|
[1]
|
中国居民水产品食用消费量测算与分析报告(2023) [R]. 2023.
|
|
[2]
|
Yang, Z., Yu, Y., Tay, Y.X. and Yue, G.H. (2021) Genome Editing and Its Applications in Genetic Improvement in Aquaculture. Reviews in Aquaculture, 14, 178-191. [Google Scholar] [CrossRef]
|
|
[3]
|
Gjedrem, T. and Rye, M. (2016) Selection Response in Fish and Shellfish: A Review. Reviews in Aquaculture, 10, 168-179. [Google Scholar] [CrossRef]
|
|
[4]
|
Shen, Y. and Yue, G. (2019) Current Status of Research on Aquaculture Genetics and Genomics-Information from ISGA 2018. Aquaculture and Fisheries, 4, 43-47. [Google Scholar] [CrossRef]
|
|
[5]
|
Leung, C. and Jia, Z. (2016) Mouse Genetic Models of Human Brain Disorders. Frontiers in Genetics, 7, Article 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., et al. (2013) Efficient Genome Editing in Zebrafish Using a Crispr-Cas System. Nature Biotechnology, 31, 227-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Martinez, E.A., Angel, M.A., Cuello, C., Sanchez-Osorio, J., Gomis, J., Parrilla, I., et al. (2014) Successful Non-Surgical Deep Uterine Transfer of Porcine Morulae after 24 Hour Culture in a Chemically Defined Medium. PLOS ONE, 9, e104696. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
陈俊祥, 郑佩华, 鲁耀鹏, 等. CRISPR/Cas9基因编辑技术在鱼类养殖应用的研究进展[J]. 黑龙江畜牧兽医, 2024(1): 23-28.
|
|
[9]
|
Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: Fast CRISPR Target Site Identification. Nature Methods, 11, 122-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339, 819-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Feng, R., Fang, L., Cheng, Y., He, X., Jiang, W., Dong, R., et al. (2015) Retinoic Acid Homeostasis through aldh1a2 and cyp26a1 Mediates Meiotic Entry in Nile Tilapia (Oreochromis niloticus). Scientific Reports, 5, Article No. 10131. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Aluru, N., Karchner, S.I., Franks, D.G., Nacci, D., Champlin, D. and Hahn, M.E. (2015) Targeted Mutagenesis of Aryl Hydrocarbon Receptor 2a and 2b Genes in Atlantic Killifish (Fundulus heteroclitus). Aquatic Toxicology, 158, 192-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Datsomor, A.K., Zic, N., Li, K., Olsen, R.E., Jin, Y., Vik, J.O., et al. (2019) CRISPR/Cas9-Mediated Ablation of elovl2 in Atlantic Salmon (Salmo salar L.) Inhibits Elongation of Polyunsaturated Fatty Acids and Induces Srebp-1 and Target Genes. Scientific Reports, 9, Article No. 7533. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cleveland, B.M., Yamaguchi, G., Radler, L.M. and Shimizu, M. (2018) Editing the Duplicated Insulin-Like Growth Factor Binding Protein-2b Gene in Rainbow Trout (Oncorhynchus mykiss). Scientific Reports, 8, Article No. 16054. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, Y., Zheng, G., Nissa, M., Chen, J. and Zou, S. (2020) Disruption of mstna and mstnb Gene through CRISPR/Cas9 Leads to Elevated Muscle Mass in Blunt Snout Bream (Megalobrama amblycephala). Aquaculture, 528, Article ID: 735597. [Google Scholar] [CrossRef]
|
|
[17]
|
郭丹丹, 郑国栋, 陈杰, 等. 利用CRISPR/Cas9基因编辑技术探究团头鲂mdh基因功能[J]. 水产学报, 2024, 48(11): 110-118
|
|
[18]
|
Wu, Y., Wu, T., Yang, L., Su, Y., Zhao, C., Li, L., et al. (2023) Generation of Fast Growth Nile Tilapia (Oreochromis niloticus) by Myostatin Gene Mutation. Aquaculture, 562, Article ID: 738762. [Google Scholar] [CrossRef]
|
|
[19]
|
仲兆民. 鲤鱼基因组修饰和ENU诱变技术的建立及其在成骨细胞与肌肉纤维发育研究中的应用[D]: [博士学位论文]. 苏州: 苏州大学, 2016.
