shenmai Injection for Bradyarrhythmia Treatment: A Systematic Review and Meta-Analysis. Evidence-Based Complementary and Alternative Medicine, 2023, Article 7280627. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hu, F., Zheng, L., Liu, S., Shen, L., Liang, E., Liu, L., et al. (2021) The Impacts of the Ganglionated Plexus Ablation Sequence on the Vagal Response, Heart Rate, and Blood Pressure during Cardioneuroablation. Autonomic Neuroscience, 233, Article 102812. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hu, F., Zheng, L., Liang, E., Ding, L., Wu, L., Chen, G., et al. (2019) Right Anterior Ganglionated Plexus: The Primary Target of Cardioneuroablation? Heart Rhythm, 16, 1545-1551. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hu, F. and Yao, Y. (2020) Cardioneuroablation in the Management of Vasovagal Syncope, Sinus Node Dysfunction, and Functional Atrioventricular Block-Techniques. Journal of Atrial Fibrillation, 13, Article 2394.
|
|
[31]
|
Piotrowski, R., Zuk, A., Baran, J., Sikorska, A., Krynski, T. and Kulakowski, P. (2022) Ultrasound-Guided Extracardiac Vagal Stimulation—New Approach for Visualization of the Vagus Nerve during Cardioneuroablation. Heart Rhythm, 19, 1247-1252. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tu, B., Wu, L., Hu, F., Fan, S., Liu, S., Liu, L., et al. (2022) Cardiac Deceleration Capacity as an Indicator for Cardioneuroablation in Patients with Refractory Vasovagal Syncope. Heart Rhythm, 19, 562-569. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zheng, L., Sun, W., Liu, S., Liang, E., Du, Z., Guo, J., et al. (2020) The Diagnostic Value of Cardiac Deceleration Capacity in Vasovagal Syncope. Circulation: Arrhythmia and Electrophysiology, 13, e008659. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pachon-M, J.C., Pachon-M, E.I., Pachon, C.T.C., Santillana-P, T.G., Lobo, T.J., Pachon-M, J.C., et al. (2020) Long-Term Evaluation of the Vagal Denervation by Cardioneuroablation Using Holter and Heart Rate Variability. Circulation: Arrhythmia and Electrophysiology, 13, e008703. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Francia, P., Viveros, D., Falasconi, G., Soto-Iglesias, D., Fernández-Armenta, J., Penela, D., et al. (2023) Computed Tomography-Based Identification of Ganglionated Plexi to Guide Cardioneuroablation for Vasovagal Syncope. Europace, 25, euad170. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Piotrowski, R., Baran, J., Sikorska, A., et al. (2023) Cardioneuroablation for Reflex Syncope: Efficacy and Effects on Autonomic Cardiac Regulation—A Prospective Randomized Trial. JACC: Clinical Electrophysiology, 9, 85-95.
|
|
[37]
|
Vandenberk, B., Lei, L.Y., Ballantyne, B., Vickers, D., Liang, Z., Sheldon, R.S., et al. (2022) Cardioneuroablation for Vasovagal Syncope: A Systematic Review and Meta-Analysis. Heart Rhythm, 19, 1804-1812. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Khan, A., Huang, H.D. and Aksu, T. (2024) Neuromodulation for Vasovagal Syncope and Bradyarrhythmias. Cardiac Electrophysiology Clinics, 16, 297-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Aksu, T., Piotrowski, R., Tung, R., De Potter, T., Markman, T.M., du Fay de Lavallaz, J., et al. (2024) Procedural and Intermediate-Term Results of the Electroanatomical-Guided Cardioneuroablation for the Treatment of Supra-Hisian Second-or Advanced-Degree Atrioventricular Block: The PIRECNA Multicentre Registry. Europace, 26, euae164. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ludwig, S., Theis, C., Wolff, C., Nicolle, E., Witthohn, A. and Götte, A. (2019) Complications and Associated Healthcare Costs of Transvenous Cardiac Pacemakers in Germany. Journal of Comparative Effectiveness Research, 8, 589-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cantillon, D.J., Exner, D.V., Badie, N., Davis, K., Gu, N.Y., Nabutovsky, Y., et al. (2017) Complications and Health Care Costs Associated with Transvenous Cardiac Pacemakers in a Nationwide Assessment. JACC: Clinical Electrophysiology, 3, 1296-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zanon, F., Ellenbogen, K.A., Dandamudi, G., Sharma, P.S., Huang, W., Lustgarten, D.L., et al. (2018) Permanent His-Bundle Pacing: A Systematic Literature Review and Meta-Analysis. EP Europace, 20, 1819-1826. