|
[1]
|
Liu, W., Li, F., Guo, D., Du, C., Zhao, S., Li, J., et al. (2023) Schisandrin B Alleviates Renal Tubular Cell Epithelial–mesenchymal Transition and Mitochondrial Dysfunction by Kielin/Chordin-Like Protein Upregulation via Akt Pathway Inactivation and Adenosine 5’-Monophosphate (AMP)-Activated Protein Kinase Pathway Activation in Diabetic Kidney Disease. Molecules, 28, Article 7851. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, S., Xie, H., Shi, Y. and Liu, H. (2022) Prevalence of Diabetic Nephropathy in the Diabetes Mellitus Population: A Protocol for Systematic Review and Meta-Analysis. Medicine, 101, e31232. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
张勉之, 张大宁. 张大宁治疗糖尿病肾病的临床经验[J]. 中华中医药杂志, 2016, 31(8): 3141-3143.
|
|
[4]
|
Li, X., Yang, Q., Liu, S., Song, S. and Wang, C. (2023) Mitochondria-Associated Endoplasmic Reticulum Membranes Promote Mitochondrial Fission through Akap1-Drp1 Pathway in Podocytes under High Glucose Conditions. Experimental Cell Research, 424, Article 113512. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, J., Liu, D., Lei, L., Liu, T., Pan, S., Wang, H., et al. (2025) CNPY2 Aggravates Renal Tubular Cell Ferroptosis in Diabetic Nephropathy by Regulating PERK/ATF4/CHAC1 Pathway and MAM Integrity. Advanced Science, 12, Article 2416441. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, Y., Qiao, Y., Pan, S., Chen, J., Mao, Z., Ren, K., et al. (2023) Broadening Horizons: The Contribution of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Dysfunction in Diabetic Kidney Disease. International Journal of Biological Sciences, 19, 4427-4441. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
赵亚, 张勉之. 国医大师张大宁治疗糖尿病肾病药对经验[J]. 中华中医药杂志, 2021, 36(12): 7120-7122.
|
|
[8]
|
Wu, S., Lu, D., Gajendran, B., Hu, Q., Zhang, J., Wang, S., et al. (2023) Tanshinone IIA Ameliorates Experimental Diabetic Cardiomyopathy by Inhibiting Endoplasmic Reticulum Stress in Cardiomyocytes via SIRT1. Phytotherapy Research, 37, 3543-3558. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
邹易彤, 杨宇峰. 糖尿病肾病中医病因病机学说基础探讨[J]. 辽宁中医药大学学报, 2023, 25(4): 185-189.
|
|
[10]
|
郭姝仪, 陈思月, 戴秋雨, 等. 王素梅从心肾“精神互用”论治儿童注意缺陷多动障碍经验[J]. 北京中医药, 2025, 44(3): 341-344.
|
|
[11]
|
党心雨, 戴恩来, 周澳. 戴恩来教授基于“毒损肾络”理论治疗肾性水肿验案举隅[J]. 中医临床研究, 2024, 16(29): 76-80.
|
|
[12]
|
屈宏德, 杜振华, 李应存. “肾为后宫列女”探析[J]. 上海中医药杂志, 2025, 59(1): 41-44.
|
|
[13]
|
傅乐斌, 时程遥, 徐佳玲, 等. 2型糖尿病从气耗阴伤论治的研究概况[J]. 江西中医药, 2025, 56(5): 61-66.
|
|
[14]
|
黄淑霞, 刘婧, 彭红叶, 等. 吕文良教授基于“通法”治疗慢性乙型肝炎的思路[J]. 中西医结合肝病杂志, 2025, 35(5): 571-574.
|
|
[15]
|
曹梓静, 朱秋阳, 耿运玲, 等. 刘玉宁教授从痰瘀论治肾脏病的思路与方法[J]. 中国中西医结合肾病杂志, 2024, 25(3): 192-194.
|
|
[16]
|
郑英琪, 靳锋, 李杰斌, 等. 靳锋病证结合治疗糖尿病肾病经验[J]. 中国中医药图书情报杂志, 2025, 49(4): 190-193.