|
|
[20]
|
Huang, J., Shi, C., Gao, Y., Su, J., Shu, Y., Zeng, N., et al. (2021) Heterozygous Depletion of pik3r1 Improves Growth and Feed Conversion Efficiency in Gibel Carp (Carassius gibelio). Aquaculture, 545, Article ID: 737207. [Google Scholar] [CrossRef]
|
|
[21]
|
Kim, J., Cho, J.Y., Kim, J., Kim, H., Noh, J.K., Kim, Y., et al. (2019) CRISPR/Cas9-Mediated Myostatin Disruption Enhances Muscle Mass in the Olive Flounder Paralichthys olivaceus. Aquaculture, 512, Article ID: 734336. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, J., Su, B., Al-Armanazi, J., Wise, A.L., Shang, M., Bern, L., et al. (2023) Integration of Alligator Cathelicidin Gene via Two CRISPR/Cas9-Assisted Systems Enhances Bacterial Resistance in Blue Catfish, Ictalurus furcatus. Aquaculture, 576, Article ID: 739860. [Google Scholar] [CrossRef]
|
|
[23]
|
Kim, M.S. and Kim, K.H. (2019) Effect of CRISPR/Cas9-Mediated Knockout of Either Mx1 or ISG15 Gene in EPC Cells on Resistance against VHSV Infection. Fish & Shellfish Immunology, 93, 1041-1046. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sellaththurai, S.R., Jung, S., Nadarajapillai, K., Kim, M. and Lee, J. (2024) Functional Characterization of irf3 against Viral Hemorrhagic Septicemia Virus Infection Using a CRISPR/Cas9-Mediated Zebrafish Knockout Model. Developmental & Comparative Immunology, 158, Article ID: 105208. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhai, W., Wang, Z., Ye, C., Ke, L., Wang, H. and Liu, H. (2023) IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. International Journal of Molecular Sciences, 24, Article 17215. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
van der Wal, Y.A., Nordli, H., Akandwanaho, A., Greiner-Tollersrud, L., Kool, J. and Jørgensen, J.B. (2023) CRISPR-Cas-Induced IRF3 and MAVS Knockouts in a Salmonid Cell Line Disrupt PRR Signaling and Affect Viral Replication. Frontiers in Immunology, 14, Article 1214912. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
赵心愉, 刘娟, 邹曙明, 等. 利用CRISPR/Cas9基因编辑技术敲除团头鲂socs1重复基因[J]. 水产学报, 2020, 44(12): 1937-1947.
|
|
[28]
|
Ma, J., Fan, Y., Zhou, Y., Liu, W., Jiang, N., Zhang, J., et al. (2018) Efficient Resistance to Grass Carp Reovirus Infection in JAM-A Knockout Cells Using CRISPR/Cas9. Fish & Shellfish Immunology, 76, 206-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
何宏阳, 王伊凡, 贾海旺, 等. setd7基因编辑提高尼罗罗非鱼的低氧耐受能力[J/OL]. 水产学报, 2025, 1-10. https://link.cnki.net/urlid/31.1283.s.20250311.1813.002, 2025-03-12.
|
|
[30]
|
Li, X., Xu, S., Fuhrmann-Aoyagi, M.B., Yuan, S., Iwama, T., Kobayashi, M., et al. (2022) CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 44, 2664-2682. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, Y. and Wang, I. (2020) Heat-Shock-Induced Tyrosinase Gene Ablation with CRISPR in Zebrafish. Molecular Genetics and Genomics, 295, 911-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liao, Q., Zhu, C., Sun, X., Wang, Z., Chen, X., Deng, H., et al. (2023) Disruption of Sirtuin 7 in Zebrafish Facilitates Hypoxia Tolerance. Journal of Biological Chemistry, 299, Article ID: 105074. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gan, R., Wang, Y., Li, Z., Yu, Z., Li, X., Tong, J., et al. (2021) Functional Divergence of Multiple Duplicated foxl2 Homeologs and Alleles in a Recurrent Polyploid Fish. Molecular Biology and Evolution, 38, 1995-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, M., Li, Z., Ding, M., Yao, T., Yang, S., Zhang, X., et al. (2022) Two Duplicated gsdf Homeologs Cooperatively Regulate Male Differentiation by Inhibiting cyp19a1a Transcription in a Hexaploid Fish. PLOS Genetics, 18, e1010288. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhai, G., Shu, T., Chen, K., Lou, Q., Jia, J., Huang, J., et al. (2022) Successful Production of an All-Female Common Carp (Cyprinus carpio L.) Population Using cyp17a1-Deficient Neomale Carp. Engineering, 8, 181-189. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, C., Xu, J., Kocher, T.D., Li, M. and Wang, D. (2022) CRISPR Knockouts of pmela and pmelb Engineered a Golden Tilapia by Regulating Relative Pigment Cell Abundance. Journal of Heredity, 113, 398-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, C., Kocher, T.D., Lu, B., Xu, J. and Wang, D. (2022) Knockout of Hermansky-Pudlak Syndrome 4 (hps4) Leads to Silver-White Tilapia Lacking Melanosomes. Aquaculture, 559, Article ID: 738420. [Google Scholar] [CrossRef]