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, K., Li, Y., Dai, Y., Sun, Q., Luo, B., Li, C., et al. (2019) Comparison of Electrocardiogram Characteristics and Pacing Parameters between Left Bundle Branch Pacing and Right Ventricular Pacing in Patients Receiving Pacemaker Therapy. EP Europace, 21, 673-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sun, J., Sha, Y., Sun, Q., Qiu, Y., Shao, B., Ni, Y., et al. (2020) The Long-Term Therapeutic Effects of His-Purkinje System Pacing on Bradycardia and Cardiac Conduction Dysfunction Compared with Right Ventricular Pacing: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Electrophysiology, 31, 1202-1210. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Meredith, A., Naaraayan, A., Nimkar, A., Acharya, P. and Aziz, E.F. (2021) The Rise of Leadless Pacemaker Utilization in United States. The American Journal of Cardiology, 154, 127-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Darlington, D., Brown, P., Carvalho, V., Bourne, H., Mayer, J., Jones, N., et al. (2022) Efficacy and Safety of Leadless Pacemaker: A Systematic Review, Pooled Analysis and Meta-Analysis. Indian Pacing and Electrophysiology Journal, 22, 77-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Shtembari, J., Shrestha, D.B., Awal, S., Raut, A., Gyawali, P., Abe, T., et al. (2023) Comparative Assessment of Safety with Leadless Pacemakers Compared to Transvenous Pacemakers: A Systemic Review and Meta-Analysis. Journal of Interventional Cardiac Electrophysiology, 66, 2165-2175. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Gangannapalle, M., Monday, O., Rawat, A., Nwoko, U.A., Mandal, A.K., Babur, M., et al. (2023) Comparison of Safety of Leadless Pacemakers and Transvenous Pacemakers: A Meta-Analysis. Cureus, 15, e45086. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cabanas-Grandío, P., García Campo, E., Bisbal, F., García-Seara, J., Pachón, M., Juan-Salvadores, P., et al. (2020) Quality of Life of Patients Undergoing Conventional vs Leadless Pacemaker Implantation: A Multicenter Observational Study. Journal of Cardiovascular Electrophysiology, 31, 330-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Komosa, E.R., Wolfson, D.W., Bressan, M., Cho, H.C. and Ogle, B.M. (2021) Implementing Biological Pacemakers: Design Criteria for Successful Transition from Concept to Clinic. Circulation: Arrhythmia and Electrophysiology, 14, e009957. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Naumova, N. and Iop, L. (2021) Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Frontiers in Bioengineering and Biotechnology, 9, Article 673477. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Hu, Y.F., Dawkins, J.F., Cho, H.C., et al. (2014) Biological Pacemaker Created by Minimally Invasive Somatic Reprogramming in Pigs with Complete Heart Block. Science Translational Medicine, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Boink, G.J.J., Duan, L., Nearing, B.D., Shlapakova, I.N., Sosunov, E.A., Anyukhovsky, E.P., et al. (2013) Hcn2/skm1 Gene Transfer into Canine Left Bundle Branch Induces Stable, Autonomically Responsive Biological Pacing at Physiological Heart Rates. Journal of the American College of Cardiology, 61, 1192-1201. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Shlapakova, I.N., Nearing, B.D., Lau, D.H., Boink, G.J.J., Danilo, P., Kryukova, Y., et al. (2010) Biological Pacemakers in Canines Exhibit Positive Chronotropic Response to Emotional Arousal. Heart Rhythm, 7, 1835-1840. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Kapoor, N., Liang, W., Marbán, E. and Cho, H.C. (2013) Direct Conversion of Quiescent Cardiomyocytes to Pacemaker Cells by Expression of Tbx18. Nature Biotechnology, 31, 54-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Liu, C.M., Chen, Y.C. and Hu, Y.F. (2023) Harnessing Cell Reprogramming for Cardiac Biological Pacing. Journal of Biomedical Science, 30, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Cingolani, E., Goldhaber, J.I. and Marbán, E. (2017) Next-Generation Pacemakers: From Small Devices to Biological Pacemakers. Nature Reviews Cardiology, 15, 139-150. [Google Scholar] [CrossRef] [PubMed]
|