|
|
[17]
|
He, Q., Qu, M., Shen, T., Su, J., Xu, Y., Xu, C., et al. (2023) Control of Mitochondria-Associated Endoplasmic Reticulum Membranes by Protein S-Palmitoylation: Novel Therapeutic Targets for Neurodegenerative Diseases. Ageing Research Reviews, 87, Article 101920. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, K., Geng, Y., Lin, B. and Xi, Z. (2023) Molecular Mechanisms Underlying Mitochondrial Damage, Endoplasmic Reticulum Stress, and Oxidative Stress Induced by Environmental Pollutants. Toxicology Research, 12, 1014-1023. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ke, H., Su, X., Dong, C., He, Z., Song, Q., song, C., et al. (2024) Sigma-1 Receptor Exerts Protective Effects on Ameliorating Nephrolithiasis by Modulating Endoplasmic Reticulum-Mitochondrion Association and Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis in Renal Tubular Epithelial Cells. Redox Report, 29, Article 2391139. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, H., Kelley, J., Ye, Y., Ye, Z., Townsend, D.M., Zhang, J., et al. (2025) REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells, 14, Article 613. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, B., Xu, J., Wang, M. and Yu, C. (2025) Involvement of Mitochondrial Dysfunction and Oxidative Stress in the Nephrotoxicity Induced by High-Fat Diet in Sprague-Dawley Rats. Toxicology Letters, 404, 28-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ebrahimi, N., Saremi, J., Ghanaatian, M., Yazdani, E., Adelian, S., Samsami, S., et al. (2022) The Role of Endoplasmic Reticulum Stress in the Regulation of Long Noncoding RNAs in Cancer. Journal of Cellular Physiology, 237, 3752-3767. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, X., Hussain, R., Mehmood, K., Tang, Z., Zhang, H. and Li, Y. (2022) Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BioMed Research International, 2022, Article 6459585. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sun, A., Pollock, C.A. and Huang, C. (2025) Mitochondria-Targeting Therapeutic Strategies for Chronic Kidney Disease. Biochemical Pharmacology, 231, Article 116669. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Aparicio-Trejo, O.E., Hernández-Cruz, E.Y., Reyes-Fermín, L.M., Ceja-Galicia, Z.A. and Pedraza-Chaverri, J. (2025) The Role of Redox Signaling in Mitochondria and Endoplasmic Reticulum Regulation in Kidney Diseases. Archives of Toxicology, 99, 1865-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wan, C., Liu, X., Chen, M., Ma, H., Wu, G., Qiao, L., et al. (2023) Tanshinone IIA Ameliorates Aβ Transendothelial Transportation through SIRT1-Mediated Endoplasmic Reticulum Stress. Journal of Translational Medicine, 21, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, X., Hu, T., Wu, G., Qiao, L., Cai, Y., Wang, Q., et al. (2024) Tanshinone IIA, the Key Compound in Salvia Miltiorrhiza, Improves Cognitive Impairment by Upregulating Aβ-Degrading Enzymes in APP/PS1 Mice. International Journal of Biological Macromolecules, 254, Article 127923. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shelke, V., Yelgonde, V., Kale, A., Lech, M. and Gaikwad, A.B. (2023) Epigenetic Regulation of Mitochondrial-Endoplasmic Reticulum Dynamics in Kidney Diseases. Journal of Cellular Physiology, 238, 1716-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
汪子皓, 李若暄, 颜岳衡, 等. 五味子总三萜提取纯化工艺优化及其抗氧化活性评价[J]. 中成药, 2025, 47(5): 1456-1462.
|
|
[30]
|
Eng, Y.Y., Ma, X.Y., He, P.F., et al. (2024) Integrated UPLC-ESI-MS/MS, Network Pharmacology, and Transcriptomics to Reveal the Material Basis and Mechanism of Schisandra Chinensis Fruit Mixture against Diabetic Nephropathy. Frontiers in Immunology, 15, Article 1526465. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Luan, F., Zou, J., Zhang, X., Zeng, J., Peng, X., Li, R., et al. (2024) The Extraction, Purification, Structural Features, Bioactivities, and Applications of Schisandra Chinensis Polysaccharides: A Review. International Journal of Biological Macromolecules, 262, Article 130030. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Song, J., Zhang, B., Zhang, H., Cheng, W., Liu, P. and Kang, J. (2024) Quantitative Proteomics Combined with Network Pharmacology Analysis Unveils the Biological Basis of Schisandrin B in Treating Diabetic Nephropathy. Combinatorial Chemistry & High Throughput Screening, 27, 284-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shi, L., Wang, Y., Guan, Y., Men, L., Sun, J. and Yuan, G. (2025) To Establish a New Quality Assessment Method Based on the Regulation of Intestinal Microbiota in Type 2 Diabetes by Lignans of Schisandra Chinensis (Turcz.) Baill. Journal of Ethnopharmacology, 348, Article 119822. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, P., Lan, Q., Huang, Q., Zhang, R., Zhang, S., Yang, L., et al. (2024) Schisandrin A Attenuates Diabetic Nephropathy via EGFR/AKT/GSK3β Signaling Pathway Based on Network Pharmacology and Experimental Validation. Biology, 13, Article 597. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, X., Qiaolongbatu, X., Shen, R., Wang, Y., Li, W., Wang, L., et al. (2025) Mechanistic Insights into Schisandrin C as the Active Anti-Renal Fibrosis Ingredient of Schisandra Chinensis: A Network Pharmacology Analysis and Transcriptomics Integrated Experimental Verification. Naunyn-Schmiedeberg’s Archives of Pharmacology. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ma, Y., Deng, Y., Li, N., Dong, A., Li, H., Chen, S., et al. (2023) Network Pharmacology Analysis Combined with Experimental Validation to Explore the Therapeutic Mechanism of Schisandra Chinensis Mixture on Diabetic Nephropathy. Journal of Ethnopharmacology, 302, Article 115768. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Xu, Z., Cai, K., Su, S., Zhu, Y., Liu, F. and Duan, J. (2024) Salvianolic Acid B and Tanshinone IIA Synergistically Improve Early Diabetic Nephropathy through Regulating PI3K/Akt/NF-κB Signaling Pathway. Journal of Ethnopharmacology, 319, Article 117356. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Cai, L., Chen, Y., Xue, H., Yang, Y., Wang, Y., Xu, J., et al. (2024) Effect and Pharmacological Mechanism of Salvia Miltiorrhiza and Its Characteristic Extracts on Diabetic Nephropathy. Journal of Ethnopharmacology, 319, Article 117354. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shen, Z., Cui, T., Liu, Y., Wu, S., Han, C. and Li, J. (2023) Astragalus Membranaceus and Salvia Miltiorrhiza Ameliorate Diabetic Kidney Disease via the “Gut-Kidney Axis”. Phytomedicine, 121, Article 155129. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wu, Q., Guan, Y., Zhang, K., Li, L. and Zhou, Y. (2023) Tanshinone IIA Mediates Protection from Diabetes Kidney Disease by Inhibiting Oxidative Stress Induced Pyroptosis. Journal of Ethnopharmacology, 316, Article 116667. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cai, K., Xu, Z., Huang, S., Peng, X., Yan, H., Shang, E., et al. (2025) Absorption and Metabolic Transformation Mechanisms of the Interaction between Salvianolic Acids and Tanshinones in DKD Rats. Journal of Ethnopharmacology, 348, Article 119885. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhu, S., Kang, Z. and Zhang, F. (2024) Tanshinone IIA Suppresses Ferroptosis to Attenuate Renal Podocyte Injury in Diabetic Nephropathy through the Embryonic Lethal Abnormal Visual-Like Protein 1 and Acyl-Coenzyme a Synthetase Long-Chain Family Member 4 Signaling Pathway. Journal of Diabetes Investigation, 15, 1003-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wen, F., Zhang, S., Sun, L., Qian, M. and Xu, H. (2023) Salvianolic Acid B Inhibits Oxidative Stress in Glomerular Mesangial Cells Alleviating Diabetic Nephropathy by Regulating SIRT3/FOXO1 Signaling. Kidney and Blood Pressure Research, 48, 738-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yang, K., Qiu, J., Huang, Z., Yu, Z., Wang, W., Hu, H., et al. (2022) A Comprehensive Review of Ethnopharmacology, Phytochemistry, Pharmacology, and Pharmacokinetics of Schisandra Chinensis (Turcz.) Baill. and Schisandra Sphenanthera Rehd. et Wils. Journal of Ethnopharmacology, 284, Article 114759. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cheng, W., Xia, K., Wu, S. and Li, Y. (2023) Herb-Drug Interactions and Their Impact on Pharmacokinetics: An Update. Current Drug Metabolism, 24, 28-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chen, Y., Lai, F., Xu, H. and He, Y. (2025) Chinese Herb Pairs for Cardiovascular and Cerebrovascular Diseases: Compatibility Effects, Pharmacological Potential, Clinical Efficacy, and Molecular Mechanisms. Journal of Ethnopharmacology, 347, Article 119516. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hu, F., Tong, S. and Xu, H. (2025) Schisandrin B Improves Mitochondrial Function and Inhibits HT22 Cell Apoptosis by Regulating SIRT3 Protein. The Journal of Membrane Biology, 258, 123-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Xu, C., Wang, H., Wang, H., Man, J., Deng, Y., Li, Y., et al. (2025) Schisandrin B Regulates Mitochondrial Dynamics via AKT1 Activation and Mitochondrial Targeting to Ameliorate Renal Ischemia-Reperfusion Injury. Phytomedicine, 141, Article 156672. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wan, Y.J., Wang, Y.H., Guo, Q., et al. (2021) Protocatechualdehyde Protects Oxygen-Glucose Deprivation/Reoxygenation-Induced Myocardial Injury via Inhibiting PERK/ATF6α/IRE1α Pathway. European Journal of Pharmacology, 891, Article 173723. [Google Scholar] [CrossRef] [PubMed]
|