|
|
[38]
|
Lu, B., Wang, C., Liang, G., Xu, M., Kocher, T.D., Sun, L., et al. (2022) Generation of Ornamental Nile Tilapia with Distinct Gray and Black Body Color Pattern by Csf1ra Mutation. Aquaculture Reports, 23, Article ID: 101077. [Google Scholar] [CrossRef]
|
|
[39]
|
Lu, B., Liang, G., Xu, M., Wang, C., Tan, D., Tao, W., et al. (2022) Production of All Male Amelanotic Red Tilapia by Combining MAS-GMT and tyrb Mutation. Aquaculture, 546, Article ID: 737327. [Google Scholar] [CrossRef]
|
|
[40]
|
Mandal, B.K., Chen, H., Si, Z., Hou, X., Yang, H., Xu, X., et al. (2020) Shrunk and Scattered Black Spots Turn Out Due to MC1R Knockout in a White-Black Oujiang Color Common Carp (Cyprinus carpio var. color). Aquaculture, 518, Article ID: 734822. [Google Scholar] [CrossRef]
|
|
[41]
|
Xu, X., Chen, H., Mandal, B.K., Si, Z., Wang, J. and Wang, C. (2022) Duplicated Tyr Disruption Using CRISPR/Cas9 Reveals Melanophore Formation in Oujiang Color Common Carp (Cyprinus carpio Var. Color). Reproduction and Breeding, 2, 37-45. [Google Scholar] [CrossRef]
|
|
[42]
|
Chen, H., Wang, J., Du, J., Si, Z., Yang, H., Xu, X., et al. (2019) ASIP Disruption via CRISPR/Cas9 System Induces Black Patches Dispersion in Oujiang Color Common Carp. Aquaculture, 498, 230-235. [Google Scholar] [CrossRef]
|
|
[43]
|
Kuang, Y., Zheng, X., Cao, D., Sun, Z., Tong, G., Xu, H., et al. (2023) Generate a New Crucian Carp (Carassius auratus) Strain without Intermuscular Bones by Knocking Out bmp6. Aquaculture, 569, Article ID: 739407. [Google Scholar] [CrossRef]
|
|
[44]
|
Zhong, Z., Niu, P., Wang, M., Huang, G., Xu, S., Sun, Y., et al. (2016) Targeted Disruption of sp7 and Myostatin with CRISPR-CAS9 Results in Severe Bone Defects and More Muscular Cells in Common Carp. Scientific Reports, 6, Article No. 22953. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Nie, C., Wan, S., Chen, Y., Zhu, D., Wang, X., Dong, X., et al. (2021) Loss of Scleraxis Leads to Distinct Reduction of Mineralized Intermuscular Bone in Zebrafish. Aquaculture and Fisheries, 6, 169-177. [Google Scholar] [CrossRef]
|
|
[46]
|
Nie, C., Wan, S., Chen, Y., Huysseune, A., Wu, Y., Zhou, J., et al. (2022) Single-Cell Transcriptomes and runx2b−/− Mutants Reveal the Genetic Signatures of Intermuscular Bone Formation in Zebrafish. National Science Review, 9, nwac152. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Dong, Q., Nie, C., Wu, Y., Zhang, D., Wang, X., Tu, T., et al. (2023) Generation of Blunt Snout Bream without Intermuscular Bones by runx2b Gene Mutation. Aquaculture, 567, Article ID: 739263. [Google Scholar] [CrossRef]
|
|
[48]
|
王正银. 草鱼肌间刺发生发育特征及无肌间刺草鱼新种质培育[D]: [硕士学位论文]. 武汉: 华中农业大学, 2024.
|
|
[49]
|
Gan, R., Li, Z., Wang, Z., Li, X., Wang, Y., Zhang, X., et al. (2023) Creation of Intermuscular Bone-Free Mutants in Amphitriploid Gibel Carp by Editing Two Duplicated runx2b Homeologs. Aquaculture, 567, Article ID: 739300. [Google Scholar] [CrossRef]
|
|
[50]
|
Xu, H., Tong, G., Yan, T., Dong, L., Yang, X., Dou, D., et al. (2022) Transcriptomic Analysis Provides Insights to Reveal the bmp6 Function Related to the Development of Intermuscular Bones in Zebrafish. Frontiers in Cell and Developmental Biology, 10, Article 821471. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kinlan, B.P. and Gaines, S.D. (2003) Propagule Dispersal in Marine and Terrestrial Environments: A Community Perspective. Ecology, 84, 2007-2020. [Google Scholar] [CrossRef]
|
|
[52]
|
Dempster, T., Arechavala‐Lopez, P., Barrett, L.T., Fleming, I.A., Sanchez‐Jerez, P. and Uglem, I. (2016) Recapturing Escaped Fish from Marine Aquaculture Is Largely Unsuccessful: Alternatives to Reduce the Number of Escapees in the Wild. Reviews in Aquaculture, 10, 153-167. [Google Scholar] [CrossRef]
|